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Abstract� We address the problem of determining the optimal model complexity for shape modeling�
This complexity is a compromise between model speci�city and generality� We show that the error of a
model can be split into two components� the model error and the �tting error� of which the �rst one can
be used to optimize the model complexity based on the speci�c application� This strategy improves over
traditional approaches� where the model complexity is only determined by vague heuristics or trial�and�
error� A method for the determination of optimal active shape models is proposed and its e�ciency
is validated in several experiments� Furthermore� this method gives an indication on the range of valid
shape parameters and on whether or not an increased number of training data will reduce the number
of shape parameters further�
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� Introduction

In computer vision
 it is a standard problem to
model deformable objects �lips
 hands� or classes
of objects with similar shapes �faces
 cars�� The
appearance of these objects is often subject to ad

ditional variability due to a�ne transformation�
These a�ne transformations are usually caused
by a rotation or translation of an object relat

ive to a camera� Several techniques to describe
the general shape of such objects are known� con

tours are modeled as snakes �Kass
���
 B
splines
�Blake
���
 box models �Black
�	�
 minimum de�
scription length based shape models �Li
���
 poly

gons �Jaynes
���
 deformable templates �Yuille
���
�Jain
�	� �Zhong
���
 �exible templates �Hill
���
 or
point distribution models �Cootes
������ Among
these
 we choose point distribution models �PDMs�
�Cootes
����� as they are very generic
 highly spe

ci�c
 and can be automatically build from �hand�
labeled data� Ideally
 shape models should only gen

eralize to shapes that can be observed for some ob

ject in the class of objects subject to modelization�
Models which ful�ll this property are called speci�c

or more speci�c than others if they describe fewer
shapes not belonging to the target object class� On
the other hand
 PDMs are statistical models and
therefore it is unlikely that they specify exactly all
possible deformations or instances of the object

and hence will be a�ected by an error�

Generally
 the error committed by a shape re

cognition tool is composed from two parts� the er

ror caused by an insu�cient �exibility of the shape
model
 in the following called model error
 and
the �tting error caused by the �tting algorithm�
Both errors combined are the observed error when
a model is �tted to an image and therefore are ad
hoc not distinguishable� Consequently
 the main
reason for some unacceptably high error can not be
determined easily� As the error obtained by �tting
a model to a certain image is at best the model er

ror
 we propose a method that optimizes the model
complexity only�

Point distribution models are a very generic
shape modeling tool among the approaches men

tioned above as they can be automatically build
from labeled data� These models have further the
advantage that they are potentially more speci�c
than others �i�e� use less free parameters� as the
number of free parameters can easily be changed

even after the model was build �it is not contested
here that other models have other advantages��

However
 the core algorithm for the calculation
of the point distribution models does not determ

ine the number of free parameters to use� Only
a method that is of limited use is described in

�Cootes
������ It uses the eigenvalues to calculate
the percentage of the total model deformation de

scribed if a certain number of non
zero shape para

meters is used� The problem is that such a per

centage is hard to imagine in terms of a di�erence
between an ideal shape and the shape produced by
a restricted model�
This is an important problem
 as the perform


ance of the model and the �tting algorithm
 that
adapts a model to a given image depends on this
number� The optimal choice of this number is there

fore the main subject addressed in this paper� The
latter proposed method balances between more spe

ci�c models with a potentially high model error and
less speci�c models with a low model error� This is
achieved by varying the number of free parameters
combined with a statistical analysis of the model
error�

� Point Distribution Models

Roughly said
 a point distribution model consist of a
selection of orthogonal vectors describing variations
of a mean shape� The mean shape vector �x and the
set of vectors describing the variations
 which are
represented by a matrix P of eigenvectors
 are cal

culated from labeled data� In the selection of the ei

genvectors
 preference is given to eigenvectors with
the highest eigenvalues �the strongest eigenvectors�
of variations relative to a mean shape vector �x cal

culated over all training examples� The training
data or labels are a set of shape vectors of equal
length
 each a concatenation of coordinates of se

lected points in an image �x�� y�� x�� y�� � � � �� These
selected points are usually placed by hand �using
a simple graphical tool� on contours or other out

standing points in the images describing the shape
of an object� Examples will be given later in sec

tion ��
By de�nition
 valid shape vectors x with respect

to a certain point distribution model and a certain
number of shape parameters k are those which can
be obtained by multiplying the eigenvector matrix
P with a vector of shape parameters b with bi � �
�or some interval ��a� a� � �� for � � i � k and bi �
� for i � k� It is presumed that the eigenvectors in
the eigenmatrix are sorted with decreasing strength�
A valid shape vector is then represented as�

x � �x �Pb ���

This approach is based on the assumption that
the strongest eigenvectors
 and only these
 char

acterize the important deformations of the mean
model �x
 whereas weak eigenvectors correspond to
noise in the training data� In the resulting model




each eigenvector corresponds ideally to a deforma

tion that is independent from all others� However

this is not the case if some deformations are non

linear or if the training data is insu�cient�

Note
 that the optimal shape vector
 the valid
shape vector with the smallest mean square distance
to the given shape vector x
 with respect to some
number of shape parameters can be calculated e�

ciently with the cost of a matrix multiplication��

b � PT �x� �x� ���

Using this shape vector for a given k
 the mean
model error EMean�k is de�ned as the mean square
distance between a label x and the valid shape vec

tor closest to it�

EMean�k�x� � jjx� ��x� Pb�jj
with bi � � if i�k ���

The maximal model error EMax�k
 which is
de�ned as the largest error of all nodes �points� is
de�ned by�

EMax�k�x� � max
j

���xj�
��

with �x � x� ��x� Pb�

and bi � � if i�k ���

Either model error is not necessarily zero for the
shape vectors in the training database
 especially if
k is small as compared to the size of the training
set�

The creation of a point distribution model and
the adjustment of a model to a given image are sens

itive to the number and choice of labeled data used
for calculating the model� Furthermore
 the model
and the �tting algorithm may be wrongly paramet

erized� In practice
 this means that a considerable
amount of experience is necessary to successfully
tune the whole system as the cause of bad perform

ance is di�cult to identify� This problem can be
reduced
 if the model is evaluated and parameter

ized before it is actually �tted to images�

The method described in section � relies on an
estimation of the model error and evaluates a given
point distribution model independently from all
other procedures that are involved in adapting a
shape to an image� Using this estimation
 it is
straight forward to select a number of shape para

meters that makes a model just �exible enough
to satisfy some condition on the model error� In
other words
 before a �tting algorithm is involved


�This formula can be derived from equation ��� and the
fact that PT � P�� as P consists of orthogonal vectors�

the user knows that a certain model is appropri

ate for the task� This approach aims at prob

lems with rather di�erent character than those de

scribed and solved by T�F� Cootes and C�J� Taylor
in �Cootes
�	�� They replace in a certain sense in

complete training data by some �exibility of the
model that can not be derived from the training
data�

� The Databases

��� The X�ray Database

The images in this database were extracted from a
database transfered on video disc in collaboration at
the Queen�s University �Kingston� Canada� and the
ATR Human Information Processing Labs �Kyoto�
Japan� which consists of X
ray movies of the vocal
tract shot in the ��	��s� Video discs with this data

base are provided at no cost ��Munhall
����� This
database is corrupted by a considerable amount
of noise and variations of the average grey level�
The latter makes it particularly di�cult to label
smooth or blurred contours consistently 
 even for
humans� Furthermore
 the contours of organs
 such
as the tongue
 the lips
 the velum
 and the teeth are
in some cases invisible due to low contrasts �lips

tongue�
 shadowing �tongue behind teeth �llings�

or touching �tongue against velum or palate
 lip
against lip�� Figure � shows three images from this
database�

In consequence to the low quality of the images
 it
is very important that the point distribution model
is highly speci�c� This can help to extrapolate from
visible contours to occasionally invisible ones and
to reduce the sensitivity of the �tting algorithm to
contours not belonging to the object�

Note that �tting a point distribution model to
an image is not discussed here� This can for ex

ample be done by the means of active shape models
using grey
level models with gradient descend on
the shape parameters �Luettin
��� or moving points
along lines orthogonal to the curve �Cootes
�����
�Cootes
��� �Cootes
�	�
 active shape models using
geometric histograms �Di
Mauro
�	�
 Gabor �lters
�McKenna
���
 or the condensation algorithm using
edges �Isard
�	�� In �Davis
��� and �DeCarlo
�	� it is
shown how to combine optical �ow calculations with
shape models �see �Barron
��� for an overview an
evaluation of optical �ow algorithms�� However
 op

tical �ow algorithms are very sensitive to noise and
variations of the average grey level
 which makes
their usage on the database of X
ray images un

fruitful�



Figure �� Three examples from the database of X
ray images�

��� The Tulips� Database

This publicly available database consists of video
recordings of lips during the isolated pronunciation
of the �rst for English digits �Movellan
�	�� The
recordings were mad from � men and � women�
From this database
 ��� images were selected and
the outer rim of the lips labeled by hand as shown
in �gure �� Each label consists of � points placed
on the junctions of the upper and lower lip and ��
points placed on the either lips�

Figure �� An image from the Tulips database and
some example labels�

��� The M�VTS Database

This database is very similar to the Tulips� data

base
 recordings of more speakers are included ���
male
 �� female�� Furthermore
 all digits were pro

nounced in sentences �Pigeon
������ From this data

base ��	 examples were selected and labeled as
shown in �gure �� In addition to the Tulips� data

base
 also the inner rim of the lips are labeled� The
labels consist of �� points for the outer rim of the
lips and �	 for the inner rim�

Figure �� Labeled examples from the M�VTS data

base�

� The Proposed Method

In order to �nd a point distribution model which
is
 both
 very speci�c and a�ected only by a low
model error
 it is necessary to estimate the maximal
or mean model error �compare equations ��� and
����� This can be done using a cross
validation like
procedure�

�� Determine for the speci�c application the ac�
ceptable mean or maximal model error EMean

respectively EMax�

�� Split the set of labels L randomly into a num

ber of training Ti and test sets Si
 where all
training sets
 and therefore the correspond

ing test sets
 have to have the same size and
Ti � Si � L�

�� For each training set Ti
 build a point distribu

tion model �that is P �i� and �x�i���

�� For each model �P �i���x�i�� and label in test
set Si
 and for all possible numbers of shape
parameters
 calculate the optimal shape vec

tor according to equation ��� for � � k � N
with N equal to the elements in a shape vector
�twice the number of points per label for the
database of x
ray images��� Then
 calculate
the mean square error between these vectors
and the corresponding original labels �that is
EMean�k
 respectively EMax�k
 for all possible k
and all labels��

�� Average the mean model error EMean�k per test
set for all possible numbers of shape paramet

ers� This gives the estimated mean model er�
ror �EMean�k� Similarly
 the estimated maximal
model �EMax�k is calculated from the maximal
model error EMax�k�

�If the shapes are scaled and a certain point translated to
the origin of the coordinate system	 the e
ectiveN is reduced
by ��



	� Compute the estimated mean �maximal�model
error �EMean�k � �EMax�k� as a function of the
number of non
zero shape parameters k�

�� Search the number �k of active shape paramet

ers so
 that the acceptable mean or maximal
model error EMean
 respectively EMax
 is equal
or just inferior to the estimated model mean
error �EMean��k
 respectively the estimated max


imal model error �EMax��k�

choose �k so that���
��

�EMean��k � EMean � �EMean��k��

respectively
�EMax��k � EMax � �EMax��k��

���

A point distribution model using �k eigenvectors
�or equivalent� �k non
zero shape parameters� is
optimal in the sense of having a model error in

ferior or equal to �EMean�k
 respectively �EMax�k

and being as speci�c as possible�

Example� ��� images of the X
ray image data

base were labeled� Each label consists of �� co

ordinates
 which corresponds to a �� element fea

ture vector� Each label marks the outline of the
chin �� points�
 the upper jaw �� points�
 the upper
and lower lips �� points each�
 the upper and lower
teeth with one point on the front teeth �� points
each�
 the palate �� points�
 the velum �� points�

and the tongue �� points�� An example for such a
label is shown in �gure ��

Figure �� A labeled image of the database of X
ray
images�

Before a point distribution model is build
 the
labels are scaled and the coordinates of the upper
front teeth are chosen to be the origin of the co

ordinate system� Therefore
 a point distribution

model with �� shape parameters can theoretically
describe all possible labels
 unfortunately also all
impossible ones� For a model
 which is calculated
from ��� labels
 a selected label and the valid shape
vectors closest to the true label are calculated for
k � f�� �� ��� ��g �see equation ����� That those re

stricted models are not necessarily able to describe
exactly a given label
 can be seen in �gure �� The
points of the label are connected by a line with the
corresponding point in the valid shape �the length
of the lines correspond to the error committed for
this point�� It can be seen that increasing the num

ber of non
zero shape parameters bi decreases the
mean and maximal model error�
�� pairs of training and test sets are likely to be

su�cient for reducing the statistical error of the es

timated model error to a reasonable value� To be
on the safe side
 the statistical error and the vari

ance of the averaged errors should be taken into
consideration and the number of training and test
sets increased if the statistical error is too high�

A user may �nd number �k of shape parameters
to be unrealistic high� This can be the cause of
the number of training samples being to low
 as
it will be shown in section �� As an enlargement
of the training data base will decrease the number
of shape parameters only in the presence of insu�

cient or inaccurate training data� It does not help if
the shape deformations are non
linear� In order to
cope with this case
 one would use a non
linear type
of model
 for example a mixture model �Cootes
���

a non
linear point distribution model using neural
networks �Sozou
��� or polynomials �Sozou
���� Ap

proaches that use point distribution models locally
are described in �Bregler
��� and �Heap
����

� Experiments

��� ��� with the X�ray Database

For the testing procedure
 the set of ��� labels was
split randomly in six groups of �� pairs of training
and test sets� in training sets of sizes ��
 ���
 ���

���
 ���
 or ��� labels and corresponding test sets
of sizes� ���
 ���
 ���
 ���
 ���
 or ��� Then
 for
each group of training and test sets
 step � to � of
the method described in section � are performed�
The six curves shown in �gure 	 re�ect the

changes of the estimated maximal model error in
image pixels if the number of non
zero shape para

meters is varied �the superscript of the �E indicates
the size of the training set�� The statistical error

�The di
erent sizes of the test sets will	 without harm	
result in di
erent con�dence intervals for the 
EMean	 and

EMax�



k�� k��
EMean������� pixel EMean����	�� pixel
EMax���	��� pixel EMax������� pixel

k��� k���
EMean������� pixel EMean������� pixel
EMax�������� pixel EMax�������� pixel

Figure �� The mean and maximal model error for a varying number k of non
zero shape parameters for
a test label� Lines connect points of the label with corresponding points in the closest valid shape vector�
The model was constructed from ��� labels�

for the maximal error is typically smaller than �����
pixel �assuming a student
t distribution of the error
and a con�dence of ����
 whereas the variance of
the error is typically smaller than ��� pixel �both
with one exception for k����
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Figure 	� The variation of the estimated maximal
model error for point distribution models depend

ing on the number of training samples and non
zero
shape parameters for the X
ray data�

Similarly
 �gure � shows the estimated mean er

rors calculated in the same way� It can be eas


ily seen that the curves are similarly shaped with
the �EMean�k having naturally lower values� The re

mainder of the paper therefore discusses only the
maximal model error� results are in general valid
for the mean model error too�
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Figure �� The variation of the estimated mean
model error for point distribution models depend

ing on the number of training samples and non
zero
shape parameters for the X
ray data�

Example� for the database of X
ray images
 we
assume that labels of a given image made by hu




mans will di�er up to �� pixel per point �in other
words
 the human will commit an error of up to ��
pixels�
 due to the reasons explained in section ����
It is therefore appropriate to permit a maximal
model error of �� pixel� Then
 using �gure 	
 it
can be determined that a point distribution model
build from �� samples requires on average �� shape
parameters to meet this condition
 whereas a model
build from ��� samples requires only �� parameters�
Clearly
 using more training examples improves the
quality of the point distribution model�

For better observation of the changes caused by
varying the size of the training set
 the curve corres

ponding to the point distribution models build from
��� samples is used as reference and subtracted
from the others� The resulting curves are displayed
in �gure �� It can be seen that
 with the increase
of the number of training samples
 the point distri

bution models improve progressively� the lower the
curve for a prede�ned model
 the less shape para

meters are required to perform at a certain maximal
error �disregarding the uninteresting shape para

meters higher than ���� An obvious
 but a priori
unanswerable question is
 how far can the quality of
the model be improved by augmenting the number
of training samples�
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Figure �� Relative di�erences of the estimated max

imal error for point distribution models for the X

ray data�

Some information can be drawn from such plots�
theoretically
 not taking statistical errors into ac

count
 curves approach with an increasing size of
the training set asymptotically a lower bound� This
lower bound is the curve corresponding to the un

known optimal model� This fact may be used with
some risk to estimate whether or not the number
of samples for the calculation of the point distribu

tion model is su�cient� if two consecutive curves
are almost identical
 probably no further important
improvement is possible� From �gure �
 one might
estimate that increasing the training set size from

��� to ��� labels
 the average maximal model error
can be reduced by ��� to ��� pixel�

��� Experiments with the Tulips�

Database

Similar to the experiments with the X
ray image
database
 the total of ��� labels was split in ���
randomly selected labels with ��
 ��
 ��
 ���
 and
��� items for the training and the remaining items
as test set� Figure � shows that the general shape of
the maximal error as a function of the used shape
parameters and the size of the training set is the
same as for the X
ray database� Although the de

formation of the lips and the vocal tract are non

linear
 it is obvious that the deformation of the lips
are less complex� This coincides with the fact
 that
the number of required shape vectors corresponding
to the same error are much lower for the lip data�
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Figure �� The maximal error as a function of the
number of used shape parameters and the size of
the training set for the Tulips� database�

��� Experiments with the M�VTS

Database

Following the same scheme
 the total of ��� labels
was split into training and test sets with the train

ing sets including ��
 ���
 ���
 ���
 ���
 and ���
items� Comparable to the other two data sets
 the
maximal error decreases with the number of increas

ing shape parameters and an increasing size of the
training set ��gure ���� In a
 here omitted for space
reasons
 di�erence plot
 it can be seen that the er

ror decreases with an increasing size of the train

ing set� Comparing the number of shape paramet

ers required to obtain a certain error �e�g� � pixel�
with those for the Tulips� and X
ray database res

ults in an intermediate value
 close to the value of
the Tulips� database� This is sensible
 as the in

ner rim of the lips performs similar 
 although not



totally dependent 
 movements
 and therefore re

quires more parameters for their description�
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Figure ��� The maximal error as a function of the
number of used shape parameters and the size of
the training set for the M�VTS database�

� Restricting Shape Vectors

Further

Although the restriction of shapes to some hy

perplane de�ned by the shape vectors reduces the
amount of possible shapes
 it does
 for example
 not
limit the absolute size� Therefore
 while �tting a
point distribution model to a given image
 the user
may wish to limit the domain of valid shape vectors
further by restricting each shape parameter to some
subset of �
 usually some �nite interval� An indica

tion of an useful size of these intervals are the eigen

values� they are the variance of the corresponding
shape parameter bi if the model is adapted to the
various samples in the database� In other words

the eigenvalue �i is also the variance of valid val

ues of the corresponding shape parameter� Assum

ing that the distribution Di is Gaussian
like with
a zero mean
 an interval ��c� c� with some constant
c�p

�i will virtually include all valid shape para

meters� For example
 T�F� Cootes and C�J� Taylor
consider to use ci��

p
�i �see �Cootes
�	��� Another

approach to limit the bi
 is to add a penalty term
for large bi to the cost function used to �t the shape
model to an image �Cootes
���� This approach re

acts more gracefully in cases where a shape corres

ponds best to a shape vector with some bi slightly
outside the interval ���p�i� �

p
�i��

Although both approaches are simple and
straightforward
 and therefore easily applicable

they are not always satisfactory as the Di are not
necessarily Gaussian
like �as it is assumed by T�F�
Cootes et al��� The reasons for this are numerous�

� An unequal distribution of object classes� Ex

ample� the shape of cars� A realistic data

base with images of cars will only contain a few
images with Ferraris
 but may showing Fords�
Therefore the shape vector �Ford� will be more
probable�

� An unequal distribution of object deforma

tions� Example� randomly chosen images from
movies are searched for faces and labeled for fa

cial expressions� In this database
 expressions
like �laugh� or �pain� will be rare
 whereas �at

tentive listening� will be frequent�

� A bad selection of training samples�

� Non
linear deformations of a shape� Assume a
point of an object is moving along a T
shaped
path with a relative long vertical component
and an equal probability for the point being on
a certain location on this path� The �rst ei

genvector corresponding to this movement will
be parallel to the dominant movement on the
vertical bar of the T� The second eigenvector is
consequently to the horizontal bar� Figure ��
idealizes this situation�

It can be seen that the distribution of the �rst
shape parameter is biased to the location of the
horizontal bar and the second shape parameter
to the vertical bar� Both distributions are non

Gaussian� A model using a restriction of pos

sible point positions with symmetric intervals
to limit the b� will necessaryly permit shapes
with points above the horizontal bar of the T�
Furthermore
 if the standard limits are used

the model will falsely forbid the three ends�
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Figure ��� A non
Gaussian distribution of shape
parameters can be caused by non
linear deforma

tions�



Fortunately
 the shape parameters b
 which were
already calculated for the estimation of the model
errors
 can be used to estimate the distributions
Di of the shape parameters
 or more important for
this purpose
 the maxima and minima of these dis

tributions� That the distributions Di for the ex

ample of the database of X
ray images di�er con

siderably from a Gaussian distribution is shown in
�gure ��� The histograms in this �gure represent
the estimated and normalized distribution �Di for
the two strongest eigenvectors averaged over the ��
point distribution models build from ��� samples�
The normalized distributions �Di are estimated by
dividing the total range of all bi��i into intervals of
length �

�� 
 counting the observed bi��i per interval

and dividing these counts by the total number of
observed b�
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Figure ��� The estimated distribution �Di for the
two strongest shape parameters� The dotted lines
are the Gaussian curves that �t the �Di best�

A comparison of �D� and �D� with Gaussian curves
�the dotted lines in �gure ��� that are �tted� to �D�

and �D�
 respectively
 show important di�erences�
Given the observed distributions
 it is straight for

ward to chose for each i the maxima and minima
of �Di as limits for the bi��i �or an interval that is

�That is�
P

bi

�

D��bi� � � exp����bi�

�
�
�� minimal for

some � and ��

slightly bigger��

According to this strategy
 b���� is limited to the
interval ���� ��� and b���� to ������ ����� for the
database of X
ray images� These intervals are a
better choice than any symmetric interval
 as are
less likely to exclude some valid shape
 respectively
to permit invalid ones� To give an example
 �gure 	
shows the increase in pixels of the average max

imal model error for the point distribution model
build from ��� samples if the bi are instead to the
observed �Di limited to the interval ���p�i� �

p
�i��

The augmentation of the average error is limited
�maximal ��	 pixel�
 but this di�erence is caused
by only a few image points for very small portion
of the data
 for which it is therefore much more
important�
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Figure ��� The increase of the average maximal
model error if the bi are ���

p
�i� �

p
�i� for the X
ray

data�

This behavior can also be observed for the other
two data sets� Figure �� and �� show the min

imal and maximal observed shape parameters if the
point distribution model is optimally �tted to the
shapes in the test set �the models were constructed
from the training sets with ���
 respectively ���
items��

As compared to the experiments performed with
the X
ray data
 the distribution of the most import

ant shape vectors for the Tulips� and the M�VTS
database are closer to a Gaussian distribution� For
example
 �gure �	 show such distributions of the
�rst three
 normalized distributions and the best
�tting Gaussian distribution �the distributions were
calculated using the point distribution models cal

culated from ��� labels�� The �rst and second shape
parameter have a non
neglectable number of ob

served shape parameters with values superior to
� standard deviation
 and below 
� for the second
shape parameter�
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Tulips� database� The horizontal lines correspond
to � standard deviations�
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Figure ��� Minimal and maximal values of observed
normalized shape parameters bi�

p
�i as compared

to the � standard deviation limit for the M�VTS
database�

� Using the Shape Parameter

Distributions

Besides for de�ning valid shape parameters
 the dis

tributions �Di can be used outside the core recog

nition algorithm� This is possible
 as an a priori
probability of shapes can be estimated from the �Di

under the assumption that the shape parameters bi
are independent and that the training samples are
drawn randomly from the whole database �i�e� the
distributions of the shapes of the labeled images is
the same as for the whole database��

P �b� �
kY

i	�

P �bi� �
kY

i	�

Di�bi��i� �	�

This shape probability may used in various ways

for example in tracking algorithms using probabil

ities �Isard
�	�
 or in classi�cation tasks�

In contrast to this
 a user might not be interested
in a priori probabilities of shapes
 but in shape
models with a very low model error� This requires
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Figure �	� The distribution of observed values for
the �rst three shape parameters for the M�VTS
data set�

a training database that represents well all possible
shapes� The distributions Di can be used to �nd
underrepresented shapes by searching for bi which
correspond to missing values in distribution Di�

Then
 in some sample shape vector�s�
 a vector
element is changed to a missing or underrepresen

ted value� The resulting vector is then transformed
into a shape using equation ���� A simple graph

ical tool can the visualize this shape
 and if this
shape is likely a shape of a target object
 the whole
database can be searched for images showing sim

ilar shapes� Labeling the found images and recal

culating the shape model will result in an improved
shape model�

Example� for the X
ray images database
 the
�rst shape parameter assumes almost never values



in the range of b��
p
��� ��� ��
 and the second never

values in the range b��
p
�� � ����� �� �compare �g


ure ���� Shapes corresponding to these shape para

meters must exist
 as to the deformations of the
vocal tract are continuous�

� Conclusion

The proposed method for the optimal parameteriz

ation of a point distribution model permits to se

lect an optimal number �within a small statistical
error� of shape parameters� The analysis of sev

eral experiments con�rms the consistence of theory
and practice and show that this approach is more
precise than previously used approaches�

Besides this
 the method simpli�es the use
of point distribution models
 as it establishes a
straight forward criteria for the selection of the
number of shape parameters� As a by
product of
this method
 the actual distribution of the shape
parameters can be estimated� An arti�cial example
and three real
world data sets showed that these
distributions can be very asymmetric and can di�er
greatly as compared to a Gaussian distribution� Us

ing the maxima and minima of the actual distribu

tion
 each shape parameter can be limited to values
that are more appropriate for the application and
lead to more speci�c models than any zero
mean
symmetric interval�

If the method for the estimation of the model
error is repeated with di�erent training set sizes
 it
can be predicted whether or not a larger training
set will increase the quality of a model� Depending
on this prediction
 a decision on labeling more data
or instead using a another �e�g� non
linear� point
distribution model is simpli�ed�

The proposed method is generalizable to non

linear point distribution models and or higher di

mensional shapes� an intermediate representation
of a shape with a variable number of free para

meters
 as well as an inverse transformation from a
shape to these parameters are required� The reason

able computational complexity of the method and
the small additional e�ort for its implementation
justi�es its use�
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