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Abstract— In this paper, we discuss a new automatic
speech recognition (ASR) approach based on the inde-
pendent processing and recombination of several feature
streams. In this framework, it is assumed that the speech
signal is represented in terms of multiple input streams,
each input stream representing a different characteristic of
the signal. If the streams are entirely synchronous, they
may be accommodated simply. However, as discussed in
the paper, it may be required to permit some degree of
asynchrony between streams, which are then forced to re-
combine at some temporal “anchor points” associated with
some (pre-defined) speech unit levels. We start by intro-
ducing the basic framework of a statistical structure that
can accommodate multiple observation streams. This ap-
proach was initially applied to the case of subband-based
speech recognition and was shown to yield significantly bet-
ter noise robustness. After having summarized these res-
ults, the multi-stream approach will be used to combine
multiple time-scale features in ASR systems (in our case,
to use syllable level features in a phoneme-based HMM
system).

1. INTRODUCTION

The general motivation of the multi-stream approach
discussed in this paper is to allow for the parallel pro-
cessing of several feature streams, each feature stream
resulting from a particular observation of the speech phe-
nomena. These different information sources, possibly
representing different properties of the speech signal are
treated independently up to some recombination point
(e.g., at the syllable level). In this context, the differ-
ent streams are not restricted to the same frame rate and
the underlying HMM models associated with each stream
do not necessarily have the same topology.

This multi-stream approach is a principled way to mer-
ging different sources of temporal information (possibly
asynchronous and/or with different frame rate) and has
many potential advantages. In the case of subband-based
recognition, a particular case of multi-stream recognition,
it was shown on several databases that this approach was
yielding much better noise robustness [1]. As recalled in
Section 3, the general idea of this subband approach is
then to split the whole frequency band (represented in
terms of critical bands) into a few subbands on which
different recognizers are independently applied and then
recombined at a certain speech unit level to yield global
scores and a global recognition decision.
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Another feature that will be investigated in the current
paper is the possibility to incorporate multiple time res-
olutions as part of a structure with multiple length units,
such as phone and syllable. As it will be discussed in
details in the full paper (and briefly presented below), it
is possible to define subword models composed of several
cooperative HMM models focusing on different dynamic
properties of the speech signal. This could for example
allows for proper syllable modeling in HMM-based ASR
systems heavily depending on the assumption of piecewise
stationarity (at the level of HMM states).

2. MULTI-STREAM STATISTICAL MODEL

We address here the problem of recombining several
sources of information represented by different input
streams. This problem can be formulated as follows: as-
sume an observation sequence X composed of K input
streams X} representing the utterance to be recognized,
and assume that the hypothesized model M for an utter-
ance is composed of J sub-unit models M; (5 =1,...,J)
associated with the sub-unit level at which we want to
perform the recombination of the input streams (e.g., syl-
lables). To process each stream independently of each
other up to the defined sub-unit level, each sub-unit model
M; 1s composed of parallel models M]k (possibly with dif-
ferent topologies) that are forced to recombine their re-
spective segmental scores at some temporal anchor points.
The resulting statistical model is illustrated in Figure 1.
In this model we note that:

o The parallel HMMs, associated with each of the input
streams, do not necessarily have the same topology.

o The recombination state ((X) in Figure 1) is not a
regular HMM state since it will be responsible for
recombining (according to the possible rules dis-
cussed below) probabilities (or likelihoods) accu-
mulated over a same temporal segment for all the
streams. To implement this an approach such as the
asynchronous two-level dynamic programming, or a
particular form of HMM decomposition [8], referred
to as HMM recombination, can also be used [1].

The recognition problem for a likelihood-based system
can then be formulated in terms of finding the model M



® = Recombination at the sub-unit level

Fig. 1. General form of a K-stream recognizer with anchor points
between speech units (to force synchrony between the different
streams). Note that the model topology is not necessarily the
same for the different sub-systems.

maximizing® :
J
p(X|M) = H (X, M)

where X represents the multiple stream subsequence as-
sociated with the sub-unit model M;. Assuming that we
have a different “expert” Ej for each input stream Xj
(e.g., one “expert” for long-term features and one “ex-
pert” for short-term features) and that those experts are
mutually exclusive (i.e., conditionally independent) and
collectively exhaustive, we have:

> P(By) =

where P(E}) represents the probability that expert Ej is
better than any other expert. We then have:

p(X|M) = HZp (XF|MF)

=1 k=1

P(Ey|M;) (1)

where P(Ey|M;) represents the reliability of expert FEj
given the considered sub-unit.

Conceptually, the analysis above suggests that, given
any hypothesized segmentation, the hypothesis score may
be evaluated using multiple experts and some measure of
their reliability. Generally, the experts could operate at
different time scales, but the formalism requires a resyn-
chronization of the information streams at some recom-
bination point corresponding to the end of some relevant
segment (e.g., a syllable).

In the specific case in which the streams are assumed to
be statistically independent, we do not need an estimate
of the expert reliability, since we can decompose the full
likelihood into a product of stream likelihoods for each
segment model. For this case we can simply compute:

Zzlong |;) (2)

=1 k=1

log p(X|M) =

Since we do not have any weighting factors, although
the reliability of the different input streams may be dif-
ferent, this approach can be generalized to a weighted
log-likelihood approach. We then have:

ZZ“’ log p(X | M) 3)

=1 k=1

log p(X|M) =

3The a posteriori-based formulation (finding the model M maximizing
P(M|X)) is not discussed here. For further details, see [2]

where wf represents the reliability of input stream k.
In the multi-band case (see Section 3), these weighting
factors could be computed, e.g., as a function of the nor-
malized SNR in the time (j) and frequency (k) limited
segment X]k and/or of the normalized information avail-
able in band k& for sub-unit model ;.

More generally, we may also use a nonlinear system to
recombine probabilities or log likelihoods so as to relax
the assumption of the independence of the streams:

log p(X|M) = Zf W, {log p(XJ[M}), VE})  (4)

1=1

where W is a global set of recombination parameters.
During recognition, we will have to find the best sen-
tence model M maximizing p(X|M). Different solutions
will be investigated, including:
1. Recombination at the sub-unit level (where M;’s are
sub-unit models composed of parallel sub-models,
one for each input stream, as illustrated on Figure 1).

2. Although it does not allow for asynchrony of the
different streams, recombination at the HMM state
level (where M;’s are HMM states) is also discussed
in this paper.

Recombination at the HMM-state level can be done
in many ways, including untrained linear way or trained
linear or nonlinear way (e.g., by using a recombining
neural network). This is pretty simple to implement and
amounts to performing a standard Viterbi decoding in
which local (log) probabilities are obtained from a linear
or nonlinear combination of the local stream probabilities.
Of course, this approach does not allow for asynchrony,
yet it has been shown to be very promising for the multi-
band approach discussed in Section 3.

On the other hand, recombination of the input streams
at the sub-unit level requires a significant adaptation of
the recognizer. We are presently using an algorithm re-
ferred to as “HMM recombination”. It is an adaptation
of the HMM decomposition algorithm [8]. The HMM-
decomposition algorithm is a time-synchronous Viterbi
search that allows the decomposition of a single stream
(speech signal) into two independent components (typ-
ically speech and noise). In the same spirit, a similar
algorithm can be used to combine multiple input streams
(e.g., short-term features and long-term features) into a
single HMM model. The constraint between the paral-
lel sub-models is implemented by forcing these models to
have the same begin and end points. The resulting decod-
ing process can be implemented via a particular form of
dynamic programming that guarantees the optimal seg-
mentation.

All the work presented in this paper has been carried
on in the framework of hybrid HMM/ANN systems [3].
On top of the advantages already known, this approach
is particularly attractive to the multi-stream experiments
reported here since (1) it allows to estimate local and
global posterior probabilities (directly reflecting confid-
ence levels) and (2) allows to compute these probabilities
on the basis on large acoustic contexts (which will be used
in Section 4 when using multiple time scales).



3. SUBBAND-BASED SPEECH RECOGNITION

As a particular case of the multi-stream approach, a
new speech recognition system based on independent pro-
cessing and recombination of partial frequency bands was
recently developed and tested on several clean and noisy
databases. The general idea is to split the whole frequency
band (represented in terms of critical bands) into a few
subbands, to perform acoustic processing independently
for each subband, to use these subband features to com-
pute subband phonetic probabilities and then to recom-
bine these sources of information at a certain speech unit
level to yield global scores and a global recognition de-
cision.

There are many potential advantages to using this sub-
band approach:

1. The message may be impaired (e.g., by noise) only
in some specific frequency bands. When recognition
is based on several independent decisions from differ-
ent frequency sub-bands, the decoding of linguistic
message need not be severely impaired, as long as
the remaining clean sub-bands supply sufficiently re-
liable information.

2. Some sub-bands may be inherently better for certain
classes of speech sounds than others.

3. Transitions between more stationary segments of
speech do not necessarily occur at the same time
across the different frequency bands, which makes
the piecewise stationary assumption more fragile.
The sub-band approach may have the potential of
relaxing the synchrony constraint inherent in current
HMM systems.

4. Different recognition strategies might ultimately be
applied in different sub-bands.

Experiments have been reported (and compared with

a state-of-the-art full band HMM/ANN approach) in [1].
The most important results and conclusions are briefly
summarized here.

It was first shown on a speaker independent task (108
isolated words, telephone speech) that for “clean” (tele-
phone) speech, the subband approach is able to achieve
results that are at least as good as (and sometimes better
than) the conventional fullband recognizer. Furthermore,
when some frequency bands were contaminated by noise,
the multiband recognizer was yielding much more graceful
degradation than the broadband recognizer.

Results were also reported in[1] on a telephone database
(referred to as “Bellcore Digits”) consisting of 13 isolated
American English digits and control words. More specific-
ally, the performance of the multiband and the fullband
approaches were also compared in terms of acoustic fea-
tures. Three sets of acoustic parameters were considered:
critical band energies, Ipc-cepstral features independently
computed for each subband on the basis of a subset of crit-
ical band energies (subband PLP [6]) possibly followed by
cepstral mean subtraction or log-RASTA processing [7].
One of the main conclusion was that all-pole modeling of
cepstral vectors greatly improves the performance of the
subband approach. Further tests were finally performed
on the same Bellcore database on which 10dB car noise
was added. In this case, subband J-RASTA PLP fea-
tures [7] (known to be more robust to additive broad bad
noise) were used and it was shown again that the subband
approach was outperforming the regular full band system.

More recently, experiments were performed on the
NUMBERS’93 database, a continuous speech telephone

database collected by the CSLU at the Oregon Gradu-
ate Institute [4]. Tt consists of numbers spoken naturally
over telephone lines on the public-switched network. The
Numbers’93 database consists of 2,167 spoken numbers
strings produced by 1,132 callers. We used 1,534 utter-
ances for training (877 for adjusting the weights of the
MLPs and 657 for cross-validation purposes) and 384 ut-
terances for testing. We used single state HMM/ANN
context independent phone models.  Multilayer per-
ceptrons (MLPs) were used to generate local probabilities
for HMMs. The subband-based system had four bands
and used subband log-RASTA-PLP features. Recombin-
ation was done at the state level with a multilayer per-
ceptron with one hidden layer. Results, reported on Fig-
ure 2, clearly show that the multiband approach yields
much more graceful degradation than the classical ap-
proach in the case of band limited noise.
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Fig. 2. Error rate for speech + band limited noise in the first
frequency band (first formant) and various SNR levels. Solid
line is for the multiband system, dotted line is for the fullband
system.

4. COMBINING MULTIPLE TIME-SCALE FEATURES

In the previous section, several results were recalled
to show that the multi-stream approach seems to be
particularly robust to (unpredictable) band limited and
wideband noise conditions. Another potential advant-
age of this approach which is discussed now concerns
the possibility to combine short-term temporal and long-
term temporal information. Indeed, current ASR sys-
tems mainly use short-term information, typically at the
phoneme level, while the longer term information is sup-
posed to be captured via the HMM topology. However,
it 1s often acknowledged that it may be necessary to in-
corporate larger lexical units than the phoneme to cap-
ture all the speech variability and to model long-term
dynamics. A plausible candidate is the syllable. Unfor-
tunately, long term temporal dependencies (dynamics),
e.g., between syllables; are not explicitly captured by the
centisecond-based feature extraction or by the model to-
pology. Consequently, properly handling longer temporal
regions (stretching over more than the typical phoneme
or HMM-state duration) is still an open issue.

Several studies have attempted to use acoustic context.
This was done either by conditioning the posterior prob-
abilities on several acoustic frames, or by using temporal
derivative features (see, e.g., [3], [5]). Typically, an op-
timum was observed with a context covering 90 ms of
speech, corresponding approximately to the mean dur-
ation of phonetic units. However, these approaches do
not allow for representing higher level temporal processes
(such as syllable dynamics for instance) since the under-



lying HMM model is still phoneme based and implicitly
assumes piecewise stationarity (at the HMM state level).
In fact, what we should actually (attempt to) do is to
process short-term and long-term information with two
concurrent HMMs assuming (via different topologies and
different features) piecewise stationarity at different tem-
poral scales. In the following we thus tested the multi-
stream approach to combine short-term dependencies and
features associated with them (e.g., at the level of 90 ms)
with long-term dependencies and their corresponding fea-
tures (e.g., at the level of 200 ms).

Fig. 3. Syllable [se] multi-stream model.

As a first attempt in this direction, and as illustrated in
Figure 3, initial experiments were performed with syllable
models described in terms of two parallel models:

1. A “regular” syllable model built up by concatenat-
ing context independent (HMM/ANN) phone mod-
els and supposed to capture the fine structure of the
syllable. This model was processing acoustic vectors
as usually used in HMM/ANN systems, typically 9
frames of acoustic context covering about 100 ms.
Minimum phone duration was also used.

2. A second HMM model aimed at capturing the gross
syllable temporal structure. In our initial experi-
ments, this model was composed of fewer states (3-
states in our case) processing larger temporal context
of about 200 ms. It is however clear that both the
topology and the features will be subject to optim-
ization in the future.

Preliminary tests were performed on the NUMBERS’93
database already used in Section 3, with the same split
between training, cross-validation and test data. Besides
single state HMM /ANN context independent phone mod-
els, another HMM/ANN system was also used for the
gross syllable models. Full band log-RASTA-PLP para-
meters were used, with 9 frames (125 ms) of contextual
information for the phoneme-based model, and 17 frames
(225 ms) for the gross syllable model. Decoding was done
with the HMM decomposition/recombination algorithm.
We recombined the sub-stream models either linearly
(Eq. 3), or by using a multilayer perceptron (Eq. 4). As
an additional reference point, tests were also performed
by constraining the search (based on phone HMMs) to
match the true (hand labeled) syllable segmentation®.

Tests were done in the case of clean speech as well as in
the case of speech corrupted by additive stationary white
noise. Results, reported in Table I and compared to a
state-of-the-art phone-based hybrid HMM/ANN system,

clearly show a significant performance improvement.

5. CONCLUSIONS

In this paper, we discussed a new speech recognition
approach based on the independent processing and re-
combination of multi-stream features. This approach was

4This was achieved by using time dependent syllable transition penal-
ties, where the penalties are very high for the time slots where a syllable
transition is not allowed.

Error Rate Phone | Linear | MLP | Cheat
clean speech 10.7% 10.1% 8.9% 6.8%
speech+noise 17.2% 16.2% 16.2% | 13.5%

TABLE 1

WORD ERROR RATES ON CONTINUOUS NUMBERS (NUMBERS'93

DATABASE). Phone REFERS TO REGULAR PHONE BASED RECOGNIZER.
Linear REFERS TO MULTI-STREAM SYSTEM WITH LINEAR

RECOMBINATION OF THE TWO STREAMS. M L P REFERS TO A
RECOMBINATION WITH AN MLP. Cheat REFERS TO CONSTRAINING THE

DP SEARCH WITH SYLLABLE BOUNDARIES. NOISE WAS ADDITIVE

GAUSSIAN WHITE NOISE, 15DB SNR.

tested in the framework of subband based speech recog-
nition as well as on a new model combining multiple time
scale features. In both cases, preliminary results suggest
that, while opening many new research opportunities, this
generic approach (1) does not degrade performance on
clean speech, (2) is more robust to unpredictable (non-
stationary) noise and (3) could provide a new formalism
for combining different sources of short term and long
term information. This preliminary work will now be ex-
tended in several directions, including:

o Long-term features: Further experiments have to be
done to determine the features that are best suited
to capture long-term dynamic properties.

o Recombination criterion: So far, only a likelihood
based recombination has been tested.

o Further work with subband ASR.

o Combining subband and multiple temporal scale re-
cognition.
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