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� Introduction

Recently� a modular architecture of neural networks known as a mixture of experts �ME� ������ has
attracted quite some attention� MEs are mixture models which attempt to solve problems using a
divide	and	conquer strategy
 that is� they learn to decompose complex problems in simpler subprob	
lems� In particular� the gating network of a ME learns to partition the input space �in a soft way� so
overlaps are possible� and attributes expert networks to these di�erent regions� The divide	and	conquer
approach has shown particularly useful in attributing experts to di�erent regimes in piece	wise station	
ary time series ���� modeling discontinuities in the input	output mapping� and classi�cation problems
������������

The ME error function is based on the interpretation of MEs as a mixture model ���� with con	
ditional densities as mixture components �for the experts� and gating network outputs as mixing
coe�cients� The purpose of this note is to describe various existing methods for minimizing this ME
error function and to do so in a uni�ed notation� Learning algorithms treated are gradient descent�
quasi	Newton methods� Expectation Maximization �EM� ������� and various one	pass solutions of the
maximization step of the EM algorithm� The last section gives a short summary of how mixtures of
experts can estimate local error bars ����

� Mixtures of Experts

In this section the basic de�nitions of the mixture of experts model are given which will be used in
the rest of this note�

Figure � shows the architecture of a ME network� consisting of three expert networks and one gating
network both having access to the input vector x
 the gating network has one output gi per expert�
The standard choices for gating and expert networks are generalized linear models ��� and multilayer
perceptrons ���� The output vector of a ME is the weighted �by the gating network outputs� mean
of the expert outputs �the weights of the sub	networks have been left out��

y�x� �
mX
j��

gj�x�yj�x�� ���

The gating network outputs gj�x� can be regarded as the probability that input x is attributed to
expert j� In order to ensure this probabilistic interpretation� the activation function for the outputs
of the gating network is chosen to be the soft	max function ����

gj �
exp�zj�Pm
i�� exp�zi�

� ���

where the zi are the gating network outputs before thresholding� This soft	max function makes that the
gating network outputs sum to unity and are non	negative
 thus implementing the �soft� competition
between the experts�

A probabilistic interpretation of a ME can be given in the context of mixture models for conditional
probability distributions �see section ��� in ���
 again the dependence on the weights has been left
implicit��

p�tjx� �
mX
j��

gj�x��j�tjx�� ���

where the �j represent the conditional densities of target vector t for expert j� The use of a soft	max
function in the gating network and the fact that the �j are densities guarantee that the distribution
is normalized�

R
p�tjx� dt � ��

This distribution forms the basis for the ME error function which can be optimized using gradi	
ent descent or the Expectation	Maximization �EM� algorithm ���� Of course� a global least	squares
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Figure �� Architecture of a mixture of experts network�

approach could also be used and might be more appropriate when a division in subproblems is not
feasible ����

A standard way to motivate error functions is from the principle of maximum likelihood of the
�independently distributed� training data with input vectors xn and target vectors tn� fxn� tng �see
section ��� in �����

L �
Y
n

p�xn� tn� �
Y
n

p�tnjxn�p�xn��

where dependence of p�xn� tn� and p�tnjxn� on the network parameters has been left implicit� A cost
function is then obtained by taking the negative logarithm of the likelihood �and dropping the term
p�xn� which does not depend on the network parameters��

E � �
X
n

ln p�tnjxn�� ���

The most suitable choice for the conditional probability density depends on the problem� For regression
problems a Gaussian noise model is often used �leading to the sum	of	squares error function�
 for
classi�cation problems with a �	of	c coding scheme� a multinomial density is most suitable �leading
to the cross	entropy error function��

The ME error function is based on a mixture of conditional probability densities �substituting ���
in �����

E � �
X
n

ln
mX
j��

gj�x
n��j�t

njxn��

the exact formulation of which depends on the choice for the conditional densities �j�tnjxn� of the
experts� A useful de�nition for the next section is the per pattern error�

E� � �ln
mX
j��

gj�x��j�tjx�� ���

� Learning Algorithms for Mixtures of Experts

In this section a brief overview is given of di�erent learning algorithms for minimizing the ME error
function ���� The �rst approach consists of standard gradient	based learning and has been applied with
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some success in the training of �H�MEs ������� The second approach is an instance of the Expectation	
Maximization �EM� algorithm ���� which is often applied to unconditional mixture models ���� and
has also been formulated for and applied to conditional mixtures of experts ������� The advantage of
the EM algorithm as compared with the gradient descent approach lies in the fact that EM nicely
decouples the parameter estimation for the di�erent components of a ME model�

��� Gradient Descent

Many standard optimization methods �back	propagation� line search� quasi	Newton� are based on
the calculation of gradients� For feed	forward neural networks this involves in speci�c the partial
derivatives of the error function with respect to the network outputs �before thresholding�
 these
derivatives �commonly denoted as �j� form the basis for the back	propagation algorithm ����� In
section ��� of ���� the partial derivative for the gating network with respect to its outputs have been
calculated in the context of a gradient descent algorithm for the mixture model ���� Bishop�s outcomes
are restated here �using the chain rule��

�E�

�zj
�
X
k

�E�

�gk

�gk
�zj

�
X
k

�
�k
gk

��jkgk � gjgk� � gj � �j� ���

where the posterior probability �j is de�ned as�

�j�x� t� �
gj�jP
i gi�i

� ���

and �jk is the Kronecker delta� For the expert networks�

�E�

�ajc
�
X
k

�E�

�yjk

�yjk
�ajc

� ���

the second term of which depends on the activation function in the output layer of the expert networks�
If the activation function is the linear identity �yjc � ajc�� then�

�yjk
�ajc

� �ck� ���

If the activation function is a soft	max function�

yjc �
exp�ajc�P
i exp�aji�

� ���

then�
�yjk
�ajc

� �ckyjk � yjcyjk� ����

Using the de�nition of E� ���� the �rst term in the summation of ��� is�

�E�

�yjk
�

�

�
�ln

mP
i��

gi�i

�
�yjk

� �
gj

mP
i��

gi�i

��j
�yjk

� ����

where the last term depends on our choice for the noise model �j which in this note is either Gaussian
or multinomial�
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����� Gaussian Conditional Density

In section ��� of ��� mixture models are considered with multi	dimensional Gaussian conditional dens	
ities �where the covariance matrix is the identity matrix� as mixture components�

�j�t
njxn� �

�

�����d���
exp

�
�
jjt� yj�x�wj�jj

�

�

�
� ����

where d is the dimensionality of t and wj is the set of weight parameters of expert j� In the Gaussian
case this leads to �using ������

��j
�yjk

� �j�tk � yjk�� ����

Recombining in the case of a Gaussian conditional density and linear activation function ����� ����
and ���� in �����

�E�

�ajc
�
X
k

�ck�j�yjk � tk� � �j�yjc � tc�� ����

����� Multinomial Conditional Density

A suitable choice for the expert conditional density function in classi�cation problems with �	of	c
coding is a multinomial density�

�j�t
njxn� �

CY
c��

�yjc�wj�
n�t

n
c � ����

where wj is the set of weight parameters of expert j� With multinomial conditional densities� a suitable
choice for the activation function for the expert output units of is the soft	max function ���� For a
multinomial conditional density this leads to �using ������

��j
�yjk

� �j
tk
yjk

� ����

For a multinomial conditional density and soft	max activation function this gives for the output error
terms of the expert networks ������ ���� and ���� in ������

�E�

�ajc
� �

X
k

��ckyjk � yjcyjk��j
tk
yjk

� �j�yjc � tc�� ����

Thus� the output error terms of the expert networks are similar to the ones found for the well	known
sum	of	squares and cross	entropy error functions but with the posterior probabilities �j as an extra
weighting factor� For example� if the expert and gating networks are perceptrons with a Gaussian
conditional density and linear activation function for the experts �thus� expert and gating networks
are generalized linear models ����� the updates for the expert network weights wj �

�wj � ��j�yj � t�xT �

and for the gating network weights vj�

�vj � ��gj � �j�x�

where � denotes the learning rate� Of course� the gradients obtained in this section could also be
used in more powerful non	linear optimization techniques such as conjugate gradient algorithms and
quasi	Newton methods�
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��� Expectation Maximization

The basic idea of the EM algorithm is that the maximization of the likelihoodL can often be simpli�ed
if a set of missing variables were known� The likelihood for the ME model would� for example� be
considerably simpli�ed if each pattern is associated with only one expert indicated by variables�

znj �

�
� if pattern tn is generated by expert j
 otherwise

Then the complete conditional probability density �including the missing variables� can be written as�

p�t� zjx� �
mX
j��

zj�gj�x��j�tjx�� �
mY
j��

�gj�x��j�tjx��
zj �

Substituting this in ��� gives the complete error function

Ec � �
X
n

mX
j��

znj ln �gj�x
n��j�t

njxn�� � ����

Comparing the complete error function with the original ME error function ��� shows that the intro	
duction of missing variables has allowed to move the logarithm inside resulting in a number of separate
error minimization problems for each of the mixture components� The problem� however� is that one
does not know the distribution of the missing variables znj � The next important ingredient of the EM
algorithm is therefore a �iterative� two	step approach consisting of an E	step in which the expectation
of Ec with respect to the missing variables is calculated �based on the current parameter values�
and of a M	step that minimizes this expected complete error function �or equivalently maximizes the
likelihood�� In ��� it has been shown that the decrease of the expected complete error function implies
the decrease of the original error function E which guarantees convergence to a local minimum� A
more detailed treatment of the convergence of the EM algorithm for mixture of experts can be found
in ����

E�step� The expectation of the complete error function is�

E�Ec� � �
X
n

mX
j��

E�znj �ln �gj�x
n��j�t

njxn�� � ���

where the expected values of the missing variables are �using Bayes� rule��

E�znj � � P �znj � �jtn�xn� �
p�tnjznj � ��xn�P �znj � �jxn�

p�tnjxn�
�

which gives using the probabilistic interpretation of MEs ��� and the de�nition of �j ����

E�znj � �
gj�x

n��j�t
njxn�

mP
i��

gi�xn��i�tnjxn�
� �j�x

n� tn�� ����

Substituting the expected values of the missing variables ���� in the expectation of the complete error
function ��� gives�

E�Ec� � �
X
n

mX
j��

�j�x
n� tn�ln �gj�x

n�� �
X
n

mX
j��

�j�x
n� tn�ln ��j�t

njxn�� � ����
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the terms of which can be minimized separately in each M	step� An interpretation of the �rst �cross	
entropy� term is as the entropy of distributing a pattern x amongst the expert networks� This cost is
minimal if experts are mutually exclusive and increases when experts share a pattern ���� The second
term has the general form of a weighted maximum likelihood problem
 the weighting with �j implies
that the important experts are the ones with a large value for �j� Thus� the error function nicely
incorporates the soft splitting of the input space which is an essential characteristic of the ME model�

M�step� The term to be minimized for the gating network is�

Egate � �
X
n

mX
j��

�j�x
n� tn�ln �gj�x

n�� � ����

and for expert network j�

Eexpert � �
X
n

�j�x
n� tn�ln ��j�t

njxn�� � ����

This step of the EM algorithm can have di�erent forms depending on the network architectures for
gates and experts and which of the variants of the EM algorithm is chosen� With respect to the
network architectures the two main options are to use either simple perceptrons �generalized linear
models� or multilayer perceptrons� With simple perceptrons and exponential conditional densities �of
which the Gaussian and multinomial density are a special case� for �j� the optimization problems
reduce to �weighted� maximum likelihood problems for generalized linear models �������� These can be
solved e�ciently with the iteratively weighted least	squares �IRLS� algorithm� A detailed description
of the IRLS algorithm can be found in ������� For Gaussian conditional densities the optimization of
the parameters of the expert networks even reduces to a one	pass algorithm using pseudo	inverses �see
section ����� below��

When the expert and gating networks are chosen to be multilayer perceptrons �MLPs� gradient	
based optimization is most appropriate� The use of MLPs has the advantage that it adds non	linearity
to the ME model
 on the other hand convergence to a local minimum is no longer guaranteed ����
A gradient approach �with multinomial or Gaussian conditional densities� leads to the same output
error terms as before� ��� for the gating network and ���� for the expert networks�

The EM algorithm comes in several variants� the basic one being the one described above with a
M	step that minimizes the various error functions� A variant that is often used is called Generalized
EM �GEM� ��� that is based on the weaker assumption of decreasing �not necessarily minimizing� the
error functions� A partial implementation of the E	step has been proposed in ���� which is basically
an on	line EM algorithm� Also for these variants the convergence towards a local minimum is still
guaranteed�

����� Weighted Least�Squares Algorithms for M�Step

In this section� a simple heuristic to reduce the M	step for MEs with perceptrons as gating and expert
networks to a one	pass calculation ��� is described� For this purpose we investigate the maximization
problems to be solved� eq� ���� for the gating network and eq� ���� for the expert networks� Their
derivatives with respect to the weights vj and wj in the case of a Gaussian or multinomial conditional
density follow directly from section ���
 set to zero this gives for the gating network �with pattern
index n��

�
X
n

�gj�n � �j�n�xn � � ����

and for the expert networks�

�
X
n

�j�n�yj�n � tn�x
T
n � � ����
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In the case of a Gaussian conditional density with a linear activation function for the expert networks�
the solution of eq� ���� is a weighted least	squares problem that has an exact solution using pseudo	
inverses �see� for example ��������� In that case eq� ���� is in matrix notation �using Yj � XWT

j ��

XT�j�XW T
j � T � � �

where with N training patterns� I network inputs� and O network outputs� X is the pattern matrix
of size N � I� Wj is the weight matrix for expert j with dimensions O � I� T is the target matrix of
size N �O� and �j is the diagonal matrix of the coe�cients �j�n of size N �N � The one	step solution
of this equation is then�

WT
j � �XT�jX���XT�jT�

In order to avoid problems with singularity �of the matrixXT�jX� and round	o� errors� other possib	
ilities are the use of QR decomposition or the even more suitable singular value decomposition �SVD�
�x���� in ������ that directly �nd the best solution in the least	squares sense of the system of linear
equations associated with eq� ����� p

�jXW T
j �

p
�jT�

For the gating network and in the case of a multinomial conditional density with a soft	max
activation function for the expert networks� this least	squares approach cannot be applied directly
because of the soft	max function giving the outputs yj�n and gj�n� However� from eqs� ���� and ����
it is clear that ordinary weighted least	squares can be used for the transformed equations where the
inverse of the soft	max is applied to the network outputs� the posteriors �j�n� and the targets tn ����
Inverting the soft	max�

yi �
exp�xi�P
j exp�xj�

gives xi � lnyi � ln
X
j

exp�xj��

where the second term is constant for all xi and disappears when the soft	max is applied� This means
that eqs� ���� and ���� can be approximated by just taking the log of the targets�

�
X
n

�zj�n � ln��j�n��x
T
n � �

and for the expert networks�

�
X
n

�j�n�aj�n � ln�tn��x
T
n � �

The exact solution using pseudo	inverses is then� for the gating network�

V T � �XTX���XT ln��j��

and for the expert networks�
WT

j � �XT�jX���XT�j ln�T ��

Finally� a last obstacle for the application of this technique is that we have to avoid taking the log of
zero values in T and �j � Therefore� a small positive value �in practice ��� has proven to work well�
is added to the elements of these matrices� Of course� also in this case the problem can be solved with
SVD instead of the more sensitive pseudo	inverses�

����� Gating Network with Gaussian Kernels

Another way to reduce the M	step for the gating network to a one	pass calculation has been proposed
by Xu and Jordan ����� Their idea is to use a modi�ed gating network consisting of normalized kernels
�by applying Bayes� rule��

gj�x� � P �jjx� �
�jPj�x�P
i �iPi�x�

� ����
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where
P

i �i � �� �i � � and the Pi�s are probability density functions� Thus the gating network
outputs gj sum to one and are non	negative� It is interesting to note that the numerators in eq� ����
can be interpreted as the components of a simple mixture model ����
 a fact which can be used to �nd
a good initialization of the kernel parameters� This choice of the gating outputs leads to the following
model �substituting ���� in �����

p�tjx� �
mX
j��

�jPj�x�P
i �iPi�x�

�j�tjx�� ����

To obtain a one	pass solution for the gating network parameters� maximum likelihood estimation is
not performed on this conditional density� but on the joint density�

p�x� t� � p�tjx�p�x� �
mX
j��

�jPj�x��j�tjx��

which by maximum likelihood leads to the following error function�

E � �
X
n

ln
mX
j��

�jPj�x
n��j�t

njxn��

In the EM framework� the complete error function is then �see eq� ������

Ec � �
X
n

mX
j��

znj ln ��jPj�x
n��j�t

njxn�� �

which with a slight variation of the derivation in section ��� �basically replacing gj�x
n� with �jPj�x

n��
gives for the E	step�

E�znj � �
�jPj�xn��j�tnjxn�
mP
i��

�iPi�xn��i�tnjxn�
� hj�x

n� tn��

The expectation of the complete error function is�

E�Ec� � �
X
n

mX
j��

hj�x
n� tn�ln ��jPj�x

n�� �
X
n

mX
j��

hj�x
n� tn�ln ��j�t

njxn�� �

Comparing this equation with eq� ���� shows that expert error function �the second part of the
equation� did not change and that consequently the M	step for the expert networks does not change�

In the rest of this section the probability density function Pj is chosen to be Gaussian with a local
variance �j for each gating output�

Pj�x� �
�

�����j �
�d���

exp

�
�
jjx� �jjj

�

���j

�
�

Then the parameters of the gating network �j� �j� and �j can be obtained by taking the partial
derivatives of the gating error function�

Egate � �
X
n

mX
j��

hj�x
n� tn�ln ��jPj�x

n�� � �
X
n

mX
j��

hj�x
n� tn�ln�j �

X
n

mX
j��

hj�x
n� tn�lnPj�x

n��

����
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This is exactly the error function that is minimized when applying the EM algorithm to a simple
Gaussian mixture model �see� for example� section ��� in ����� For the parameters �� the constraintP

j �j � � leads to a Lagrangian function using the �rst part of the gating error function �����

L��� 	� � ��
X
n

mX
j��

hj�x
n� tn�ln�j� � 	�

X
j

�j � �� � �

and taking the partial derivatives with respect to � and 	 gives a system of m � � linear equations�
the solution of which is�

�j �
�

N

X
n

hj�x
n� tn��

where N is the number of patterns in the training set�
For the centers �j of the Gaussian kernels� the partial derivative of the second part of the gating

error function ���� gives�

�

�
�
P

n

mP
j��

hj�x
n� tn�lnPj�x

n�

�

��j

� �
X
n

hj�xn� tn�

Pj�xn�

�Pj�xn�

��j

� �
X
n

hj�x
n� tn�

�xn � �j�

��j
�

Setting this partial derivative to zero� we obtain a new estimate for the means�

�j �

P
n hj�x

n� tn�xnP
n hj�x

n� tn�
�

For the local variances �j of the Gaussian kernels� the partial derivative of the second part of the
gating error function �����

�

�
�
P

n

mP
j��

hj�xn� tn�lnPj�xn�

�

��j
� �

X
n

hj�xn� tn�

Pj�xn�

�Pj�xn�

��j
� �

X
n

hnj

�
jjxn � �jjj

�

��j
�

d

�j

�
�

Setting this partial derivative to zero gives� the new estimate for the local variances is�

��j �
�

d

P
n hj�x

n� tn�jjxn � �j jj
�P

n hj�x
n� tn�

�

which completes the M	step for the Gaussian kernels� It is important to note that� although we are
actually optimizing the joint probability during training� recall is still based on the original conditional
mixture model �����

The idea of Gaussian kernels has been extended to the expert networks by Fritsch ���� resulting in
a model that can be trained by a generalized EM algorithm� Other possible extensions are the use of
exponential kernels and modeling the complete covariance matrix �����

� Adaptive Variances in Mixtures of Experts

The previous sections focused on MEs as single point estimators that predict the conditional average
of the target data� This approach is quite suitable for target data that can be described with an input	
dependent mean and one global variance parameter� However� for better data modeling it is often
useful to have more higher	order information� One possibility that has been explored is to estimate
local error bars �input	dependent variance� for non	linear regression� This gives an estimate of the
con�dence one can have in a prediction and the possibility to take into account input	dependent noise�
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In a maximum	likelihood framework this has been proposed for a single isotropic Gaussian conditional
probability density function ���� and has been generalized to an arbitrary covariance matrix ����� A
well	known disadvantage of maximum	likelihood estimations� however� is that it gives biased estimates
and leads to under	estimation of the noise variance and over�tting on the training data� Therefore�
Bayesian techniques have also been applied ��� which typically avoid these kind of problems�

For MEs it is usual to introduce a local variance for each expert ���� changing ���� to�

�j�t
njxn� �

�

�����j �
�d���

exp

�
�
jjtn� ynj �x�jj

�

���j

�
� ���

The e�ect of these expert variances is that the model can handle di�erent noise levels which is for
instance very useful when dealing with piece	wise stationary time series that switch between di�erent
regimes� It has been noted that it reduces over�tting and eases the subdivision of the problem among
the experts ���� The introduction of the expert variances necessitates some small changes in various
equations of section ���� The weight changes for the expert networks ���� are proportional to�

�E�

�ajc
� �j

�

��j
�yjc � tc��

The additional factor �
��j can be seen as a form of weighted regression in which the focus is on
low	noise regions and which discounts high noise regions �outliers for example�� The updates for the
variances are easily obtained by calculating the partial derivatives �E�
��j �like in ����� using the
de�nition of �j including the expert variances ����
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Using the de�nition of �j ��� and setting the partial derivatives to zero� a direct solution �for the
batch update� is�
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�

the weighted average of the squared errors� with the posteriors �nj as weights� Weigend et al� ���
also describe the incorporation of prior belief about the expert variances in a maximum likelihood
framework� In order to avoid biased estimates and over�tting the Bayesian approach has also been
applied to MEs ���� using ensemble learning�

The estimation of local error bars from the expert variances is straightforward �section ��� of ����
using the de�nition of MEs ��� and of �j including the expert variances ����

��x� �
X
j

gj�x�


��j � jjyj�x� � y�x�jj�

�
�

In fact� Bishop ��� follows a more general approach where the expert variances are input	dependent
and which allows modeling of conditional probability distributions�
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