REPORT

IDIAP RESEARCH

Dalle Molle Institute
for Perceptive Artificial
Intelligence @ P.O.Box 592 e
Martigny e Valais e Switzerland

phone +41 — 27 —721 77 11
fax +41 — 27 —-721 77 12
e-mail secretariat@idiap.ch

internet http://www.idiap.ch

IDIAP

Martigny - Valais - Suisse

MULTI-STREAM SPEECH
RECOGNITION

Hervé Bourlard * Stéphane Dupont "
Christophe Ris "

IDIAP-RR 96-07

DECEMBER 1996

a IDIAP
b Faculté Polytechnique de Mons, Belgium



IDTAP Research Report 96-07

MULTI-STREAM SPEECH RECOGNITION

Hervé Bourlard Stéphane Dupont Christophe Ris

DECEMBER 1996

Abstract. In this paper, we discuss a new automatic speech recognition (ASR) approach based
on independent processing and recombination of several feature streams. In this framework,
it is assumed that the speech signal is represented in terms of multiple input streams; each
input stream representing a different characteristic of the signal. If the streams are entirely
synchronous, they may be accommodated simply (as they usually are in state-of-the-art systems).
However, as discussed in the paper, it may be required to permit some degree of asynchrony
between streams. This paper introduces the basic framework of a statistical structure that can
accommodate multiple (asynchronous) observation streams (possibly exhibiting different frame
rates). This approach will then be applied to the particular case of multi-band speech recognition
and will be shown to yield significantly better noise robustness.
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1 Introduction

In current automatic speech recognition (ASR) systems, the acoustic processing module typically
employs feature extraction techniques in which 20 to 30 milliseconds of speech is analyzed once per
centisecond, leading to a sequence of acoustic (feature) vectors that each describe local components of
the speech signal. Each acoustic vector is typically a smoothed spectrum or cepstrum. Hidden Markov
Model (HMM) states, which are typically associated with context-dependent phones such as triphones,
are then characterized by a stationary probability density function over the space of these acoustic
vectors. Words and sentences are then assumed to be piecewise stationary and represented in terms
of a sequence of HMM states. In state-of-the-art ASR systems, each 10-ms speech segment is often
described in terms of several (dependent or independent) parameters such as instantaneous spectral
and energy features, complemented by their first and second time derivative. These parameters are
then combined in a single acoustic vector, defining a large dimensional space on which the statistical
parameters are estimated. To avoid undersampling of the resulting space, it is usually required to
assume that the different features are independent (e.g., by assuming diagonal covariance matrices).
Another solution, based on the same assumptions, is to consider the different features as independent
parameter sequences that are recombined in the probability space. In both cases, it is however assumed
that the streams are entirely synchronous. As a consequence:

1. The segmentations of the different feature streams into piecewise stationary segments are con-
strained to occur at the same instant (i.e., HMM-state transitions occur at the same moment).
It is however easy to see that this is a strong constraint that could seriously hurt HMM-based
ASR systems since different streams could very well be “stationary” at different moments. This
could already be the case with the widely used instantaneous and first time derivatives of spec-
tral (cepstral) features. In the worst case, it could very well be that merging (purely at the
centisecond level) two sequences that actually are piecewise stationary results in a sequence that
is no longer piecewise stationary.

2. The underlying HMM topology for the different streams is the same, which implies that (1) the
number of stationary segments is the same for each stream, and (2) the temporal resolution is
the same. Obviously, these could also be strong limitations, especially in the case where the
streams are encoding quite different informations like, e.g., spectral characteristics and micro
and/or macro prosodic clues.

Finally, the way the recombination of the different streams is achieved during recognition is usually
independent of their respective reliability (which could be different than the one observed on the
training set, e.g., due to different noise conditions).

The core idea of the multi-stream system discussed in this paper is to divide the information
content of the incoming speech signal into several sub-streams, each representing different properties
of the speech signal and being treated independently up to some recombination point (e.g., at the
syllable level). In this context, the different streams are not restricted to the same frame rate and the
underlying HMM models associated with each stream do not have to have the same topology.

There are many potential advantages to this multi-stream approach, including:

1. A principled way to merge different sources of knowledge such as acoustic and visual inputs.

2. Possibility to incorporate multiple time resolutions (as part of a structure with multiple unit
lengths, such as phone and syllable). For example, introducing long-term information in current
ASR systems could indeed give the possibility of proper syllable modeling in ASR systems
basically based on the assumption of stationary HMM states.

3. As a particular application of the first two points, this multi-stream approach could provide
us with a principled way to use concurrently different kind of acoustic information, such as
instantaneous spectral features and prosodic features, which is known to be a difficult problem.
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® = Recombination at the sub-unit level

Figure 1: General form of a K-stream recognizer with anchor points between speech units (to force
synchrony between the different streams). Note that the model topology is not necessarily the same
for the different sub-systems.

4. Independent processing and recombination of partial frequency bands, as a very particular case
of multi-stream recognition. As discussed in this paper (Section 5), there are many potential
advantages to this sub-band approach, including (1) more robustness to speech impaired by
selective narrowband noise, and (2) possibility to apply different time/frequency tradeoffs and
different recognition strategies in the sub-bands. This sub-band technique appears to be very
promising and will be discussed in more details in this paper.

In the following, we first introduce the statistical framework of the multi-stream approach. We
then discuss its application to multi-band ASR and present some of the results achieved so far.

2  Multi-Stream Statistical Model

2.1 Formalism

We address here the problem of recombining multiple (independent) input streams in an HMM-based
ASR system. Briefly, this problem can be formulated as follows: assume K input streams X to
be recognized, and assume that the hypothesized model for an utterance M is composed of J sub-
unit models M; (j = 1,...,J) associated with the sub-unit level at which we want to perform the
recombination of the input streams (e.g., syllables, themselves built up, as in standard HMMs from
sequences of states). To process each stream independently of each other up to the defined sub-unit
level, each sub-unit model M; is composed of parallel models M]»k (possibly with different topologies)
that are forced to recombine their respective segmental scores at some temporal anchor points. The
resulting statistical model is illustrated in Fig. 1. In this model we note that:

e The parallel HMMs, associated with each of the input streams, do not necessarily have the same
topology.

e The recombination state () in Figure 1) is not a regular HMM state since it will be responsible
for recombining (according to the possible rules discussed below) probabilities (or likelihoods)
accumulated over a same temporal segment for all the streams. Since this should be done for
all possible segmentation points, a particular form of HMM decomposition [21], referred to as
HMM recombination, has to be used [4].

We note here that this approach has some common motivations and interesting relationships with the
stochastic segment approach discussed in [15].

Most of the work discussed here has been performed in the context of particular HMM systems
using an artificial neural network (ANN) to estimate the local probabilities. Such systems are referred
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to as hybrid HMM/ANN system [7] — see Section 3 for further discussion. In the framework of such
hybrid HMM/ANN system, the training and recognition problems can then be phrased in terms of
posterior probabilities or else in terms of likelihoods. Depending on the assumptions being made,
different solutions are available for recombining the sub-streams probabilities or likelihoods. In the
following, we will briefly describe one of those possible solutions for the case of posterior probabilities
as well as likelihood, including the approach that has been tested so far in the framework of multi-band
ASR.

In this paper, we mainly discuss the estimation problem. Based on partial temporal information
from several input streams, we will show how to estimate p(X|M) or P(M|X)!. Although training
i1s not discussed here, it is pretty obvious that standard training procedures like Viterbi training or
Baum-Welch (or the equivalent standard hybrid HMM/ANN training procedures) still hold. The
best path search (in the case of Viterbi) or re-estimation of probability parameters (in the case of
Baum-Welch) is to be performed performed by one of the algorithm discussed below.

2.2 Posterior-Based System

In the case of a posterior-based system, the recognition problem can then be formulated in terms of
finding the best model M maximizing P(M|X), which given a few relatively standard assumptions
(primarily the independence of the language and acoustic models), may be written as:

J
P(M|X) :H (M;|My, ..., M;_1)P(M;]X;)

where X; represents the multiple stream subsequence associated with the sub-unit model M;. Assum-
ing that we have a different “expert” Ej for each input stream X} (e.g., one “expert” for long-term
features and one “expert” for short-term features) and that those experts are mutually exclusive (i.e.,
conditionally independent) and collectively exhaustive, we have:

> P(Ey) =

where P(FE}) represents the probability that expert E} is better than any other expert.
We then have:

>

K
P(M;|X;) = > P(My, Bl X;) = > P(MF|XF)P(E]X;)
k=1 k=1

where X¥ represents the k-th stream of the sub-sequence X;, M]»k represents the sub-unit model for
the k-th stream, and P(E%|X;) the “reliability” of expert E} given the acoustic X; assigned to sub-
unit M;. This reliability will have to be estimated during training or automatically estimated during
recognition. The global posterior probability is then given by:

P(M|X) = H P(Mj|My, ..., M;_1) Y P(Mf|X])P(Ex|X;) (1)

in which the first factor contains the language model information (including grammar, e.g., bi-grams,
and transition probabilities between states) while the second factor represents the acoustic information
in each segment, integrated over all possible input streams.? As shown in previous papers [6], the
terms in the second factor can be computed in terms of local posterior probabilities.

INote: In this paper, probabilities are denoted P(-) while likelihoods are denoted p(-).

2Note that for simplicity’s sake, we have only explicitly shown 2 temporal levels here: for instance, the level of a
complete utterance (modeled by M) and of a partial utterance (modeled by M;). More generally the formalism can
easily include multiple levels, such as utterance, word, syllable, phone, state ... in each case the multiple experts can
be combined at any desired level.
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2.3 Likelihood-Based System

In the case of a likelihood-based system, we have to find the model M maximizing:
J
p(X|M) = T] p(X;1M;)
ji=1

As for posterior-based systems, and using the same definition of “experts” and the same assumptions,
we can show that we have:

p(X|M) :HZp (XF|MF)P(EL|IM;) (2)

where P(E|M;) represents the reliability of expert Ej given the considered sub-unit.

Conceptually, the analysis above suggests that, given any hypothesized segmentation, the hypo-
thesis score may be evaluated using multiple experts and some measure of their reliability. Generally,
the experts could operate at different time scales, but the formalism requires a resynchronization
of the information streams at some recombination point corresponding to the end of some relevant
segment (e.g., a syllable).

In the specific case in which the streams are assumed to be statistically independent, we do not
need an estimate of the expert reliability, since we can decompose the full likelihood into a product
of stream likelihoods for each segment model. For this case we can simply compute:

J K

log p(X|M) =" "log p(X}| M) (3)

j=lk=1

Since we do not have any weighting factors, although the reliability of the different input streams
may be different, this approach can be generalized to a weighted log-likelihood approach. We then
have:

e

K
log p(X|M) :ZZw log p( Xk|M) (4)
j=1lk=1

where w] represents to reliability of input stream k. In the multi-band case (see Section 5), these
weighting factors could be computed, e.g., as a function of the normalized SNR in the time (j) and
frequency (k) limited segment X]’I»C and/or of the normalized information available in band k for sub-
unit model M;.

More generally, we may also use a nonlinear system to recombine probabilities or log likelihoods
so as to relax the assumption of the independence of the streams:

log p(X|M) =" f (W, {logp(X]|M]), Vk}) (5)

ji=1

where W is a global set of recombination parameters.

3 Hybrid HMM/ANN Recognition Systems

Most of the work discussed in the rest of this paper has been performed in the context of hybrid
HMM/ANN systems. Typically, in such systems, an artificial neural net (ANN) is trained with
acoustic vectors at its input to generate HMM state class posterior probabilities that are used as local
probabilities for HMMs. This kind of approach has been successfully used with multilayer perceptrons
(MLPs) [7] as well as recurrent neural networks (RNNs) [19]. This approach offers several potential
advantages over standard HMMs, including:
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e Model accuracy: ANN estimation of probabilities does not require detailed assumptions about
the form of the statistical distribution to be modeled, resulting in more accurate acoustic models.

e Discrimination: ANNs can easily accommodate discriminant training. Of course, as currently
done in standard HMM/ANN hybrid discrimination is only local (at the frame level). However,
recent theoretical works show that global discriminant training of hybrid systems can also be
performed [6].

e Context sensitivity: In the case of RNNs or if several acoustic vectors are used at the input
of an MLP, local correlation of acoustic vectors can be taken into account in the probability
distribution.

e Parsimonious use of parameters since all the probability distributions are represented by the
same set of shared parameters.

e Flexibility: Using a neural network as the acoustic probability estimator permits the easy com-
bination of diverse features, such as a mixture of continuous and categorical (discrete) measures.

e Complementarity: it is sometimes the case that neural networks can supply complementary
information to that provided by an existing likelihood-based system [3].

e More recently, it was also observed that the availability of posterior probabilities (before division
by priors) allowed a more efficient pruning for large vocabulary speech recognition systems [17].

e Finally, in the framework of the multi-stream approach, the fact that hybrid HMM/ANN systems
are based on posterior probabilities makes it easier to merge multiple recognizers, each of them
having different properties. Also, advanced techniques initially developed in the framework of
neural networks to recombine statistical experts (mixture of experts [22]) can also be used.

Many (relatively simple) speech recognition systems based on this hybrid HMM/ANN approach,
have been proved, on controlled tests, to be both effective in terms of accuracy (comparable or better
than equivalent state-of-the-art systems) and efficient in terms of CPU and memory run-time require-
ments (see, e.g., [14, 18]). More recently, such a system (ABBOT from Cambridge University, see,
e.g., [13]) has been evaluated under both the North American ARPA program and the European LRE
SQALE project (20,000 word vocabulary, speaker independent continuous speech recognition). In
the preliminary results of the SQALE evaluation (reported in [20]) the system was found to perform
slightly better than any other leading European system and required an order of magnitude less CPU
resources to complete the test. Another striking result is that the acoustic models for this system used
several hundred thousand parameters (around 500,000 for ABBOT) while the corresponding models
for the competing systems used millions of parameters.

4 Decoder Design

During recognition, we will have to find the best sentence model M maximizing P(M|X), according
to (1), or p(X|M), according to (2).

In both cases (posterior-based systems and likelihood-based systems), different solutions will be
investigated, including:

1. Recombination at the sub-unit level (where M;’s are sub-unit models composed of parallel sub-
models, one for each input stream).

2. Although it does not allow for asynchrony of the different streams, recombination at the HMM
state level (where M;’s are HMM states) is also discussed in this paper.
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Acoustic Processing—T= HMM/ANN ~

Freguency band 1 Sub-Recognizer
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Acoustic Acoustic Processing———=> HMM/ANN L — o
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Frequency band K Sub-Recognizer

Figure 2: Sub-band-based ASR system architecture.

Recombination at the HMM-state level can be done in many ways, including untrained linear way
or trained linear or nonlinear way (e.g., by using a recombining neural network). This is pretty simple
to implement and amounts to performing a standard Viterbi decoding in which local (log) probabilities
are obtained from a linear or nonlinear combination of the local stream probabilities. Of course, this
approach does not allow for asynchrony, yet it has been shown to be very promising for the multi-band
approach discussed in Section 5.

On the other hand, recombination of the input streams at the sub-unit level requires a significant
adaptation of the recognizer. We are presently using an algorithm referred to as “HMM recombin-
ation”. Tt is an adaptation of the HMM decomposition algorithm [21]. The HMM-decomposition
algorithm is a time-synchronous Viterbi search that allows the decomposition of a single stream
(speech signal) into two independent components (typically speech and noise). In the same spirit, a
similar algorithm can be used to combine multiple input streams (e.g., short-term features and long-
term features) into a single HMM model. In this framework, each sub-unit HMM model (e.g., syllable
model) can then be built up from parallel sub-models with topologies and processing characteristics
better adapted to the properties of each of the input streams. The constraint between the parallel
sub-models is implemented by forcing these models to have the same begin and end points. The sub-
models, stretching out over the same temporal segment and partial likelihoods (over a same temporal
segment), are then recombined to yield a global segment score (as illustrated in Fig. 1 by the “&)”
state). This decoding process can be implemented via a particular form of dynamic programming
that guarantees the optimal segmentation.

Although not discussed in this paper, it is clear that the same kind of algorithm can be used
during training of such systems. For example, in the case of Viterbi training, the HMM recombination
algorithm will be used to segment the training sentences for each input stream, providing the X' ANNs
(one for each stream) with new target outputs to re-estimate the state posterior probabilities.

5 Sub-band-Based ASR

5.1 Formalism

As a particular case of the multi-stream approach, we have been investigating an ASR approach
based on independent processing and recombination of frequency bands. The general idea, illustrated
in Fig. 2 is to split the whole frequency band (represented in terms of critical bands) into a few
sub-bands on which different recognizers are independently applied and then recombined at a certain
sub-unit level to yield global scores and a global recognition decision. Acoustic processing is now
performed independently for each sub-band. This lead to K input streams, each being associated with
a particular frequency band. In this work, local probabilities for each frequency band are estimated
with a ANN trained in a discriminant way on the associated sub-band feature stream. In this case,
each HMM in Fig.1 is actually a HMM/ANN system trained independently in a regular way, but
looking only at a specific frequency band. As done in usual HMM/ANN systems, each sub-band ANN
will also be provided with some contextual information, typically 9 frames of acoustic vectors.
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The definitions and equations of Section 2 can now be specialized to this specific multi-band
formalism. Each of the K sub-recognizer is now using the information contained in one frequency
band, this information being described by an input stream Xj. Equations 1 to 5 are still valid with
the same assumptions. In (1), P(M;“|X]’»“) represents the a posteriori probability of a sub-unit model
M]»k (k-th frequency band model for sub-unit Af;) given X]’»“, the time limited input stream for the k-th
frequency band. P(Ey|M;) represents the “reliability” of expert Ej, working on the k-th frequency
band given the acoustic X; assigned to sub-unit M;. In (2), p(X]]»“|M]»k) is the likelihood of the time

limited and frequency limited acoustic X]’I»C given the sub-unit model for the processed frequency band.

5.2 Motivations

Current automatic speech recognition (ASR) systems treat any incoming signal as one entity. Even
when only a single frequency component is corrupted (e.g., by a selective additive noise), the whole
feature vector is corrupted, and typically the performance of the recognizer is severely impaired.

The work of Fletcher and his colleagues (see the insightful review of his work in [2]) suggests that
human decoding of the linguistic message is based on decisions within narrow frequency sub-bands
that are processed quite independently of each other. Recombination of decisions from these sub-
bands is done at some intermediate level and in such a way that the global error rate is equal to the
product of error rates in the sub-bands.

Whether or not this is an accurate statement for disparate bands in continuous speech (the relevant
Fletcher experiments were done with nonsense syllables using high-pass or low-pass filters only), we
see some engineering reasons for considering some form of this sub-band approach:

1. The message may be impaired (e.g., by noise, channel characteristics, reverberation...) only
in some specific frequency bands. When recognition is based on several independent decisions
from different frequency sub-bands, the decoding of linguistic message need not be severely
impaired, as long as the remaining clean sub-bands supply sufficiently reliable information. This
was recently confirmed by several experiments [4]. Surprisingly, even when the recombination
is simply performed at the HMM state level it 1s observed that the multi-band approach is
yielding better performance and better noise robustness than a regular full-band system. It could
however be argued that, in this latter case, the multi-band approach boils down to a regular
full-band recognizer in which (as discussed in the introduction) several likelihoods of (assumed)
independent features are estimated and multiplied together to yield local likelihoods®. This is
however not true when using posterior based systems (such as hybrid HMM/ANN systems) where
the sub-bands are presented to different nets that are independently trained in a discriminant
way on each individual sub-band.

2. As for a regular full-band system, it was shown in [4] that all-pole modeling was significantly
improving the performance of multi-band systems. However, as an additional advantage of the
sub-band approach, it can be shown that this all-pole modeling may be more robust if performed
on several sub-bands, i.e., in lower dimensional spaces, than on the full-band signal [16]. This
could further explain the discussion in the previous point regarding the recombination at the
state level.

3. As already discussed in the introduction, transitions between more stationary segments of speech
do not necessarily occur at the same time across the different frequency bands, which makes the
piecewise stationary assumption more fragile. The sub-band approach may have the potential
of relaxing the synchrony constraint inherent in current HMM systems.

3Indeed, in likelihood based systems, expected values for the full-band is the same than the concatenated expected
values of sub-bands and when multiple streams of data are used it is only with the goal of improving the quality of the
statistical estimates given a limited amount of training data.
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4. Different recognition strategies might ultimately be applied in different sub-bands. For example,
different time/frequency resolution tradeoffs may be chosen (time resolution and width of ana-
lysis window depending on the considered frequency band).

5. Some sub-bands may be inherently better for certain classes of speech sounds than others.

5.3 Estimation of the weighting factors

The approaches discussed in this paper allow the integration of partial frequency band information.
In this case, each of the sub-recognizers has to make decisions based on parameters representing the
information contained in a band-limited version of the speech signal, leading to one temporal stream
per frequency band. Finally, recombination is done according to (4) and (5). Indeed, experimental
results obtained so far showed that recombining sub-stream log-likelihoods (Equations 3, 4 or 5) is
yielding slightly better performance than recombining posterior probabilities according to (2). Three
different strategies [5] have been considered for estimating the recombination parameters w]]»cls in these
equations:

1. Phoneme-level recognition rates — Normalized phoneme-level recognition rates inside each fre-
quency band are then used as weighting factors in (4). These weighting factors represent the
relative amount of information (normalized to sum to 1) present in each frequency band for each
speech unit class.

These weights are computed on the clean training data set only and are not adapted to the test
data. As later reported in Table 1, it 18 quite striking that this strategy alone already yields
good robustness to narrowband noise.

2. Normalized S/N ratios in each frequency band — As usually done for spectral subtraction [12],
the S/N ratio in each frequency sub-band was estimated on the basis of the sub-band energy
histograms. Typically, these histograms exhibit two peaks at two different energies, the lower
energy peak (E7) corresponding to the silence (4mnoise) frames while the higher energy peak
(F2) corresponds to the speech (+noise) frames. For each frequency band, the distance between
the two peaks is a function of the S/N ratio, which can be estimated by fitting two Gaussians
on the histogram®. The SNR in each sub-band is then computed as the ratio % in dB.
These S/N ratios, normalized to sum up to 1, were used as wy’s in (4).

3. Multilayer perceptron — Since the recombination mechanism could be nonlinear, we also tested the
use of a multilayer perceptron (MLP) to recombine the K partial log-likelihoods log p(X]k |M]k)
according to (5). In this case, if S represents the number of speech units (used for temporal
recombination, i.e., HMM states, phones, syllables or words), the MLP contains K x .S input
units and S output units and is trained to estimate posterior probabilities of each speech units
given the log-likelihoods of all sub-bands and all speech units.

5.4 Experiments

Experiments were done both on isolated word recognition tasks and on a continuous speech recognition
task. This paper only reports the most relevant results.

We have already show that each of the sub-recognizers make decisions based on acoustic parameters
representing the information contained in a band-limited version of the speech signal. These acoustic
parameters are computed independently for each band, on the basis of a subset of critical band
energies. Critical band energies are a particular spectral representation of the signal based on psycho-
acoustical knowledge of the spectral resolution and sensitivity of the human ear. In the current work,
three sets of acoustic parameters were considered. The first one was directly composed of critical

4In the present work, we instead implemented a simple one-dimensional form of online clustering algorithm for a
2-class problem.



10 IDIAP-RR 96-07

band energies (CBE). The second set used Ipc-cepstral features independently computed for each
sub-band and followed by cepstral mean subtraction (PLP-CMS). The third set was dedicated to
recognition under broad band noise conditions. Since it was observed in earlier experiments that the
multi-band approach alone was less efficient than other noise cancellation techniques such as spectral
subtraction [12] or J-RASTA [10] in the case of wideband noise, it was decided to test the multi-band
approach on J-RASTA-PLP features. We thus used lpc-cepstral features independently computed for
each band limited critical band energies previously J-RASTA processed.

In a first experiment, we used 3-state HMM/ANN phone models and three sub-bands (spanning [0-
1058], [941-2212], and [1994-4000] Hz) for the three sub-band-based HMM/ANN recognizer. Note that
the slight overlap is only due to the critical band filter characteristics. Each band roughly encompasses
one formant. The database consisted of 108 German isolated command words, telephone speech, with
15 speakers in the test set. The features used for each recognizer were band filtered critical band
energies complemented by their first temporal derivatives, and 9 frames of contextual information
were used at the input of the ANNs. Recombination of the frequency bands was done at the state
level with weights wy’s proportional to automatically estimated sub-band SNR. Table 1 shows that,
in the case of clean telephone speech, the multi-band approach yields recognition performance that is
as well as good as with the classical full-band approach. In the case of speech corrupted with additive
band limited noise, the degradation is much more graceful with the multi-band system.

Error Rate rB MB
clean speech | 3.6% | 3.2%
speech4noise | 25.5% | 6.3%

Table 1: Error rates on isolated word recognition (108 German words, telephone speech. Noise was
additive white noise in the 1st frequency band, 10 dB SNR. Training was done on clean speech. “FB”
refers to regular full-band recognizer. “MB” refers to the multi-band recognizer.

In a second experiment, we used 1-state HMM/ANN phone models. The database consisted of
13 isolated American English digits and control words (telephone speech — 4 x 50 speakers in a
jack-knifed test). We experimented with four bands (spanning [0-901], [797-1661], [1493-2547] and
[2298-4000] Hz). Recombination of the state log-likelihoods was performed by an MLP (trained on
clean speech). For example, in the case of four bands, the MLP had an input vector of 45 (phones)
x 4 (sub-bands) log-likelihoods and 45 outputs. As opposed to the previous case, we also used PLP-
CMS acoustic parameters for each frequency band. This all pole modeling of cepstral vectors improved
the performance of the sub-band approach. Results are reported in Table 2. Experiments were also
done with additive car noise on the test set only. As this is a kind of broad band noise, we used
J-RASTA noise cancellation technique [10] which is known to yield improved robustness in this case.
Table 2 shows that J-RASTA still holds in the framework of the multi-band approach. We obtained
significantly better recognition performance using J-RASTA and the multi-band approach than with
the classical J-RASTA full-band approach.

Error Rate rB MB
clean speech | 1.3% | 0.5%
speech+noise | 12.1% | 9.1%

Table 2: Error rates on isolated word recognition (13 American English words, telephone speech -
Bellcore digits database). Noise was additive car noise, 10 dB SNR. Training was done on clean
speech. “FB” refers to regular full-band recognizer. “MB” refers to the multi-band recognizer.

Previous developments and tests were done on small vocabulary isolated word databases. During
the SWITCHBOARD workshop held this summer at the Johns Hopkins University (Baltimore) [1], the
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multi-band system was also tested on the SWITCHBOARD conversational telephone speech database.
The training data consisted of 4 hours of male speaker utterances. The test set was composed of
240 male speaker utterances. We used 4 frequency bands, as defined in the previous paragraph. The
acoustic parameters for each frequency band were sub-band PLP-CMS. We used 1 state HMM /ANN
context independent phone models. Each of the sub-band MLPs had 500 hidden units, while the
full-band MLP had 2000 hidden units. Recombination was done at the state level by an MLP. Here
again, the multi-band approach yields better recognition performance than the full-band approach.

Error Rate FB MB
clean speech | 63.6% | 61.4%

Table 3: Word error rates on continuous conversational speech recognition (Switchboard database)

Other results as well as a more extensive insight into the experiments can be found in a related
paper [4].

6 Long-term and short-term information

As already discussed in the introduction, another potential advantage of the multi-stream approach
that we envision to investigate in the near future is the possibility to combine long-term and short-
term information in ASR systems. Indeed, current ASR systems only use short-term information,
typically at the phoneme level. Long-term information representing temporal regions stretching over
more than the typical phoneme duration is more difficult to handle in the current HMM formalism.
As an attempt to include such long-term information, the RASTA approach has been quite successful
in some cases [10]. This section presents some motivations for combining long-term and short-term
information in the framework of the general multi-stream model.

Current ASR systems are based on phonetic units described in terms of stationary HMM states.
Correlation inside these states is generally disregarded. Moreover, the current HMM state is usually
assumed independent of previous acoustic vectors. It is clear that these models are far from being
well suited at handling long-term dependencies. Only some kind of medium-term dependencies are
captured by the topologies of the models. Recently, several studies have attempted to use acoustic
context. This was done either by conditioning the posterior probabilities on several acoustic frames,
or by using temporal derivative features. Typically, an optimum was observed with a context covering
90 ms of speech, corresponding approximately to the mean duration of phonetic units. In addition
to introducing long-term information, these approaches have another attractive feature: they tend
to smooth the assumptions about the independence of acoustic frames and about the stationarity of
the signal, stationarity hypothesis being extended to temporal derivative features. These approaches
seem to relieve a number of problems coming from the underlying assumptions of the HMM theory.
In experimental systems, they were shown to significantly improve recognition performance (see, e.g.,
7, 9)).

However, although state-of-the-art systems based on these approaches work well on carefully dic-
tated clean speech, their performance 1s severely compromised on conversational speech and on noisy
speech. The reason could be that current feature extraction and acoustic modeling schemes do not
allow make use of information from time regions covering 200 ms or more. Such long time regions
could be interesting in recognizing speech corrupted by stationary noise. Indeed, it has been observed
on modulation spectra (spectra of the temporal envelope of the signal) that the modulation energy of
speech signals is generally maximum around 5 Hz. This corresponds to a period of 200 ms. As 200 ms
is also the maximum of syllable duration distribution, we believe that syllable could be an interesting
candidate to include long-term information in current recognizers.
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7 Conclusions

In this paper, we presented the framework of a new automatic speech recognition architecture allowing
for the processing and merging of several input streams. This general formalism has been tested in the
framework of a multi-band speech recognition system. To combine several streams, we adapted the
HMM decomposition algorithm which was initially used in source decomposition. Experiments were
reported on isolated word recognition tasks and on a continuous speech recognition task. Although
the results are very promising, several open issues remain to be investigated carefully:

o Definition of frequency bands: So far, we have used 3, 4 or 6 frequency bands. The best results
were obtained with 4 bands. However, the possible overlap of these bands still need to be
optimized. The issue of number of sub-band is further discussed in [11].

e Recombination criterion: So far; only a likelihood based recombination has been tested.

o Weighting scheme: Other techniques able to estimate online the reliability of each frequency
sub-band relatively to the others and taking larger time information into account should be
investigated.

o Training scheme: Embedded Viterbi training of the band limited recognizers.

o Recombination level: Clearly, the experiments reported here were not conclusive with respect to
the recombination level. This should be investigated further, especially on tasks with greater
temporal variability (e.g., for natural continuous speech).

Finally, we note here that the issues addresses in the multi-band approach have interesting rela-
tionships with other research topics currently investigated by other teams, such as the “missing data”
paradigm [8].

Furthermore, we believe that this new approach could be a convenient way of combining short-term
and long-term speech features.
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