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Abstract. This work is concerned with the computational complexity of the recognition of LPs,
the class of regions of the Euclidian space that can be classified exactly by a two-layered per-
ceptron. Several subclasses of LP, of particular interest are also considered. We show that the
recognition problems of £P, and of other classes considered here are intractable, even in some
favorable circumstances. We then identify special cases having polynomial time algorithms.
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1 Introduction

Several works have been lately devoted to the problem of characterizing the regions of the Fuclidian
space IR™ that can be classified by a multilayer perceptron (MLP) with n real inputs, linear threshold
processing units and a single binary output [Lip87, GC90, ZAWI1, Zwi94]. Usually, the attention is
restricted to & denoting the set of all regions of IR™ expressible as a finite union of finite intersections
of open or closed half-spaces, since the classification of any region out of i would required infinitely
many threshold units.

The construction of a depth-3 MLP (2 hidden layers) classifying any region of U is straitforward,
given any expression of the latter as a union of intersections of half-spaces [Lip87]. Thus, the research
in this area is mainly concerned with the characterization of the regions classifiable by a depth-2 MLP.
In some works, exact classifications is studied [ZAW92, Sho93, Zwi94], while others deal with almost
everywhere correct classifications [Gib96] or approximations [SGM96].

The present work focuses on the computational complexity of the decision problem “Given V', does
V belong to LP> 77, where LP5 1s the class of regions of IR" ezactly classifiable with a depth-2 MLP.
The same issue will be studied for some subclasses of £LP; and for different input formats for the
specification of V' and thus, the boundary between tractable and untractable problems will highlight
the real core of the difficulty of the general decision problem.

Several constructive training algorithms have been proposed for MLPs. The most elaborate ones
(see for example [TTK93]) have at each iteration a strategy of construction based on the causes of the
non-membership of a region into the class £P» or some subclasses that will be considered below. The
computational complexity of these algorithms is directly related to the complexity of the recognition
problems studied in this paper.

2 Formalization of the recognition problems

The functions computed by two-layered perceptrons as considered in the present paper are defined
from the n dimensional Euclidian space IR™ onto the Boolean set {0, 1} and are of the form:

f®) = g(hi(z),... hm()) (1)

hi(e) = sgn(wio+aTw;), i=1...,m, (2)

g(b) = sgn(to+b't). (3)

In what follows, the cocfficients w;; and t;,0 =1,...,m,j=1,...,n and the thresholds w;y and ¢, are

real values. The sign function is defined as sgn(r) = 1 if » > 0 and 0 otherwise. Note that replacing
this function sgn by a function sgn? everywhere identical to sgn except in 0 (sgn?(0) = 0) has no
incidence on the class £P,, since on the one hand equation sgn(r) = —sgn¢(—r) provides a solution
in case sgn? replaces sgn in (2), and on the other hand ¢y can always be chosen distinct from —b"¢

for all b€ {0,1}".

Definition 2.1 A region V C R" is in LP, if and only if its characteristic function can
be written in the form of equations (1-3).

A polyhedron (resp. a pseudo-polyhedron) is a finite intersection of closed (resp. open or closed)
half-spaces. The set of all half-spaces used in the expression of V as a union of pseudo-polyhedron is
called a basis of V. The general recognition problem can be stated as :

LPs-RecoantTioN: Given V' € U specified by a basis H and a union of intersections of elements of H,
18 Vin LPy 7
There exist simple regions of IR? which are in £P» and for which the only MLPs we know of for
their classification have a number of hidden units exponential in the size of a reasonable encoding
of the region. This observation leads us naturally to a simplified version of £LP:-REcOGNITION where
each hidden unit of the MLP classifying the region has to compute the characteristic function of one
element of the basis given as input of the problem :
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LPs-RecocnrtioN: Given V € U specified by a basis H and a union of intersections of elements of H,
is there an expression of the form of equations (1-3) for the characteristic function
of V, such that each h; is the characteristic function of one element of H 7

Based on this new recognition problem a sub-class of £LP» can be defined, although it requires some
care in order to have a basis uniquely specified by the region. A basis H of V is minimal if V' cannot
be expressed as a union of pseudo-polyhedra based on a proper subset of H. A pseudo-polyhedron is
fully dimensioned in IR™ if it contains an open ball of dimension n. V' € U is fully dimensioned if it 1s
a union of fully dimensioned pseudo-polyhedra, and FD denotes the set of fully dimensioned regions
of U. Tt can be shown that V € FD has a unique minimal basis which is denoted Hy *. Restricting
our attention to fully dimensioned regions, we can now define the class £P as follows:

Definition 2.2 A region V isin £LP; if V € FD and if Hy together with an expression of
V as a union of intersections of elements of Hy is a positive instance of £LP;-RECOGNITION.

In their attempt at characterizing the class £P,, two groups of researchers proposed independently

a sufficient condition for a region V' to be in LPy [ZAW92, Sho93].

Definition 2.3 A region V € R” is in D (resp. 75) if it can be expressed as an iterated
difference of finitely many polyhedra (resp. pseudo-polyhedra) Py, ..., Py as follows:

V o= PA\(PA(..P)...).

Clearly D is a proper subset of D. The proof that D C LP, is established with the following
straitforward lemma :

Lemma 1 V pseudo-polyhedron P and V'V € LPy, P\V € LPs.

Several examples are proposed in the literature showing that ﬁg[ﬂ?z. Recently, M. Ramana and the

author proved that if V' € D has a basis H, there exist polyhedra P;, 4,...,k, all based on M, such
that V' = P\(P2\(... Px)...), which implies that DNFD C LPs.

3 From geometry to combinatorics

An ordered set of half-spaces H = {H1,..., Hp} of IR", called an arrangement, defines a mapping
Oy o IR™ — {0, 1}, where (@), is the characteristic function of H;. The set Dy = & (IR") is called
the domain of the arrangement H. Given an arrangement H, there is a one-to-one correspondence
between regions of ¢ having ‘H as basis and partial Boolean functions defined on Dy : the function
corresponding V' € U and denoted fy x is such that fy x o ® is the characteristic function of V. In
this correspondence, an expression of V' as a union of pseudo-polyhedra based on H coincides with a
disjunctive normal form (DNF) of fy 3. For two arrangements H C G and a function f : Dy — {0, 1},
there is a unique function ¢ : Dg — {0, 1} satisfying f o &y = ¢ o ®g. Function g is called the
expansion of f from H to G.

Recall that a partial Boolean function f: X C {0,1}" — {0,1} is threshold if there exist t € R"
and to € IR such that f(b) =sgn(to+b't) Vb € X. Existence of MLPs is reduced to thresholdness of
functions of the type fy . Exploiting this transformation of the issues from geometrical terms into
a combinatorial language, the development of threshold function theory will bring some light on the
complexity issues addressed in the present work.

Our recognition problems can be reformulated as follows :

LPo-REcoaNiTioN: Given an arrangement M and a DNF for a function f : Dy — {0,1},is f
threshold 7

LPs-RecoaniTioN: Given an arrangement H and a DNF for a function f : Dy — {0, 1}, is there an
arrangement G O H such that the expansion of f from H to G is threshold 7

1H € Hy only if B(H) N B(V) contains an open ball of dimension n — 1 in the subspace B(H ), where B(X ) denotes
the border of X according to the usual topology on R™.
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Several results established in various works on the characterization of LPy [GC90, ZAW92, Sho93]
have a simple explanation in threshold function theory. For example, Lemma 1 is a direct consequence
of two facts : (i) the negation of a threshold function is threshold; (ii) the conjunction between a single
variable and a threshold function is threshold.

As second example is related to the class M D LP5 defined by :

M = { Vel | thereisno half-space H, and balls By, By in IR", s.t.
(HNB)U(H*NBy) CV , and
(HNB)U(H°NB)CV® }?

and introduced in Proposition 8 in [GC90] (or Theorem 1 in [ZAW92]) to express a necessary condition
for V to be in LP,. The condition expressed in the definition of M is translated into monotonicity of
Boolean function [Mur71], which is the simplest necessary condition for a function to be threshold.

In the next section, we will take advantage on results in Boolean function theory to discuss the
complexity of each class of regions introduced above :

DCDCLP, CM, DNFD C LP, C LP,NFD.

4 Intractability results

If a lot is known in threshold function theory about completely defined Boolean function, several
questions remain open when partial functions are considered. For example, thresholdness of a complete
function given by a monotonic® DNF can be tested in polynomial time [PS85], but nothing is known
for partial function. On the other hand, even if V. C IR” based on H is given by a partial function
defined on the very structured domain Dy, it still generalizes the case of complete Boolean function.
Indeed, for any arbitrary complete function f : {0,1}* — {0, 1}, there is a region V C IR" of basis
H ={Hi,...,Hp}, where H; = {x | »; > 0}, such that f = fy ». Therefore, all the questions we
might ask in our setting will be at least as hard as their equivalent formulation for complete Boolean
functions. In particular, since it is co- NP-Complete to decide whether an arbitrary DNF represents
a threshold function, £Ps-ReEcoanirioN is NP-Hard. The proof that checking thresholdness is co- NP
can be generalized to prove the following lemma :

Lemma 2 £P,-RECOGNITION is co- NP.

For a region V € D given by a basis H and a DNF expression for fy #, it can be shown that (i)
there is a specification of V as an iterated difference of k pseudo-polyhedra with & bounded by |H]|,
(ii) the equality between V' and the iterated difference can be checked in polynomial time. Thus, we
have :

Lemma 3 D-RecoaNITION is NP.

Using the fact that within FD, D C DCLPC LPs, a single construction will be used to prove
the intractability of each of these classes :

Theorem 4 EPQ-RgCOGNITION and D-REcoaNITION are NP-Hard, LP5-RECOGNITION i8 co-
NP-Complete, and P-RecoantTioN is NP-Complete.

Proof: By Lemmas 2 and 3, it remains to show that the four recognition problems are NP-Hard.
This will be done by reduction to SAT.

An instance of SAT is given as a DNF of a Boolean function a : {0, 1} — {0, 1} with the question
“Is @ a tautology 7”. Consider the Euclidian space IR" and the arrangement H containing the following
2n closed half-spaces :

2For X C R"™, X°¢ denotes the complement IR™\ X .

3A DNF is monotonic if it does not contain positive and negative occurrences of the same variable.
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Let b; denotes the Boolean variable which is the characteristic function of H; for all i = 1,...,2n.

Consider the region V C IR" based on A defined by

Cl(bl,...,bn) if(bn+1,...,b2n)2(0,...,0),
Fon(by, .. bay) = 0 if (b1, bon) = (1,...,1), (4)

1 otherwise.
The 4 complexity results are proved if the two following statements hold:
(i) V €D if a is a tautology;
(i) V ¢ LP2 if a=(0) #£ 0. a(b) = 0.

The proof of (1) is easy, since if a is a tautology, b = (07,1") is the only point for which fi » is 0.
Thus, V = IR"\ N?_; H,4;, which is clearly in D.

The proof of (ii) goes as follows. Assume that a is not a tautology and let distinguish two cases.
If 3b € a=1(0), with b; = 0 for at least one j, we can show that V ¢ M. On the other hand, if
a=1(0) = {(1,...,1)}, we have to show that the region IR™\(N7_, H; UM, H,1;) is not in £LP>. This
situation is a generalization to n dimensions of the example pictured in Figure 5 in [Gib96] and the
proof is based on another property of threshold function known as assumability [Mur71]. A

Deciding whether a Boolean function given by an arbitrary DNF is monotonic or not is NP-
Complete. From this we can establish the following result :

Proposition 5 Given a region V specified by a basis ‘H and its expression as a union of
intersections of elements of H, deciding whether V' € M is NP-Complete.

5 Tractable cases

The complexity results of Theorem 4 rely essentially on the fact that it is hard to find a DNF expression
characterizing the complement of a region defined by a DNF| since it is already hard to decide whether
this complement is empty or not (SAT). The first tractable cases listed in this section consist of
situations where both V' and V* are available as input.

Proposition 6 If V is given by a basis H and two DNFs, one for fy % and the other for
fven, then it can be decided in polynomial time whether V' is in P (similarly in D).

The similar question about £P, was solved only with an additional assumption :

Proposition 7 If V' is given by a basis H and two DNFs D; and D> for fyx and fyve x
such that Dy (b) = Da(b) = 0 Vb ¢ Dy, then it can be decided in polynomial time whether
Visin LPs.

In many practical situations, the size n of the Euclidian space is small, while the number of half-
spaces can be very large. Therefore, it is worth highlighting that some of the recognition problems
become easy when n is a constant.

Proposition 8 £P,-RECOGNITION, D-RECOGNITION and D-RECOGNITION are polynomial in
the size of the basis and in the size of the DNF given as input.

6 Open questions

It can be decided in polynomial time whether a Boolean function given by a monotonic DNF is
threshold. Thus, the intractability of £P;-REcoaNiTioN might be connected to the intractability of
class M (Proposition 5). We addressed the same question as in £P>-RecoaniTioN with the additional
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assumption that the inputs are given in a monotonic form, i.e. the basis does not contain two half-
spaces complement of each other and the DNF is monotonic. The complexity of this question is still
open.

As mentioned in section 2, there exist some regions in LP» for which all the known expressions
of their characteristic functions in the form of equations (1-3) require m exponential in the size of
the input. An important and challenging problem would be to demonstrate some lower bounds on m
which could be exponential or even super-polynomial in the size of the input.

This work was initiated while the author was a postdoctoral visitor at RUTCOR—Rutgers Uni-
versity’s Center for Operations Research, supported by the Swiss National Science Foundation, by
RUTCOR and by DIMACS—Center for Discrete Mathematics and Theoretical Computer Science.
The author would like to thank Dr. Motakuri Ramana for his always pertinent critics and fruitful
discussions.
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