A Boolean Approach to Construct Neural Networks for Non-Boolean Problems

A neural network construction method for problems specified for data sets with in- and/or output values in the continuous or discrete domain is described and evaluated. This approach is based on a Boolean approximation of the data set and is generic for various neural network architectures. The construction method takes advantage of a construction method for Boolean problems without increasing the dimensions of the in- or output vectors, which is a strong advantage over approaches which work on a binarized version of the data set with an increased number of in- and output elements. Further, the networks are pruned in a second phase in order to obtain very small networks.


Published in:
Proceedings of the 8th IEEE International Conference on Tools with Artificial Intelligence
Presented at:
IEEE - Proceedings of the 8th IEEE International Conference on Tools with Artificial Intelligence
Year:
1996
Keywords:
Laboratories:




 Record created 2006-03-10, last modified 2018-03-17


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)