RECOGNITION OF HANDWRITTEN RESPONSES ON US CENSUS FORMS

Thomas M. Breuel
Institut Dalle Molle d’Intelligence Artificielle Perceptive (IDIAP)
C.P. 609
1920 Martigny, Switzerland
tmb@idiap.ch

ABSTRACT

The design and implementation new system for the recognition of handwritten responses
on US Census forms, a hard real-world recognition task, is described. The system goes
from raw, binary scanned images of census forms to ASCII transcriptions of the fields
contained within the forms. The recognition of the handwritten text is based on ex-
tracting a large number of character subimages from the input that are then individually
classified using a MLP (Multi-Layer Perceptron). A Viterbi algorithm is used to as-
semble the individual classified character subimages into optimal interpretations of the
input, taking into account both the quality of the overall segmentation and the degree to
which each character subimage of the segmentation matches a character model. The sys-
tem uses two different statistical language models, one based on a phrase dictionary and
the other based on a word dictionary. Results from recognition based on each language
model are integrated using a decision tree classifier. The system has been tested on the
NIST data base of handwritten responses on 1990 US Census forms and demonstrated
high recognition rates. The effects of design decisions, remaining sources of errors, and

comparisons with other systems are discussed.

1. Introduction

Handwriting recognition is an important practical problem. Its applications include process-
ing bank checks, postal mail addresses, census forms, tax forms, office documents, library
information systems, FAX routing, personal organizers, and many more.

It is also an interesting problem in computational vision, since it encompasses many
of the major problems in computational vision: feature extraction, figure-ground problems,
segmentation, learning, idiosyncratic and “natural” shape variation, and the integration of
top-down knowledge. From an experimental point of view, the recognition of handwritten
text is a particularly nice model system, since it is a well-defined problem and large amounts
of training and test data are available.

This paper describes a new system for the recognition of handwritten text. There are a
number of noteworthy features about this system:

e complete forms-to-ASCII system: The system starts with a raw scanned input form and
outputs a segmentation and ASCII transcription of the form; this allows us to estimate
overall recognition rates in a realistic setting.

o strictly bottom-up processing: Each processing stage computes an output that is then
passed on to the next processing stage; information never flows backwards.

e pre-stroke segmentation: A novel segmentation algorithm particularly suited to the
segmentation of handprinted text is used.

o character subimage classification using ¢« MLP: A MLP (Multi-Layer Perceptron with
sigmoidal activation functions) is used to estimate posterior probabilities P(w;|z),
where w; is the class of the character subimage and z is the corresponding input vector.

e segmental recognition: Many alternative segmentations of the input string are possible.
In addition to classifying individual characters, the MLP is used directly to distinguish
good segmentations from bad ones. To accomplish this task, the MLP has been trained
to reject character subimages that are part of bad segmentations.

e dictionary back-off strategies, hypothesis integration, and rejection via decision trees:
As part of postprocessing, the system generates multiple hypotheses for each input;
these are integrated using a decision tree classifier.

An overview of the system is shown in Figure 1. Four major processing stages can be
distinguished. Preprocessing starts with the raw input and computes images of isolated,
normalized strings of handwritten text found within the raw input. The segmentation stage
divides up the handwritten text into potential character subimages and describes the spatial
relations among those character subimages compactly using a graph structure. The recog-
nitton stage determines how similar each character subimage is to known, well-segmented
character subimages in the database. Finally, in the postprocessing stage, the individual char-
acter subimages are assembled into a globally optimal interpretation of the handwritten input
string, taking into account constraints imposed by the language model.

2. Statistical Foundations

The statistical basis for the system described in this paper is similar to that of segment-based
speech recognition systems. The presentation and notation used below follow the papers by
Leung et al.! and Breuel? closely.

The goal of the system is to identify the character string W = wj ... w, that represents
the most probable interpretation of the input image z. More precisely, in the set of all
permissible strings £*, we want to find the string W € ¥* that maximizes P(W|z). In a
Bayesian framework, this represents the optimal decision under a zero-one loss function.

We can think of this interpretation of the input image as a character string as consisting
of two parts: a segmentation S = sy...s, of the input image, that is, a partitioning of the
image into character subimages, and an interpretation of each character subimage z; as a
character w;.

Consider now the joint conditional distribution P(W, S|z). The desired probability
P(W|z) is related to this by summing over all possible segmentations:

P(Wlz) =) P(W,5|z) (1)
S

Recognition of Handwritten Responses on US Census Forms

\
\
\
| |
\
2 | ' |
§ } Box Removal }
S | |
i‘; | ¥ }
o | L |
\ Skew Normalization |
\ Slant Normalization ‘
} Cleanup }
s J
Sy 7‘
\
\ Connected Components }
} Grouping |
= | Curved Pre-Stroke Cuts }
g |
c \
g } y \
D \ Character Subimage Extraction }
] \ \
\
| Y |
} Hypothesis Graph Construction }
- - J
c
9
c
(@]
(@)
(&)
(O]
04
\ \
o } Match (Phrase Dictionary) Match (Word Dictionary) }
g ‘
o) \) - |
=~ Integration and Rejection \
17 - | !
@]
o

Figure 1: An overview of the system.

Thomas M. Breuel

We impose the a priori constraint that P(W, S|z) = 0 if |[W| # |S|. That is, the number of
character subimages generated by the segmentation and the length of the hypothesized string
must be the same.

In this system, we will be using context-independent models for the character subimages.
Therefore, we want to express P(W, S|z) in terms of the individual w; and s;:

P(W,S|z))
_ P(W,S)P(W,S)
- P(z) ‘)
< o [@
P(w;, si|z;)

= P(W) 1:[T P(wy) (5)
Here, the approximation is based on the assumption of context independence. Leung et al.l,
in contrast, are using context dependent models.

This leaves us with the problem of estimating and interpreting the factors P(w;, si|z;).
Our choice of model for these factors determines the nature of the overall probability model
P(W, S|z). In the current system, these factors are chosen to be proportional to the probab-
ility that segment z; is an individual, well-segmented handwritten character of class w; (up to
a global normalization factor that ensures that > y, s P(W, S|z) = 1). In practice, this choice
is realized by the particular set of training examples chosen to train the neural network.

To understand the properties of this probability model better, it is useful to look at the
contribution of the segmentation to the overall probability. By summing over all possible
strings W, we obtain P(S|z) =~ c[[; P(si|z;). That is, the probability of a segmentation
S is the product of the probabilities that each of subimages x; represents an individual,
well-segmented handwritten character.

Clearly, this is only an approximate probability model for P(S|z). In particular, the
implicit independence assumption is violated for the actual segmentation method used. It
remains to be seen whether modeling these dependencies has any effect on recognition rates
in practice. On theoretical grounds, it appears that the magnitude of these dependencies is
small compared to other modeling errors.

3. Database and Input Data

The database used in this work was made available by NIST for participation in the Second
Census OCR, Conference®. In the work described here, a subset of 1200 forms images digit-
ized from paper is used for training and testing. These forms images can be found in the
subdirectories of the data2 directory of the CD-ROM containing the “NIST Special Data-
base 12/Miniform Database 2 of Binary Images from Microfilm and Paper”. This set of 1200
forms images will henceforth be referred to simply as “the NIST database”.

Each forms image consists of 5 miniforms. Each miniform contains the responses to three
questions about the nature of the employment of the respondent. The forms in the database
contained actual responses received by the census bureau. Hence, a wide variety of writing
instruments, writing styles, and input qualities are represented. Input was digitized to bilevel
images at a resolution of 200 DPI. An example of a miniform is shown in Figure 2.

Recognition of Handwritten Responses on US Census Forms

Bl “L_,M.g_& s Wﬁl s\k’llﬂm?w e 1
Dmhﬂnucﬂvﬂyatlocaﬂonwhueempbyed /

I
waws PAPEA. _PuBLISHINGE |
(For example: hospital, newspaper publishing, .
mall order house, auto engine manufacturing, .
retail bakery) b.

c. Isthis mainly — FRONE cirtle -
O Manufacturing O Other (agriculture,
O Wholesale trade construction, service,
@® Retail irade

L;JJE _____ PA- aau DELW Er-){
(Formmple reglmmdnume personnel
mpmlsocofotderdepm‘tment gasoline engine

AP WS

Figure 2: A sample miniform from the database written in an upper-case, well segmented
style (see Table 1). The input to the system consists of a vertical concatenation of five such
miniforms into a large image of about 600x3700 pixels. A significant fraction of miniforms
have spurious markings outside the input field, have non-negligible skew, or have been bin-
arized using a threshold that is slightly too low or too high (leading to fading of characters
or the presence of noisy areas).

For each field, the database contains a transcription of the alphanumeric characters con-
tained in that field. Non-alphanumeric characters (e.g., / and &) are not transcribed. Tran-
scriptions contain spaces, but these often fail to represent physical spaces present in the
input and sometimes transcribe space that is not actually present in the input.

There are a number of properties of input in the database that complicate recognition,
among them:

e In some input fields, writing falls outside the box. Strokes reaching above the top
or below the bottom of the printed bounding box are due to excessive textheight or
excessive ascender/descender length. Strokes and characters falling outside the right
margin of the printed bounding box occur because the writer has reached the right

Thomas M. Breuel

style | NIST | CEDAR |

handprinted, well-segmented, upper-case | 22% 8%
handprinted, linked, upper-case 18% 9%
handprinted, well-segmented, mixed-case | 21% 3%
handprinted, linked, mixed-case 28% 9%
cursive 6% 67%
two lines 3% N.A.
faded 2% 4%
strike-through <1% N.A.

Table 1: Approximate frequencies of different writing styles in the NIST database, based on
a sample of 580 randomly chosen fields. Generally, well-segmented and upper-case styles are
easier to recognize, but there are frequent exceptions to this rule. For comparison, the same
classification is shown for 200 arbitrarily chosen words from the CEDAR “bd” database of

city names.

margin of the box without finishing his response. Strokes that fall significantly outside
the top or bottom margin of the box are very difficult to recover, since they overlap
printed instructions on the form.

e A non-negligible fraction of input fields contains two lines of text. These can be the
result of corrections to a response using an insertion mark (often indicated using a V).
In other cases, the writer seems to have anticipated giving a long response.

¢ Responses show a significant degree of pitch variability (i.e., variability in character
spacing and character width). Probably the most common cause is that the writer is
approaching the right margin of the box and anticipates not being able to complete
his responses at the current pitch. Some responses also show significantly non-linear
baselines and variable character slant.

e Some input fields contain very faded or broken up characters. Part of the reason for
this is that the input images are binary and that the threshold for binarization was set
based on the printed marking on the forms, not the handwritten input.

e Some input fields contain struck out handwriting, often using erratic scribbles; usually,
struck out text is not transcribed. Occasionally, forms contain numerous extraneous
markings, such as check marks marking each response that has been completed.

These phenomena could probably be reduced (though not completely eliminated) by some

simple improvements in the design of the forms.
For a sample of 580 fields, the percentages of writing styles and exceptional input fields
were determined; this is shown in Table 1.

It is interesting to compare the NIST database with the CEDAR database of handwritten
US postal addresses, another widely used database for developing and testing recognition
systems for handwritten text. What is striking is the very different distribution of writing

Recognition of Handwritten Responses on US Census Forms

styles between the two databases (see Table 1). While the NIST database consists only to
about 6% of input written in a cursive style, about 67% of the inputs in the CEDAR database

are cursive.

4. Forms Segmentation

Before any character recognition can take place, handwritten character strings need to be
extracted from the miniforms. The first step of this extraction process is to locate approx-
imately the bounding boxes containing the handwritten responses.

Perhaps the most obvious approach is to try to locate the printed dashed boxes surround-
ing each field directly (see Figure 2). An algorithm based on mathematical morphology was
implemented and located and extracted more than 90% of the fields correctly. Failures were
mainly due to noise, fading of the box, or the obscuring of the sides of the box by touching
strokes.

This rate was considered too low and a more robust extraction method was developed.
This method uses the prominent black horizontal and vertical lines that form part of the
miniform layout to locate each miniform in the input image. It then determines the position
of the miniform input fields relative to the position of the layout lines. Raw layout lines are
located using morphological operations and directional histograms.

Very rarely, layout lines are missed due to noise or fading, or, more frequently, spurious
layout lines are detected inside textual or handwritten regions. Another complication is that
several different layouts exist for the miniforms. To cope with both problems, a 1D analog of
a search-based object recognition algorithm (see, for example, Grimson and Lozano-Perez?)
is used to recognize layouts in the presence of insertions and deletions.

The recognition algorithm is given as input a set of manually constructed 1D models
(relative positions of horizontal layout lines within a particular type of miniform) together
with the positions of layout lines (found by morphological processing) and searches for a
consistent interpretation allowing for some insertions and deletions.

Once the miniform layout lines have been identified and located, input fields are extracted
from positions relative to those layout lines. Some additional space surrounding each box is
extracted to allow strokes that touch the box or cross the box margins to be included. An
example of extracted fields is shown in Figure 3.

The failure rate for miniform extraction by this method is quite small: out of a sample of
3000 miniforms, 2 miniforms failed to get extracted. These cases were detected automatically,
and the corresponding fields were rejected.

5. Box/Underline Removal

As we noted above, each input field is surrounded by a dashed box. This box needs to be
removed before segmentation and recognition can take place.

The first step is to identify those regions of the image that contain the dashes making up
the box. These regions are found using morphological filtering, selecting small rectangles of
approximately the right size that are arranged in long lines. In order to eliminate the bottom
and top lines delimiting the handwritten input, within these regions, all vertical stretches of

Thomas M. Breuel

—n-_-_-—.——-—n.---———--n-— ————————— [———— ——I
i

i

_l

WEWS PR sz_ﬂ_-__mﬂ-ﬂ Hil &

o I_____ _______ Py T repp———————— '“._'_‘_.,__ I
MEwSPARGR. D :.-:_l_'_ly_Ew_-_ Y ___]
—————— ;___...- _____________ _.f___l

L DELIYS RENE__NEWS ea:eg!-_-ﬁ

Figure 3: The fields extracted from the miniform shown in Figure 2. Note that they are still
slightly skewed, that the dashed box is still present, and that there are arrows protruding
into the dashed box.

pixels that are shorter than an empirically determined threshold are deleted. This operation
almost completely eliminates parts of the box that do not touch any strokes, while leaving
almost all strokes touching or crossing the box intact.

6. Skew and Slant Correction

Skew is the misalignment of the baseline of the handwritten text with respect to the pixel
coordinate system of the field image. Slant is the deviation from the vertical of the long down
strokes in letters like |, K, or T. Skew correction shears the input image in a direction parallel
to the y axis to force the skew of the input to zero. Slant correction shears the input image in
a direction parallel to the z axis to force the average slant of the handwritten input to zero.

In many systems, skew and slant correction are carried out for the benefit of the recognizer,
to remove transformations of the input under which the identity of characters is largely
invariant. In the system described here, skew and slant correction have a more immediate
goal, however: they are carried out to simplify the subsequent segmentation stage. They
give vertical lines through the image a distinguished status. After skew and slant correction,
vertical lines will run parallel to down strokes, and, in the absence of kerning, segmentation
cuts between characters will be vertical lines.

Skew and slant correction are each carried out by a generate-and-test procedure. We can
think of this as generating different transformed instances of the image subjected to skewing
or slanting, and picking the transformation that maximizes an evaluation function. In the
actual system, a more efficient algorithm is used to compute the same result.

The evaluation function used in this work consists of the average value of the local maxima
in the smoothed horizontal (skew correction) or vertical (slant correction) histogram.

This simple procedure reduces, but does not completely eliminate, variability in skew and
slant. A significant fraction of the input strings exhibit non-linear baselines and/or variable
slant.

Recognition of Handwritten Responses on US Census Forms

NEWSPRPEL PuglLisHiIN¢

NEWSPAPGR. DELWERY
DELIYE RINV NEWS pAPERA

Figure 4: Cleaned-up versions of the fields shown in Figure 3. Note in particular that the

writing has been slant corrected and that strokes touching or crossing the bottom of the
dashed box have been preserved.

6.1. Remouving Spurious Connected Components

We define a central region as those parts of the input image that lie between the 20th and 80th
percentile of the horizontally projected histogram. Connected components in the input image
that overlap the central region are automatically retained. Other connected components are
retained only if their bounding boxes overlap significantly one of the connected components
overlapping the central region. Connected components that are not retained during those
previous two steps are deleted and not considered further by subsequent processing stages.

The result of the previous steps, box removal, skew and slant correction, and connected
component analysis is shown in Figure 4.

7. Segmentation

The output of the previous stage is an image that contains mainly a handwritten input string.
The goal of the segmentation stage is to determine a collection of character subimages that
can then be individually classified.

In idealized handprinted text, each connected component corresponds to a letter (with
the exceptions of i and j, which consist of two connected components). Unfortunately, this
simple correspondence breaks down for real handwriting.

In many cases, even in “isolated” handprinted character writing styles characters are
connected through ink trails or noise. Conversely, characters like E, T, or H often consist
of two or more connected components. Because of pen fading, in particular during long,
smoothly curved strokes, characters like N and U also can appear separated, i.e., as two or
more connected components, in the image. Connected components are therefore subjected
both to a grouping process and to a segmentation process.

Thomas M. Breuel

7.1. Cut Hypotheses

The grouping process based on connected components and proximity described above divides
the image of the handwritten input string into a number of groups. But because input char-
acters frequently touch each other, connected components need to be subdivided further by
cuts that separate each handwritten character from its neighbors. This is done by computing
a set of explicit cuts through the connected components. Each cut is a line going from bottom
to top through the image of the handwritten input string. Cuts must satisfy certain geometric
regularity conditions and are chosen in a way that makes it likely that they correspond to
boundaries separating individual handwritten characters in the input string.

Without taking advantage of character shape models and language models, the validity
of many cuts cannot be determined unambiguously at the segmentation stage. A commonly
seen example in cursive handwriting is the ambiguity between the single letter d and the pair
of letters cl. In handprinted text, another common ambiguity exists between the letter m and
the pair of letters rn. Many more such ambiguities exist in printed and cursive handwriting.
The goal of the segmentation step is therefore to generate a set of cut hypotheses that is
sufficient to cover all reasonable segmentations of the input string.

If we cannot determine the exact set of cuts needed to separate characters from one an-
other, we have to make tradeoffs. Either we include too many cuts (oversegmentation), some
of which will divide individual characters, or we include too few cuts (undersegmentaion) so
that some character pairs are not separated. Oversegmentation is much less of a problem than
undersegmentation. The reason is that oversegmentation leads to the inclusion of some spuri-
ous character subimages, but usually does not eliminate correct character subimages from the
set of hypotheses. Undersegmentation, however, introduces unrecoverable recognition errors.

7.2. Valley Point Cuts

Two different approaches to generating cut hypotheses were tried. The first method was the
method of valley-points (used in several systems, including Kimura et al.5). While it yielded
good results on cursive handwriting in some preliminary experiments, its performance on
handprinted text (in particular, upper case handprinted text) was disappointing.

The good performance of valley point segmentation on standard cursive handwriting
(copper plate) is easily explained by the way characters are linked using festoon-like strokes,
which regularly contain local minima between individual characters.

However, the linking strokes between handprinted characters, in particular uppercase
handprinted characters, are more idiosyncratic. Characters are often linked at the top rather
than at the bottom. Frequently, characters are even linked via two or three strokes (e.g., the
ink of a very closely spaced pair of upper case letters EE, as in EE, will form a connected
region with two holes). If valley points exist at all between such character pairs, they are
often in inappropriate places and do not determine a unique cutting path.

Typical examples of touching characters that cannot be separated properly using the
valley point method are shown in Figure 5. Here, the FL, EN, EE, and ER pairs cannot be
separated properly if valley points are used as cutting points.

Another problem with the valley point segmentation method is that it only indicates
a single cutting point on the upper contour of a connected component. In the presence of

Recognition of Handwritten Responses on US Census Forms

LB T ebneEn

Figure 5: An example of a string that is difficult to segment.

multiply connected components or kerning, this leads to ambiguities as to how the component
should be cut.

Since the majority of the data used in this work was handprinted rather than cursive (see
Table 1), and because of the difficulties of extending a single cutting point into a complete
cut, a different method of generating cuts was devised.

7.8. Pre-Stroke Cuts

The basic idea behind the segmentation method used in the system is to cut apart an input
string just to the left of every vertical stroke. This approach works very well for letters
that have a vertical stroke (possibly curved or slanted) on the left. It works acceptably well
with the remaining letters. The only significant exceptions are letters that have a protruding
horizontal stroke on the left (J T f j t), which, when cut right before its vertical stroke, will
leave behind a small horizontal line with the preceding letter. Usually, this only results in
the presence of a harmless, spurious cut.

Two different versions of pre-stroke segmentation were implemented. The first version
used only straight, vertical cuts. Strokes were identified as local maxima in a vertical histo-
gram, and stroke boundaries were found as inflection points, i.e., zeros of the second derivative
of the smoothed vertical histogram. This method worked quite well for identifying good cut-
ting points, but straight lines failed to cut a significant fraction of character pairs properly.
For example, the letter pair Co is frequently linked (and hence represented by only a single
connected component), and the letter o is frequently moved partially under the upper part
of the letter C, as in (o, a phenomenon that is called kerning. Clearly, we cannot choose a
single straight vertical line to separate such pairs of letters.

Nevertheless, even this segmentation method gave surprisingly good classification results.
It appears that the classifier acquired models for letter variants arising from imprecise seg-
mentation (contextual models would probably result in significant improvements when using
straight cuts for segmentation).

In order to cope better with kerning, the system evaluates a large set of curved cuts
and selects a small, “optimal” subset. The resulting set of curved cuts allowed most pairs
of characters to be separated cleanly, even in the presence of kerning. This approach is
somewhat similar to the deflection method® 7. The details of this algorithm will be described
elsewhere.

7.4. Character Subimage Hypotheses

The two segmentation stages described above find a set of connected components, and, for
each connected component, a set of cuts. For a connected component, a subset of the set

Thomas M. Breuel

ERERERT R
f)rji'g(?@@g
TI3YIRTS
npaggwawi

\"F\'“?s“h .

Figure 6: The character subimages corresponding to the segmentation of the string shown in
Figure 5.

of cuts defines a partition of that connected component. Each element of such a partition
corresponds to a character hypothesis.

The set of all possible partitions of a connected component generated by a set of cuts grows
combinatorially in the number of cuts. This could make the recognition of long connected
components prohibitively expensive. Fortunately, the number of possible character subimages
itself only grows at most as the square of the number N, of cuts.

However, the set of possible partitions of the input string can be represented compactly
as a graph in the following way. We let each cut correspond to a vertex. Each (directed) edge
connecting two vertices then represents a character subimage. A segmentation of the input
is a simple path through this hypothesis graph, starting at the vertex corresponding to the
leftmost cut and ending at the vertex corresponding to the rightmost cut. This structure is
very similar to that of a phone lattice in speech recognition. A example of a set of character
subimages is shown in Figure 6.

But even the extraction, processing, and classification of (1\2]°) character subimages means
a significant computational burden: the number of cuts N, is usually somewhere between
n and 3n, where n is the length of the character string corresponding to the connected
component. In practice, n can easily reach 20 characters, potentially making the recognition
of a connected component between 400 and 3600 times slower than the recognition of the
same number of isolated characters.

Recognition of Handwritten Responses on US Census Forms

By imposing some additional constraints, we can reduce the number of character subim-
ages greatly and even achieve linear complexity with a small constant factors. In order to do
this, we take advantage of two properties of handwritten or handprinted characters.

First, we observe that each of the upper or lower case letters of the Roman alphabet
span at most two pre-stroke cuts (the only letters that actually contain two cuts are M, m,
W, and w). In principle, therefore, we need not consider any character subimage that spans
more than two cuts. Allowing for some error, we might limit number of cuts falling inside
a character subimage to three or four. This brings down the number of character subimages
that need to be considered to at most 5V..

Second, individual letters satisfy some size constraints. For example, they are very un-
likely to be significantly wider than they are tall, and they are very unlikely to be significantly
wider than a small multiple of the estimated text height. We need not consider any character
subimages not satisfying these size constraints. This further cuts down on the number of
character subimages that need to be processed.

Limiting the number of pre-stroke cuts spanned by the character subimage and its length
also has another important function. As we have seen, the cost of matching an input im-
age against a dictionary string consists of two parts: a cost computed for the segmentat-
ion/partition of the input image into characters, and a cost of making the correspondence
between each character subimage and its corresponding character in the dictionary. Both of
these costs are estimated as the logarithm of the posterior probability estimated using a MLP
classifier.

But the classifier only has a limited amount of training data available, and without ad-
ditional a prior: knowledge, in a Bayesian framework, there is effectively a lower bound on
the magnitudes of the probabilities it can estimate based on the training data alone. The
effect is that even very long connected components, which appear impossible as part of an
acceptable segmentation to a human observer in possession of a priori knowledge, could not
incur a cost of more than around 23.0 nats in the current system. As a consequence, when
excessively long character subimages were included in the segmentations in an early version
of the system, long connected components would often form part of an optimal match where
there was a sequence of degraded or poorly formed characters, since such long connected
components incur comparatively small per-character costs. Eliminating very long character
subimages from futher consideration essentially forces their prior probability to be zero and
thereby avoids this problem.

8. Character Subimage Classification

Each character subimage found by the segmentation stage is individually classified using a
MLP (Multi-Layer Perceptron with sigmoidal activation functions). As is well-known, the
output of the classifier approximates a conditional probability® % 10 11 P(w;|z)

The possible classes w; € X are the 26 letters A through Z (no distinction is made between
upper and lower case) and a rejection class. The rejection class contains all non-alphabetic
characters and all character subimages that do not represent a complete, individual character.
For the recognition of US census forms, the system was not trained to recognize digits or
special characters: the number of digits in the training set was too low to warrant inclusion,
and special characters were not transcribed, making training difficult.

Thomas M. Breuel

Figure 7: An example of the feature maps for a handwritten letter T. These feature maps
form the input to the MLP.

Ideally, only character subimages belonging to the correct segmentation would be classified
as one of the letters A through Z; all character subimages belonging to incorrect segmentations
should be assigned to the rejection class by the classifier. Of course, as we observed above, this
ideal is not achievable, since the same string frequently allows several plausible segmentations.
Such ambiguities must be resolved at a later processing stage on the basis of top-down
knowledge.

Training of the MLP was carried out using the backpropagation algorithm with a mo-
mentum term?!? 13,
further.

Input to the classification stage consists of eight normalized feature maps, the first seven
of which are 10 x 10 unit topographic representations of feature maps corresponding to the

Training was stopped when the cross-validated error did not decrease

character subimage. The eighth feature map encodes the ascent, descent, width, height, and
center relative to the baseline of the character subimage using a unary code.

The first four feature maps encode the local gradient of the character subimage. Each
feature map is maximally sensitive to a particular gradient orientation; response to gradients
differing from this preferred orientation decays like a Gaussian.

The next feature map encodes the presence of “holes”, i.e., interior regions that are not
connected to the background of the character subimage. Such regions occur frequently in
letters like O, a, A, or e, and are almost always absent in letters like L, T, or I.

The last two feature maps encode the presence of singular points of the skeleton of the
character subimage. The first of the two feature maps encodes endpoints of the skeleton,
while the second encodes points where three or four branches of the skeleton meet. The
skeleton is computed using a thinning algorithm!4.

Figure 7 shows an example of the input to the MLP for a handwritten letter T. The first
four feature maps containing orientation information are clearly visible. The next feature
map containing information about interior regions is black, since the letter T has no interior
regions. The next two maps show the three endpoints and the point of intersection of the
horizontal and vertical strokes respectively. Finally, the last map encodes information about
the position and size of the character subimage relative to the rest of the input.

As we noted above, the output of the MLP can be interpreted as an approximation to a
set of conditional probabilities. Subsequent processing uses the negative of the logarithm of
each output of the MLP; we will refer to this as a “cost”. The addition of costs corresponds
to the multiplication of probabilities, as in Eq. (5).

Recognition of Handwritten Responses on US Census Forms

9. Hypothesis Graph

The output of the segmentation stage is a collection of character subimages and an associated
directed graph. As we observed above, each cut corresponds to a vertex in this graph, and
each character subimage corresponds to an edge going from the cut delimiting its left side to
the cut delimiting its right side. We can think of this graph equivalently as a Hidden Markov
Model (HMM) or a Finite State Machine (FSM).

Each character subimage, and hence each edge of the hypothesis graph, is associated
with a cost vector output by the classification stage. Each entry ¢ in this 26 dimensional cost
vector can be thought of as describing the cost of interpreting the corresponding character
subimage as a character of class 1.

The problem of interpreting the input string consists of picking a path through the hy-
pothesis graph that starts at the vertex corresponding to the leftmost cut of the image of
the handwritten input string and finishes at the vertex corresponding to the rightmost cut
of the image of the handwritten input string. Each edge in such a path corresponds to the
interpretation of a character subimage. If we take a HMM or FSM view, we can think of the
vertices of the graph as states and its edges as transitions; the costs associated with each
character class and edge describe the probabilities of outputting the corresponding symbol.

In practice, the hypothesis graph derived from the segmentation needs to be edited slightly
to account for the possible insertion and deletion of character subimages from the input string.
For example, a non-negligible fraction of the input images contain spurious markings before
and after the actual handwritten string. In addition, some input strings contain insertions
of special characters like /, &, and —. The unedited hypothesis graph above would force
the interpretation of such extraneous character subimages as characters or as parts of other
character subimages, resulting in recognition errors.

If we view the hypothesis graph as a representation of a FSM or HMM, we can over-
come this problem by adding e-transitions and wildcard self-loops to each state. In many
HMM-based speech recognition, the estimation of the probabilities of such transition is very
important, since they represent durational models for phonemes in the input. In this system,
costs associated with e-transitions and self-loops were picked on the basis of some simple ex-
perimentation. The reason why this seems to be sufficient is that e-transitions and self-loops
need to participate only rarely in a match; “durational” models (i.e., character width models)
are already implicit in the segmentation and character subimage classification steps.

We have not yet discussed the processing of spaces in the input. They can be used in
some of the matching operations. However, because they are often not transcribed, they
are handled asymmetrically: a space in a dictionary entry is required to be present in the
input, but a space in the input may be ignored. This is handled by allowing all spaces in the
hypothesis graph to be skipped at no cost.

Figure 8 illustrates the process by which the raw hypothesis graph is transformed into the
edited hypothesis graph. For illustrative purposes, we assume that each edge in the unedited
graph is only associated with a single character subimage hypothesis. The unedited graph
corresponds only to the string AB_C, where _ denotes a space or blank character, at a total
cost of: 1.0 nats 4+ 2.3 nats + 0.7 nats = 4.0 nats. In this example, the editing process has

¢ added wild-card self-loops with a cost of 15.0 nats,

Thomas M. Breuel

A/1.0 B/2.3 /0 C/0.7

O R e) O
N _/ N
*/15.0 */15.0 */15.0 */15.0 */15.0
A/1.0 Q B/2.3 Q _/0 Q C/0.7
€/10.0 €/10.0 €/0 €/10.0

Figure 8: An illustration of the process of editing a hypothesis graph to allow skips, insertions,
and the deletions of blanks from the input.

e short-circuited each edge corresponding to a non-blank character with an e-transition
at the cost of 10.0 nats, and

o short-circuited the edge corresponding to a blank with an e-transition at a cost of 0.0
nats

This means that the new graph corresponds not only to the original string AB_C at a cost of
4.0 nats, but also to the string ABC at the same cost, or the strings A_C or AC at the cost of
11.7 nats, by taking the e-transition skipping the B.

10. Language Models

In principle, we could simply pick the best path through the hypothesis graph and use that
as our transcription of the input string. Unfortunately, recognition performance using such
an approach is generally poor. The reason is that most handwritten input is ambiguous.
These ambiguities can only be resolved using a language model that restricts the set of paths
through the hypothesis graph to those that are compatible with strings given by the language
model.

Mathematically, the language model corresponds to the factor P(W) in Eq. (5). A good
estimate of P(W) is therefore important for approaching Bayes-optimal performance.

When trying to come up with a language model for this task, the following task-specific
phenomena should be kept in mind:

e The handwritten text on the census forms classified by the system was given in response
to questions related to the employment of the respondent. Furthermore, only limited
space was provided for responses, resulting in responses consisting of usually one or
two words. This makes language models for these responses considerably different from
language models for general English prose.

e Abbreviations and spelling errors were frequent, and the particular task to be solved
and the scoring is based on a letter-accurate transcription of each input field, including
all spelling errors present in the handwritten input.

Recognition of Handwritten Responses on US Census Forms

language model ‘ size ‘ coverage ‘

common-phrases | 19550 64%
all-words 14432 88%

Table 2: Coverage and size of language models constructed for the recognition system.

¢ Only very limited amounts of training data (approximately 75000 phrases) were avail-
able for the construction of language models.

A number of language models were considered and tried. A more detailed discussion of
the different language models and their properties can be found in Breuell®.

NIST supplied two kinds of data that could be used to build language models. The
first kind of data consisted of dictionaries of words and phrases derived from a large set of
responses on 1980 and 1990 US Census forms. However, these dictionaries were not provided
with frequency information. The second kind of data was the set of transcriptions provided
with the binary images of responses on 1990 US Census forms that were provided by NIST
for training the handwriting recognition engines. This set of transcriptions was considerably
smaller than the set of responses that the NIST dictionaries were based on, but it did allow
frequency information to be derived by counting. (The responses on the test set used for
obtaining the error rates reported in this paper were of course excluded from the construction
of any language model.)

Based on the dictionaries supplied by NIST, a unigram language model (correct-words)
was constructed. It consisted of all the correctly spelled words (as determined by UNIX
spell) contained in the NIST dictionaries. Since probabilities for the individual words could
not be estimated from the training data, all words were assigned equal probabilities. Under
this language model, the cost, —log P(W), of a phrase W is therefore simply proportional
to the number of words in it.

A phrase probability model (common-phrases) was also constructed. It consisted of
all the phrases that occurred more than once in a set of approximately 75000 transcriptions
provided with the NIST database. The probability P(W) assigned to a phrase W was simply
the number of times that W occurred in the set of transcriptions divided by the total number
of transcriptions. Before probability estimation, phrases that occurred only once in the set
of transcriptions were deleted since probabilities cannot be estimated reliably for them.

For each language model, a question of particular importance is its coverage, that is, the
percentage of actual responses on the US census forms that are assigned non-zero probability
by the language model. The recognition rate of a system is limited by its coverage, since no
string that has been assigned zero probability can ever be returned by the language model.
The coverages of the various language models are shown in Table 2.

11. Matching

The purpose of matching is to evaluate P(W |z) for each string W and find the string with
the largest posterior probability. Complicating this computation is the fact that multiple

Thomas M. Breuel

paths through the hypothesis graph can correspond to the same string W. As is common in
speech recognition, we use the Viterbi approximation; that is, we use the best path through
the hypothesis graph as an approximation to the sum of the probabilities of all paths through
the hypothesis graph that correspond to a string W.

Each path through the hypothesis graph corresponds to a string W € %* and an associated
cost cp (W) obtained by summing all the costs along the edges traversed by the path. Here,
Y is the alphabet used by the system, i.e., the set of symbols A...Z and the blank character
_. If some string W does not correspond to any path in the hypothesis graph, we assign an
infinite cost to it. Similarly, the language model assigns a cost ¢;(W) to every string W.

The matching stage finds a string W € ¥* that has minimum total cost ¢ (W) + ¢;(W).
It is not difficult to see that this corresponds to minimizing Eq. (5) over all strings and all
segmentations, under the Viterbi approximation.

Finding the best path through the hypothesis graph constrained by the dictionary is car-
ried out using a Viterbi algorithm. To speed up matching, the dictionary is itself represented
as a graph corresponding to an optimized form of the trie representing the words or phrases
in the dictionary.

12. Hypothesis Integration

Since the system as described uses two different language models, the question remains of how
to integrate the two hypotheses found by matching against the two dictionaries. A number
of methods have been proposed in the literaturel® 17, 18, 19,

A related problem is that of deciding whether a hypothesis should be accepted at all.
It could be argued that if our character models and segmentation models give statistically
correct answers, rejection could be decided purely on the basis of a comparison of the posterior
probabilities computed for each match. But we already know that the statistical information
used by the system is only an approximation. Some aspects of the input could not be modeled
accurately given the training data provided. Hence, rejection based purely on the computed
costs is likely to be suboptimal.

For example, as we noted above, non-alphanumeric characters in the input are not tran-
scribed. Similarly, the dictionaries that were provided with the training data did not contain
any frequency information. Such information could only be approximated crudely by count-
ing phrases in the much smaller set of actual transcriptions included with the NIST training
data.

For both these reasons, the system includes a final processing stage that attempts to decide
whether to accept the hypothesis based on the phrase dictionary, to accept the hypothesis
based on the word dictionary, or to reject both.

Hypothesis integration and rejection is carried out using a decision tree classifier. The
decision tree classifier was constructed using the CART method?’. The input features to the
decision tree classifier consist of properties of the input image, like pixel density, bounding
box, text height, etc., as well as properties of the word- and phrase-based matches, such as
length, per-character cost, etc.

The decision tree classifier can make four possible decisions: (1) reject both the phrase-
based hypothesis and the word-based hypothesis, (2) accept the phrase-based hypothesis,
(3) accept the word-based hypothesis, or (4) accept both hypotheses (clearly, the last case is

Recognition of Handwritten Responses on US Census Forms

actual/predicted H reject both | accept phrase | accept word | accept both

reject both 29.99 2.90 0.40 2.36
accept phrase 4.45 11.05 0.40 0.00
accept word 4.99 0.81 2.90 0.00
accept both 0.20 0.00 0.00 39.56

| total | 3962 | 1476 | 371 | 4191 |

Table 3: A confusion matrix for the decision tree post-processing stage (all entries are in
percent). Note that the total percentage of fields, 39.62%, that are predicted to be rejected
is the rejection rate for this confusion matrix. This is the rejection rate that the decision tree
is intrinsically optimized for. Rejection at other rejection rates is done using the estimated
terminal probabilities associated with the leaves of the decision tree.

only possible if both hypotheses are equal). The CART method optimizes the zero-one loss
function for these decisions. This yields a decision tree that is suitable for recognition at a
certain intrinsic rejection rate. In the case of the present system, this intrinsic rejection rate
is approximately 40% (see Table 3).

However, depending on the application for the handwriting recognition system, we may
wish to choose rejection rates that differ from this intrinsic rejection rate. It is possible to
modify the CART method to accomplish this. However, in order to rely on existing software,
a simpler approach was chosen for the current system. Associated with each terminal node
in the decision tree is a set of estimates of posterior probabilities for each of the four different
decisions. Based on these posterior probabilities, the system picks the more probable hypo-
thesis among the word-based recognizer and the phrase-based recognizer, and it computes
a probability of misclassification. The technical details of this are straighforward and left
to the reader to work out. The probability of misclassification can be used to give a linear
order to the set of all hypotheses. Now, in order to achieve, say, a 50% rejection rate, we
pick those 50% of all hypotheses that are associated with the lowest estimated probabilities
of misclassification.

13. Bootstrapping and Training

The MLP classifier that performs character subimage classification requires training data.
Except for the decision tree classifier, all the other parameters of the system have been set
either by estimating probabilities using counting (e.g., phrase priors and character priors),
by simple statistics on geometric measurements of the input, or by inspection.

Since the NIST database contains only transcriptions but no alignment information, train-
ing had to proceed in two phases. In the first phase, manually segmented and aligned input
was used to train a crude MLP character subimage classifier. This initial classifier was then
used to segment and align input strings, and character subimages from the resulting align-
ment were used to train better classifiers for character subimages in a process similar to
embedded training in speech recognition and the expectation-maximization (EM) algorithm

Thomas M. Breuel

used in statistics.

For the initial training step, 1000 input fields from the d00 directory of the NIST data-
base segmented manually, resulting in approximately 14000 character subimages. Manual
segmentation was accomplished within a few hours using specialized tools that themselves
attempted an automatic segmentation and alignment based on some simple heuristics. In
fact, using those tools, it would not have been difficult so segment the complete database
over the span of a few days. However, this approach was not taken, since the character
subimage classifier should be trained on character subimages obtained using the segmentat-
ion boundaries returned by the segmentation method actually used in the system, not some
manual approximation.

For subsequent training steps, recognition was essentially carried out as described above,
but using a dictionary consisting only of a single phrase, the correct answer. This yields a
set of aligned character subimages. A heuristically chosen subset of these character subim-
ages were used as training examples for the MLP classifier. Among the remaining character
subimages, which did not participate in the best match, a subset was selected heuristically
that was used as training examples for segments that did not form part of the correct seg-
mentation. Subdirectories d01 through d05 of the NIST database were used for this training
step, resulting in training of the MLP on approximately 117000 character subimages.

Subdirectories d06 through d10 of the NIST database were matched recognized with
the full system, using either the phrase-based language model or the word-based language
model. The output from these classifications were used to train the decision tree model for
the hypothesis integration and rejection step.

14. Results

Subdirectory d11 of the NIST database was never used for any training step, and was reserved
instead for evaluating the performance of the system. All error rates and results presented
below refer to the 1500 field images in this subdirectory.

Evaluating Error Rates The criterion used for evaluating the performance of the system
is the percentage of fields classified correctly. A field was counted as classified correctly if the
system returned a string that was an exact match against the transcription supplied with the
NIST database, allowing for the insertion or deletion of spaces. This means, in particular,
that any misspelling in the handwritten input must be recognized and transcribed by the
system.

This exact-match criterion is rather pessimistic, in the sense that less stringent criteria
are usually sufficient for actual applications. Therefore, an error rate of 5% under the exact-
match criterion may represent nearly perfect performance for an application requiring, say,
the classification of types of occupation into broader classes.

On the other hand, the evaluation criterion used in the NIST competition for comparing
the performance of handwriting recognizers on the NIST database is slightly stricter, requiring
exact matches also for spaces in the input3. This latter criterion was not used in the present
work, since upon examination, almost all of the errors in spacing were found to be due to
plausible insertions and deletions of spaces, or to spaces in the input that were not transcribed

Recognition of Handwritten Responses on US Census Forms

‘ rejected ‘ system ‘ phrase-based ‘ word-based ‘

75% 1.9% 1.9% 5.1%

50% 6.1% 8.9% 19.8%

25% 21.1% 27.0% 36.1%

0% 36.7% 42.0% 50.3%
(n=1500)

Table 4: Field error rates under an exact-match criterion after rejecting different fractions
of the input. For example, 6.1% error at 50% rejection means that 750 input fields are
rejected and 46 out of the remaining 750 accepted input fields are misclassified. The columns
“phrase-based” and “word-based” refer to the performance of the subsystems that either only
use the phrase-based dictionary or the word-based dictionary. Rejection for the word-based
and phrase-based subsystems is based on the per-character cost of the answer, including the
costs associated with the dictionary. The column “system” refers to the performance of the
complete system, including decision-tree based integration and rejection.

(e.g., “DAY CARE” vs. “DAYCARE”). The difference in the 50% rejection error rate for
the system if spaces are required to match exactly is approximately 1.5%.

In the evaluation, we consider the performance allowing various fractions of the input to
be rejected. In actual applications, even a system that only recognizes, say, 50% of the inputs
with high recognition rates may be economically interesting.

Intrinsic Errors FError rates for the complete system and the phrase-based and word-based
subsystems are shown in Table 4. It is important to understand that there are some intrinsic
limitations to the recognition rates achievable by the current system:

o A total of 12% of the input fields are very difficult to recognize, being either cursive or
faded, consisting of two lines, or containing struck out characters (see Table 1). Since
the system was not trained on cursive writing, and since it has no special mechanisms
for coping with two-line input or writing falling outside the printed box, most of these
input fields will be errors or rejects.

e The phrase-based recognizer has relatively low coverage (64%). However, for those
phrases covered by its language model, the language model and its assignment of costs
to strings is quite accurate.

¢ The word-based recognizer has relatively high coverage (88%). However, its language
model is quite rudimentary, taking into account no grammatical or semantic constraints,
and using a fixed cost per word to assign costs to strings.

e Other data shows that the errors of the phrase-based and the word-based recognizer
are significantly correlated, so that the recognition rate of the word based recognizer
on those input fields whose transcription is not covered by the phrase-based language
model is significantly higher than on the database as a whole.

Thomas M. Breuel

‘ rejected ‘ system ‘ phrase-based ‘ word-based ‘

5% 1.5% 0.0% 3.7%

50% 3.4% 1.4% 10.6%

25% 12.6% 2.6% 21.0%

0% 29.5% 12.4% 36.5%
(n=1311/87%) | (n=983/66%) | (n=1311/87%)

Table 5: This table is analogous to Table 4, but recognition rates are only reported for inputs
whose transcription is contained in the language model for the given (sub-)system. The last
row gives the number of phrases contained in the language model and the corresponding
coverage of the language model relative to the complete set of 1500 transcriptions.

The best we can hope for is that if we consider the error rate of the system allowing for a
certain fraction of the inputs to be rejected, the system will reject those inputs that correspond
to strings that it can intrinsically not recognize.

Phrase-Based Recognizer Let us first consider the performance of the phrase-based re-
cognizer. Its error rate at 0% rejection is 44%. An error rate of 36% is intrinsic, however,
since 36% of the input strings have a transcription that is not contained in the phrase dic-
tionary; the remaining difference of 8% is probably largely due to fields that are intrinsically
difficult or impossible to recognize for the current system. We can see this when we look
at Table 5, which evaluates the performance of each recognizer only on the set of phrases
actually covered by its language model. At 0% rejection, the error rate of the phrase-based
recognizer is 12.4%, which is nearly identical to the 12% of inputs that are written in a style
that we know cannot be recognized by the system. When we allow the system to reject 25%
of the input, the error rate drops to 2.6%, meaning that most of the inputs that are difficult

or impossible to recognize are actually rejected.

Word-Based Recognizer The performance of the word-based recognizer is clearly much
worse. For 25% rejection and strings contained in their respective language models, the error
rate of the word-based recognizer of 21.0% is nearly 8 times as large as the error rate of 2.6%
of the phrase-based recognizer. An inspection of the errors suggests that a large fraction of
the incorrect hypotheses are grammatically or semantically implausible, and that therefore
a more restrictive language model with similar coverage could be found that would greatly
reduce the error rate of the word-based recognizer. Unfortunately, the construction of such
a model would probably require a corpus of responses that is significantly larger than is
available.

However, despite its relatively high error rate, combining the results of the word-based
recognizer with the results of the phrase-based recognizer results in some reduction in the
overall error rate under most conditions. We can see this by comparing the error rates in
Table 4. For example, at 50% rejection, the system error rate is reduced by 31% over the
phrase-based error rate (8.9% to 6.1%).

Recognition of Handwritten Responses on US Census Forms

System Error Rate We can understand the effect of the decision-tree based integration
and rejection step better if we look at a confusion matrix of the different possible outputs of
the decision tree classifier. This is shown in Table 3. This table shows the way the hypotheses
of the phrase-based and the word-based recognizers are integrated at the intrinsic rejection
rate of the decision tree of 39.62%.

We notice that the word-based and the phrase-based recognizer agree on approximately
40% of the inputs. It appears that when the word-based and the phrase-based recognizer are in
agreement, chances are good that the common hypothesis is actually correct. This integration
of evidence from two slightly different sources alone probably contributes significantly to the
overall reduction in error rate when the decision tree is used for integrating hypotheses.

The phrase-based recognizer alone contributes 11.05% to the correctly recognized input
strings, and the word-based recognizer contributes another 2.90%. However, the decision tree
does not appear to be very efficient in taking advantage of the hypotheses where only the
word-based or only the phrase-based recognizer has the correct answer. For example, while
2.90% of the correct word-based hypotheses are actually used, another 4.99% are rejected
unnecessarily. Therefore, by improving the decision tree stage of the system, we might be
able to gain noticeable decreases in either rejection rates or error rates.

Reducing the Error Rate As we noted above, if we want to achieve low error rates,
we have to live with a certain amount of rejection. The reasons are that dictionaries have
limited coverage, and that some input fields are simply not recognizable. In order to reduce
the error rate at 50% rejection, we can use two different strategies: decrease the number of
correct hypotheses that are rejected, or reduce the number of incorrect hypotheses that are
generated.

That is, first, we can try to distribute hypotheses better between the rejected set and the
accepted set; the ideal is to have only incorrect hypotheses in the rejected set and to have only
correct hypotheses in the accepted set. Rejection is generally based on the assignment of a
numerical “quality of match” or “confidence” in each of the matches. As we saw above, in this
system, this confidence is based on the estimated probability of misclassification derived from
the terminal probabilities in the decision tree. These estimates are in turn derived primarily
from the per-character cost of the match of the hypothesis string against the input field. An
examination of correct hypotheses that are rejected by the system shows that rejection is often
due to the use of unusually formed characters, uncommon writing styles, or a strongly linked
writing style. These result in high costs for individual characters and for the segmentation.
Improving the confidence of the system into these hypotheses probably requires increasing
the training set for the MLP classifier.

Another approach, perhaps the more straightforward one, to reducing the error rate is to
reduce the number of incorrect hypotheses returned by the recognizer. We will discuss this
in the next paragraph.

Principal Causes of Incorrect Hypotheses To get some idea of what the sources of
incorrect hypotheses are, the 46 input images (corresponding to the 6.1% error rate) that
were misrecognized by the system at 50% rejection rate were examined manually and the
likely causes of misclassification were guessed. The results of this work are shown in Table 6.

Thomas M. Breuel

‘ Error Rate ‘ Cause

2.0% The cost assigned to an incorrect interpretation of a character
subimage is too low or the cost assigned to a correct interpret-
ation of a character subimage is too high.

1.6% The correct response was not in the dictionary; the system
returned a close approximation from the dictionary.

0.8% The handwritten string went past the right end of the input
box and was truncated during pre-processing; the system re-
turned a close approximation to the truncated string.

0.5% The handwritten input consisted of two lines, one of which was
(nearly) eliminated during pre-processing; the system returned
a close approximation to the remaining line of text.

0.3% The system returned a correct interpretation of the input that
differed from the actual transcription.

0.3% Spurious markings in the image were transcribed as a charac-
ter (e.g., a trailing smudge as a plural S).

0.5% Other.

Table 6: An analysis of the causes of misclassifications at 50% rejection. As we can see from
Table 4, at 50% rejection, 93.9% of the input are classified correctly, 6.1% (46/750) fail to
be classified correctly.

Nearly one third, or 2.0%, of the 6.1% error rate appear to be due to misclassifications of
individual characters. In several cases, this is due to variants of characters that the system
has not been trained on or that are intrinsically difficult to recognize. In some other cases,
the system fails to assign a high segmentation cost to certain pairs of characters that vaguely
ressemble another character; for example, in certain writing styles, the sequence nt can appear
to the character recognizer like the single character m and will not necessarily incur a high
cost for being mis-segmented.

In most of these cases, the distinctions that the character subimage recognizer fails to
make hinge on the presence of small gaps or protrusions or other subtle differences in shape.
Using larger training sets would probably improve the performance of the system significantly.

About one quarter, or 1.6%, of the 6.1% error rate are due to inputs not represented by
either language model. Because we are looking at errors among those hypotheses retained at
50% rejection, the system had high confidence in these answers, and the difference between
the hypothesis and the actual input should not be large. This is indeed what we find.
An example of a typical error is returning the hypothesis “ADMINISTRATION” for the
handwritten, misspelled input “ADMINSTRATION”.

About another quarter, 1.3%, of the error rate is due to errors in pre-processing that
resulted in the image of a partial or truncated image to the recognizer. Such errors are either
due to truncating the input on the right when writing falls outside the box, or removing one
of the two lines of a two-line input field. These errors are avoidable by heuristic methods
that detect two-line input and writing that falls outside the box directly. A better approach

Recognition of Handwritten Responses on US Census Forms

might be to design input forms in such a way that such inputs do not occur in the first place.

Throughput For many applications, it is not only important that the system returns cor-
rect results, but also operates fast. The current system is designed for flexibility and extens-
ibility. It is composed of a number of separate UNIX programs that are connected via pipes
and intermediate files. This results in significant file I/O overhead and the costly redundant
computation of some intermediate results (e.g., the Gaussian-convolved input image).

Keeping these caveats in mind, here are some typical performance figures on a SPARC-
station ELC (a low-end SPARCstation machine benchmarked at 20 SPECmarks, 21 MIPS,
and 3 MFLOPS). Forms segmentation takes approximately 6 seconds per input field found.
Box removal, skew correction, and slant correction take about 10-20 seconds per field. The
recognition algorithm itself, including segmentation and matching against a language model,
takes an average of 60 seconds per field (90% of all input fields are segmented and matched
in less than 120 seconds, and the longest processing time among the 1500 input fields of the
d11 subdirectory of the NIST database was 170 seconds). Hypothesis integration takes less
than a second.

15. Discussion

The system described in this paper is using a segmental approach to off-line handwriting
recognition. That is, it is based on a segmentation stage that precedes recognition and
generates a relatively small set of candidates of individual characters. While some systems
have used more speech-like (HMM-based) approaches to off-line handwriting recognition®! 22,
segmental approaches seem to be popular for this task?3 24 2% 5,

In speech recognition as well as on-line cursive handwriting recognition, segmental ap-
proaches seem to be less popular (with some exceptions® 10). Tt is difficult to say at this
point whether these differences are due to genuine differences in the respective domains, or
whether they are grounded in the history of the fields.

One of the most important questions for any approach to a real-world pattern recognition
system is how well it performs relative to other systems. A comparison of the system de-
scribed here with other systems reported in the literature is difficult because the domains are
substantially different: many other systems for handwritten text recognition have worked in
the domain of postal address recognition, in which writing styles, language models, scoring,
and image quality are all very different compared to the census form recognition task. For
example, language models tend to consist of comparatively small, closed dictionaries, and
scoring is based on whether the semantically correct answer is retrieved, not on spelling.

Keeping this in mind, Kimura et al.’ report performance on a system for the recognition
of handwritten addresses. They use closed dictionaries containing up to 1000 words. Their
database probably contains writing styles in a distribution similar to those shown under
“CEDAR” in Table 1. On this database, their first system achieved an error rate of 19.10%.
That has been improved to 8.51% recently for a dictionary of size 1000. Perhaps the closest
figure for comparison in the current system is the error rate of 12.4% at 0% rejection for the
phrase-based recognizer applied to phrases contained in the phrase dictionary (a dictionary
that is about 20 times as large).

Thomas M. Breuel

Giloux et al.?? describe a system for the recognition of handwritten amounts based on
Hidden-Markov Models (HMMs). As we mentioned above, this system uses an approach to
segmentation and recognition based on “pseudoletters”. The word-recognition error rate for
a vocabulary of size 27 achieved using this approach is 21%. On an city name recognition
task, the error rate for a 100 phrase vocabulary was 22.4%. Because relatively small training
sets were used, improvements of these rates are to be expected.

Of course, the best comparison is with other systems on the same task and test set.
This was the purpose of the 2nd Census OCR Conference®. The official report has not yet
become available from NIST, but preliminary results distributed at the conference show that
the system described in this paper achieved recognition rates among the highest of systems
participating in the conference.

Improvements in the recognition rates of the system may come from algorithmic im-
provements. For example, recent developments in language modeling?® may allow us to build
better language models from small corpora. Improvements may also be possible in the neural-
network based recognition of segments and in the modeling of contextual dependencies.

Considerable improvements in performance are possible without even modifying the sys-
tem itself. Experience with the system suggests that simply having larger corpora for building
language models and more training data available will improve recognition rates signficiantly.
Also, the task itself can be modified with little effort: forms layout and forms scanning can
be improved considerably to reduce effects such as incomplete forms removal and fading.
Furthermore, the evaluation criteria used to assess the performance of the system should
be adapted to the task, rather than being based on the somewhat arbitrary and very strict
measure of letter accurate transcriptions.

16. References

[1] Hon C. Leung, I. Lee Hetherington, and Victor W. Zue. Speech Recognition using
Stochastic Explicit-Segment Modeling. In EUROSPEECH 91. 2nd European Conference
on Speech Communication and Technology Proceedings, Genova, Italy, 1991. Instituto
Int. Comunicazioni.

2] Thomas M. Breuel. A system for the off-line recognition of handwritten text. Technical
y g
Report 94-02, IDIAP, Martigny, Switzerland, 1994. submitted to ICPR’94.

[3] NIST. The Second Census Optical Character Recognition System Conference. Tech-
nical report, U.S. Department of Commerce, National Institute of Standards, 1994. in
preparation.

[4] W. Eric L. Grimson and Tomas Lozano-Perez. Localizing Overlapping Parts by Search-
ing the Interpretation Tree. IEFE Transactions on Pattern Analysis and Machine In-
telligence, PAMI-9(4):469-482, July 1987.

[5] F. Kimura, M. Shridhar, and Z. Chen. Improvements of a Lexicon Directed Algorithm

for Recognition of Unconstrained Handwritten Words. In International Conference on
Document Analysis and Recognition, pages 18-22. IEEE Computer Society Press, 1993.

Recognition of Handwritten Responses on US Census Forms

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Shridhar and A. Badreldin. Recognition of isolated and simply connected handwritten
numerals. Pattern Recognition, 19(1):1-12, 1986.

M. Shridhar and A. Badreldin. Context-directed segmentation algorithm for handwritten
numeral strings. Image and Vision Computing, 5(1):3-9, 1987.

H. Bourlard and C. J. Wellekens. Links between Markov models and multilayer per-
ceptrons. In D. S. Touretzky, editor, Advances in Neural Information Processing Sys-
tems, volume 1, pages 502-510, San Mateo, CA, 1989. Morgan Kaufmann.

J. S. Bridle. Training stochastic model algorithms as networks can lead to maximum
mutual information estimation of parameters. In D. S. Touretzky, editor, Advances in
Neural Information Processing Systems, volume 2, pages 211-271, San Mateo, CA, 1990.
Morgan Kaufmann.

Herve Bourlard, Nelson Morgan, and Steve Renals. Neural Nets and Hidden Markov
Models: Review and Generalizations. Speech Communication, 11:237-246, 1992.

Steve Renals and Nelson Morgan. Connectionist Probability Estimation in HMM Speech
Recognition. Technical Report TR-92-081, International Computer Science Institute,
1947 Center Street, Suite 600, Berkeley, CA 94704, USA, December 1992.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Representations by Back-
propagating Errors. Nature, 323(9):533-536, October 1986.

J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computa-
tion. Addison Wesley, 1991.

T. Pavlidis. Algorithms for Graphics and Image Processing. Computer Science Press,

Rockville, MD, 1982.

Thomas M. Breuel. Language modeling for a real-world handwriting recognition task. In
L. Evett and T. Rose, editors, AISB Workshop on Computational Linguistics for Speech
and Handwriting. The Society for the Study of Artificial Intelligence and Simulation of
Behaviour, U. of Leeds, School of Computer Studies, U.K., 1994.

David H. Wolpert. Stacked Generalization. Technical Report LA-UR-90-3460, LANL,
Los Alamos, NM 87545, USA, 1990.

Tin Kam Ho. A Theory of Multiple Classifier Systems and Its Application to Visual
Word Recognition. PhD thesis, Department of Computer Science, State University of
New York at Buffalo, Buffalo, New York 14260, USA, 1992.

Michael Peter Perrone. Improving Regression Estimation: Averaging Methods for Vari-
ance Reduction with Extensions to General Convexr Measure Optimization. PhD thesis,
Brown University, 1993.

Thomas M. Breuel. Recognition of Handprinted Digits using Optimal Bounded Error
Matching. In International Conference on Document Analysis and Retrieval (ICDAR),
Tsukuba Science City, Japan, 1993.

Thomas M. Breuel

[20]

[21]

[22]

[23]

[24]

[25]

[26]

L. Breiman et al. Classification and Regression Trees. The Wadsworth statist-
ics/probability series. Wadsworth, Belmont, CA, 1984.

T. Caesar, J. M. Gloger, and E. Mandler. Preprocessing and Feature Extraction for a
Handwriting Recognition System. In International Conference on Document Analysis
and Recognition, pages 408-411. IEEE Computer Society Press, 1993.

M. Giloux, M. Leroux, and J-M. Bertille. Strategies for Handwritten Word Recognition
using Hidden Markov Models. In International Conference on Document Analysis and
Recognition, pages 299-304. IEEE Computer Society Press, 1993.

S. Edelman, S. Ullman, and T. Flash. Reading cursive handwriting by alignment of
letter prototypes. International Journal of Computer Vision, 5:303-331, 1990.

O. Matan, C. J. C. Burges, Y. LeCun, and J. S. Denker. Multi-Digit Recognition us-
ing a Space Displacement Neural Network. In J. E. Moody, S. J. Hanson, and R. P.
Lippmann, editors, Advances in Neural Information Processing Systems, volume 4. Mor-
gan Kaufmann, 1992.

C. J. C. Burges, J. 1. Ben, J. S. Denker, Y. LeCun, and C. R. Nohl. Off Line Recognition
of Handwritten Postal Words using Neural Networks. International Journal of Pattern
Recognition and Artificial Intelligence, 7(4), 1993.

Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring probabilistic depend-
ences in stochastic language modelling. Computer Speech and Language, 8:1-38, 1994.

Recognition of Handwritten Responses on US Census Forms

