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Abstract

An adaptive multilayer dual-wavelength optical neural network design with
all-optical forward propagation, based on a large number of modifiable optical
interconnections and a special weight discretization algorithm to compensate
for system noise, is described. The presentation of input and interconnection
weights is performed by liquid crystal television screens, and optical threshold-
ing at the hidden layer by a liquid crystal light valve.
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1 Introduction

Multilayer neural networks have proven their usefulness in an ever growing number
of application domains. However, their main potential, which is their massive par-
allelism, is yet to be fully exploited, since they are usually simulated on electronic,
single processor computers. Only true hardware implementations of neural networks,
(\Ws), will be able to exploit their massive parallelism. The most common hardware
approach is electronic, using parallel computers or dedicated neural network VLSIs.
However, electronic hardware is approaching physical speed limitations due to the
enormous number of interconnections required by NVs.

Light, on the other hand, offers some very appealing characteristics: travelling
at the ultimate speed, not requiring physically limiting wires, and having no cross
coupling while several optical channels intersect in free space. Besides having these
crucial advantages, optical AWVs (ONVs) also have the potential to be scaled up in size
without appreciable compromises.

One of the main problems with analog hardware implementations of AVs is the
system noise which limits the number of different values that can be distinguished.
A NV weight discretization technique is therefore required that restricts the number
of possible weight values without performance loss.

Few multilayer ONVs, with limited applicability, have been suggested [1, 2]. Some
opto-electronic Ws have been demonstrated, for example, with fixed interconnection
weights [3], performing a ‘recall-only’ function; or the simulation of a multilayer NV
by cycling through one perceptron many times [4]. Adaptivity refers to more than
the updating of weights during the training process. Unlike “hard-wired” opto-
electronic solutions where pre-trained weights of simulated NVs are fixed with masks
or holograms, adaptive NVs are application independent.

A paucity of techniques in implementing efficiently a large number of modifiable
interconnects has prevented the realisation of practical adaptive ONVs. The avail-
ability of liquid crystal screens with high pixellation densities, has opened up new
possibilities [6] by providing simpler modifiable interconnects. These high density
liquid crystal television (LCTV) screens can be used for the interconnection weights
in large multilayer optical AVs. The description of an ONV design with a large number
of adaptable weights using LCTV screens and optical thresholding, follows.

2 Methodology

Our three layer! neural network has 256 input neurons, 256 hidden layer neurons,
and 16 output neurons. The input layer consists of a 16x16 data array, which is
presented to the ONV for processing by LCTV1; (see figure 1). The hidden layer
non-linearity, concerning 16 X 16 neurons, is implemented by a Liquid Crystal Light
Valve (or LCLV). The 256x256 interconnection weights between these first two
layers are represented by the analog transmission values of the pixels of a second
LCTV (LCTV2). Similarly, the 256 x16 interconnection weights between the hidden
and output layer are represented by LCTV3. Figure 1 shows the optical system for

'In this report, a layer of a neural network is defined as a layer of neurons (cf. [7]). In the three
layer neural network described in the text, the input layer is considered number one, the hidden
layer number two, and the output layer as layer number three.
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replicating the 16x16 data array (LCTV1) 256 times onto the transmissive LCTV2
for the vector-matrix multiplication. The design is based on positive results obtained
with smaller scale, (7x7 input), NV implementations [5, 6].

The information flow through the OM described above is as follows. After pre-
senting the inputs to LCTV1, an initial random set of weights is presented to LCTV?2.
The intensity of light transmitted by LCTV2, representing the vector-matrix prod-
uct of inputs and weights?, is integrated by a micro-lens array and thresholded by
the LCLV to form the outputs of the hidden layer. These outputs, read by a dif-
ferent light source, as explained in the following section, are similarly presented to
LCTV3 and the following micro-lens array. The final outputs are detected by a
4x4 photodetector array. If thresholding is desired at the output layer, it may be
performed either optically or electronically.

In this implementation of a multilayer ONV, training shall be performed with
the aid of a personal computer. For a given input pattern on LCTV1, the personal
computer presents initial weights to the LCTVs and subsequently collects (photode-
tector) outputs of the hidden and output layers. With these outputs, weight updates
shall be calculated (by the algorithm described in section 3.4) which are again used
to drive the LCTVs. This process is repeated iteratively, until the network has been
trained.

3 Challenging Aspects

3.1 Three-layered structure

Both Hopfield and two-layer (perceptron like) electro-optical neural networks have
been demonstrated with relative ease, as only a single vector-matrix multiplication
is performed optically, while the electronics does the rest (like thresholding and the
calculation of new weights).

A three-layer ONVis more complicated. A large fraction of the light is attenuated
after having transmitted through the optical elements comprising the first two layers
of the ONV, namely LCTV1, LCTV2, the gratings, and the LCLV. Solutions which
allow enough light for further processing are therefore desired.

In our system, an Argon-ion laser (480nm) provides the light which transmits
through LCTV1 and LCTV2, and writes to the LCLV. A He-Ne (633nm) light source
reads the (thresholded) hidden layer output from the LCLV. This method should
compensate for the loss of light in the first two layers of the neural network, and
maintain sufficient optical power to drive optical processing in the following layer.

3.2 Large number of interconnections

A salient feature of this ONV is the large number of connections, nearing almost
seventy thousand, inter-connecting the three layers of the network. The highest
density of interconnections are implemented between the first two layers by LCTV2,
in which 256 x256 pixels shall be activated for the interconnection weights, (410x440
addressable pixels are available on each LCTV). In order that 2562 (that is, 65,536)

When light of unit intensity transmits through a material, a fraction of it is transmitted corre-
sponding to the product of the incident intensity with the transmittance of the material.
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Figure 1: Schematic overview of the multilayer optical neural network.
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parallel beams be generated and correctly aligned to transmit through an identical
number of pixels on the LCTVs requires the optical elements to have tight perfor-
mance tolerances. This necessitates building precision optical systems which are
stable, robust, and modular.

3.3 LCLVs as Optical Thresholding devices

An LCLV is used as a non-linear optical thresholding device in the hidden layer.
This reduces the overhead involved in conversion of optical signals into electronic,
and re-conversion to opical after electronic thresholding. Such an ‘all-optical’ process
results directly in optical inputs for subsequent layers, and a truly optical interface
is established.

The incorporation of LCLV thresholding into the OAV, however, strongly influ-
ences the algorithm employed in the training process. Even though the transfer
characteristic of the LCLV resembles that of a standard-sigmoid normally used in
computer simulations of neural networks, it is truncated, non-centred, and largely
assymetric in comparison. The transfer characteristic of one possible LCLV device,
as compared to that of a standard sigmoid’s, is shown in figure 2. The neural network
learning rule needs to compensate for non-ideal thresholding functions of practical
devices as this one. Preliminary simulation results with the LCLV transfer curve
show that the performance of the neural network degrades as compared to that with
standard-sigmoid thresholding.

3.4 Weight Discretization

Analog optical implementations incur inevitable penalties regarding the precision
of computation. A principal focus of the research is the development of training
methods for neural networks that compensate for this imprecision, while preserving
the performance of the system. A method for discretizing weights and determin-
ing the degree of discretization with respect to performance has been developed [8].
Computer simulations based on this weight discretization method have shown very
promising results in which neural networks with only a small number of discretiza-
tion levels show no considerable loss in performance compared to their counterparts
with continuous weights. This method of weight discretization shall be applied and
customized to the ONV described here.

4 Summary

The design of a large, versatile adaptive multilayer optical neural network using
available opto-electronic hardware, has been presented. It exhibits some of the major
benefits of using optics, namely, massive parallelism and free-space interconnections
with negligible beam interference. The system with close to seventy thousand inter-
connections is large compared to other SLM based systems. It is versatile, because
it is application independent; only limited in maximum interconnection capability,
which is easily upgradable by using larger SLMs. It is adaptive as it is application
independent with modifiable weights to enable on-line learning. Above all, it is the
first multilayer NV implementation with all-optical feed-forward propagation.
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Figure 2: Transfer Curve of a Standard Sigmoid used in AV Computer Simulations
and that of a typical LCLV.
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The knowledge gained by the implementation of this design shall pave the way
towards larger multilayer ONMs by device optimisation and further refinement of the
learning algorithm.
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