IDIAP

Technical report

High Order and Multilayer
Perceptron Initialization

G. Thimm and E. Fiesler

November, 199

This paper is also submitted to
IEEFE Transactions on Neural
Networks

INSTITUT DALLE MOLLE D’INTELLIGENCE ARTIFICIELLE PERCEPTIVE
CASE POSTALE 609 - 1920 MARTIGNY - VALAIS - SUISSE

TELEPHONE : ++41 26 22.76.64 - FAX: ++41 26 22.78.18

E-MAIL : IDIAP@IDIAP.CH Number: 94-07

Abstract

Proper initialization is one of the most important prerequisites for fast convergence of feed-forward
neural networks like high order and multilayer perceptrons. This publication aims at determining the
optimal value of the initial weight variance (or range), which is the principal parameter of random
weight initialization methods for both types of neural networks.

An overview of random weight initialization methods for multilayer perceptrons is presented.
These methods are extensively tested using eight real-world benchmark data sets and a broad range
of initial weight variances by means of more than 30,000 simulations, in the aim to find the best
weight initialization method for multilayer perceptrons.

For high order networks, a large number of experiments (more than 200,000 simulations) was
performed, using three weight distributions, three activation functions, several network orders, and
the same eight data sets. The results of these experiments are compared to weight initialization
techniques for multilayer perceptrons, which leads to the proposal of a suitable weight initialization
method for high order perceptrons.

The conclusions on the weight initialization methods for both types of networks are justified by
sufficiently small confidence intervals of the mean convergence times.

Keywords: neural network initialization, random weight initialization, initial weight, weight initializa-
tion, interconnection strength, comparison of weight initialization methods, high(er) order neural network,
high(er) order perceptron, sigma-pi connection, initial weight distribution, activation function, learning
rate, multilayer perceptron, neural computation, neural network, neurocomputing, optimization, connec-
tionism, real-world benchmark

1 Introduction

The learning speed of multilayer and high order perceptrons' depends mainly on the initial values of its
weights and biases, its learning rate, its network topology, and on learning rule improvements like the
momentum term. The optimal values for these parameters are usually unknown a priori because they
depend mainly on the training data set used. In practice it is not feasible to perform a global search for
obtaining the optimal values of these parameters, as the convergence behavior of the network might change
significantly for small changes in the initial weights, as was demonstrated by J. F. Kolen and J. B. Pollack
[Kolen-90]. An extensive search for the optimum values requires therefore much more overhead than
performing a relatively small number of simulations using non-optimal values. Furthermore, current
mathematical techniques are insufficient for a complete theoretical study of the learning behavior of
these neural networks. Nevertheless, it is important to have a good approximation of the optimal initial
value of these parameters; or with the words of J. F. Kolen and J. B. Pollack: to start the learning process
in the “eye of the storm,” to reduce the required training time.

Several weight initialization methods for multilayer perceptrons have been suggested. The simplest
method among them is random weight initialization, which is often preferred for its simplicity and its
ability to produce multiple solutions, as the weights may, due to their initial randomness, converge to
various attractors [Kolen-90]. Other methods involve extensive statistical and/or geometrical analysis of
the data and are therefore very time consuming. The most rigorous among those is the pseudo-inverse
method for perceptrons, which, besides being limited to linear separable data, has several other drawbacks
(see [Hertz-91]). Some other weight initialization methods are based on special properties of a network
that can not be applied to high order or multilayer perceptrons, as for example the weight initialization
technique for radial basis function networks by J. C. Platt [Platt-91].

D. E. Rumelhart et al. observed that if all weights in a neural network are initialized with zero, they
have the tendency to assume identical values during training. They therefore proposed random weight
initialization to avoid this undesired situation by breaking the symmetry [Rumelhart-86]. However, the
efficiency of this method depends much on the initial weight distribution. Several researchers therefore
proposed random weight initialization methods. An overview of these methods is presented in section 2,
and their performance is evaluated in section 4.2.1.

1For a definition of high order neural networks and associated references see [Fiesler-94] and [Thimm-94.1].

In order to obtain a thorough insight in the initialization characteristics of high order networks, which
have not been studied before, numerous experiments were performed, varying the following parameters:

o the shape of the initial weight distribution: uniform, normal or Gaussian?, and a novel distribution
which is uniform over the intervals [—2a, —a] and [a, 2a], and zero everywhere else,

e the variance of the initial weight distribution,
e the order and topology of the network, and

e the activation function.

The results of these experiments is a simple weight initialization method using an application indepen-
dent variance. In section 5, this method is compared to methods developed for multilayer perceptrons,
in order to profit from experiences of other researchers and to determine a best method for higher order
perceptrons.

2 Weight Initialization Techniques for Multilayer Perceptrons

S. E. Fahlman performed an early experimental study on the random weight initialization scheme for
multilayer perceptrons. Based on this study, he proposed to use a uniform distribution with a range of
[—1.0,1.0], but found that the best weight range for the data sets in his study varied from [—4.0,4.0] to
[—0.5,0.5] [Fahlman-88].

Other researchers tried to determine the optimal weight range using network parameters:

L. Bottou uses an interval [—a/\/d;y, a/\/d;n], where a is chosen is such way that the weight variance
corresponds to the points of the maximal curvature of the activation function (which is approximately
2.38 for a standard sigmoid), and d;, is the fan-in (or in-degree) of a neuron, without justifying this
interval further in a theoretical manner. L. Bottou trains the neural network only on speech data and
does not compare this method with others [Bottou-88].

J. W. Boers and H. Kuiper initialize weights using a uniform distribution over the interval [—3//d;,,
3/\/3”1], without any mathematical justification. They state that this interval performed the best on
their speech data [Boers-92].

F.J Smieja uses uniformly distributed weights which are normalized to the magnitude 2/+/d;, for
each node. The thresholds of the hidden units are then initialized to a random value in the interval
[~/ din/2,+/d;n /2] and the thresholds of the output nodes are set to zero. He obtained these values from
reasoning about hyperplane spin dynamics, and did not validate his method by experiments [Smieja-91].

L. F. A. Wessels and E. Barnard describe two weight initialization methods. The first method sets the
initial weight range to a value which assumes that the output of the network and the output patterns have
the same variance. The second method puts equally distributed decision boundaries in the input space
(without considering input or output patterns), which produces initial weights for the first interlayer
weight matrix. The weights of the second interlayer weight matrix are set to 1.0. They compared both
methods on generalization for three data sets. They found that the second method performed better in
terms of generalization. However, they did not compare convergence speeds [Wessels-92].

An approach similar to the first method of L. F. A. Wessels and E. Barnard was introduced by
G. P. Drago and S. Ridella [Drago-92]. They aim at avoiding flat regions in the error surface by restricting
the number of neurons with absolute activations greater than 0.9. They developed a simple formula to
estimate the best weight initialization scheme for multilayer perceptrons and showed for three data sets
that this scheme uses satisfactory good initial weight ranges. The weights are uniformly distributed over
the interval [—a, a], with a = 1.3/1/1 4+ E[2?] for the input layer and a = 1.3/+/1 + 0.3d;,, for the output
layer (assuming that all input values # have the same expected value F).

Y. Lee, S--H. Oh, and M. W. Kim showed theoretically that the probability of prematurely satu-
rated neurons (small weight changes cause only negligible changes of the neuron output) in multilayer
perceptrons increases with the maximal value of weights. They conclude that a smaller initial weight

?Neural network weights are often assumed to be normally distributed [Bellido-93].

range increases the learning speed of multilayer perceptrons. Simulations performed using two data sets
confirm their reasoning, but they disregard that learning speed also decreases for weight ranges that are
too small. Y. Lee et al. do not suggest an optimal weight range [Lee-93].

P. Haffner, A. Waibel, H. Sawai, and K. Shikano use a normal initial weight distribution. Unfortu-
nately they do not compare their approach to others, give details, or justify it mathematically [Haffner-88].

R. L. Watrous and G. M. Kuhn compared a Gaussian distribution to a uniform distribution and found
differences on the conditioning of the Jacobian matrix of a neural network, but found no relation to the
convergence speed [Watrous-93].

D. Nguyen and B. Widrow use a multilayer perceptron with piecewise linear activation functions
as an approximation of a network with logistic activation functions. Based on this simplification, they
calculated an optimal length of d”\‘/N_z for the randomly initialized weight vectors and an optimal bias
range of [—d”\‘/N_z,d”\‘/N_z] for neurons in the hidden layer, where Ny is the number of hidden nodes. The
weights of the neurons in the output layer are randomly initialized in the interval [—0.5,0.5], without any
justification given [Nguyen-90].

Y. K. Kim and J. B. Ra calculated a lower bound for the initial length of the weight vector of a neuron
to be \/n/din, where 7 is the learning rate [Kim-91].

Besides these random weight initialization methods, some non-random methods are described here
for completeness.

A mixture between a random weight initialization scheme and the pseudo inverse method was devel-
oped by C.-L. Chen and R. S. Nutter for perceptrons with one hidden layer. First, the weights in the
first interlayer weight matrix of the network are initialized with random values. Then, the weights in the
second interlayer weight matrix are calculated using the pseudo inverse method applied to the activation
values of the hidden layer. C.-L. Chen et al. refined this technique further by alternating the adjust-
ment of the first interlayer weight matrix in a backpropagation-like process with the mentioned method
of calculating the second interlayer weight matrix. These adjustments are repeated until a convergence
criterion is reached, after which the backpropagation training begins. The authors report faster training
in number of backpropagation cycles [Chen-91], but they disregard the computational complexity of the
matrix inversions.

T. Denoeux and R. Lengellé initialize a one hidden layer perceptron with prototypes. This method
requires a transformation of the input patterns to vectors of unit length and increased size. Additionally,
prototypes have to be found by a cluster analysis. The authors reported improvements in training time,
robustness versus local minima, and better generalization [Denoeux-93].

3 High Order Perceptrons

High order perceptrons are high order neural networks [Lee-86], having only unidirectional interlayer
connections. They are also a generalization of Sigma-Pi networks, which are multilayer perceptrons
having high order connections [Rumelhart-86], and functional link networks [Pao-89].

A high order connection connects a set of neurons in one layer to
neurons in the next layer (marked A in figure 1). Each connection ap-
plies its specific splicing function to the activation values of the lower

B layer. The number of activation values combined by the splicing func-
tions determines the order of the connection and the connection with
the highest order determines the order w of the network. A network is
called a full (n-th order) network, if all possible interlayer connections
up to this order are present. The network shown in figure 1 is, for
example, a full two layer second order network.

The results of the splicing functions are fed, together with the activa-
tion values of the lower layer, into the next layer of neurons (marked B).
Each neuron consists of a summation unit and an activation function
(depicted by a X and a symbolized function, respectively).

High order perceptrons can be trained using the backpropagation algorithm, with possible extensions
such as a momentum term [Rumelhart-86] or flat spot elimination [Fahlman-88§].

Figure 1: A two-layer
high order perceptron.

From now on in this publication, only two layer high order perceptrons are considered. The splicing
function used in this study is multiplication, but other functions are also conceivable.

4 The Simulations

A simulation consists of initializing a neural network and applying the online backpropagation algorithm,
alternated by convergence tests, until (non-)convergence is observed. A number of simulations starting
with the same initial conditions is called an experiment.

The experiments are performed with two major aims: firstly, to see whether the performance of a
network changes for different types of initial weight distributions, and secondly to find the optimal initial
weight variance, depending on the activation function of the output neurons and the network order.

Each experiment consists of at least 50 simulations. The number of simulations per experiment was
increased until the size of the 95% confidence interval for the mean convergence time permitted a sound
conclusion. The confidence intervals were calculated under the assumption that the mean convergence
time is student-t distributed.

For the simulations performed, a suboptimal learning rate is used, as it is too laborious and computing
time consuming to find the optimal learning rate for each combination of data set and network, and as
the learning rate and initial weight variance seem to have an independent influence on the learning speed.
Because of the suboptimal learning speed, the results do not necessarily allow a comparison between
different activation functions and experiments reported elsewhere, as the maximal possible learning rate
may differ largely from the one actually used. For example, a third order network has, for the solar data
with a shifted/scaled logistic output function, an optimal learning rate of about 0.05. In contrast, the
same network and data set, except for using now a standard logistic output function, has an optimal
learning rate of about 4.0, and converges in about the same number of iterations.

Some of the convergence criteria chosen in these simulations are rather crude and not related to the
task to be solved. This is done in the aim to reduce the high computational expense, which still was
several months of Sparc 10 CPU time.

4.1 The Data Sets

Most of the data sets used, and shortly described below, are obtained (if not stated otherwise) from an
anonymous-ftp server at the University of California [Murphy-94], which also contains further references
and documentation. In the following list of data sets, the two numbers in brackets behind the name of
the data set are the number of input and output values, respectively.

Solar (12,1) contains the sun spot activity for the years 1700 to 1990. The task is to predict the sun
spot activity for one of those years, given the activity of the preceding twelve years (=12 real valued
inputs). The data are scaled to the interval [0, 1].

Wine (13,3) is the result of a chemical analysis of wines grown in a region in Italy derived from three
different cultivars. The analysis determined the quantities of 13 constituents found in each of the
three types of wines. A wine has to be classified using these values, which are scaled to the interval
[0,1]. The output patterns use boolean values, encoded as +1 and —1.

CES (2,1) is the output of the constant elasticity of a substitution production function for thirty pairs
of labor and capital input (see [Judge-85], pages 195 and 210). The patterns have two real valued
inputs and one real valued output, none of them scaled.

Servo (12,1) was created by Karl Ulrich (MIT) in 1986 and contains a very non-linear phenomenon:
predicting the rise time of a servomechanism in terms of two (continuous) gain settings and two
(discrete) choices of mechanical linkages. The input is coded into two groups of five boolean values
each, and two discrete inputs, one assuming four, the other five values. The output is real valued,
and like all real valued inputs, scaled to the interval [0, 1].

Vowels (20,5) is a subset of 300 patterns of the vowels data set, obtainable via ftp from cochlea.hut.fu
(130.233.168.48) with the LVQ-package (lvq_-pak). An input pattern consists of 20 unscaled cep-
stral coefficients obtained from continuous Finnish speech. The task is to determine whether the
pronounced phoneme is a vowel, and, in the case it is, which of the five possible ones. The boolean
output values are encoded as +1 and —1.

Auto-mpg (7,1) concerns city-cycle fuel consumption of cars in miles per gallon, to be predicted in
terms of 3 multi-valued discrete and 4 continuous attributes. All values are scaled to the interval
[0,1] (incomplete patterns have been removed).

Glass (9,1) consists of 8 scaled weight percentages of certain oxides and a 7 valued code for the type
of glass (window glass, head lamps etc.). The output is the refractive index of the glass, scaled to

[0, 1].

Digits (256,10) consists of 500 handwritten digits (50 patterns for each of the ten digits) of the NIST
Special Database 3 [Garris-92). Each digit was scaled to fit into an image of 16x16 points; and each
pixel is represented by an eight bit value. The input values are scaled to the interval [—1, 1] and
the boolean output values are encoded as +1 and —1.

4.2 The Experiments for Multilayer Perceptrons

In the aim to validate and compare the performance of the random weight initialization techniques for
multilayer perceptrons mentioned in section 2, a large number of experiments has been performed using
the data sets listed in the previous section. The network topology used has one hidden layer which is
fully interlayer connected to both input and output layer. The network has no intralayer or supralayer
connections, and all activation functions in the hidden and output layer are hyperbolic tangents. No
optimization technique was used for training.

For each data set, a sequence of experiments with uniform initial weight distributions of a varying
variance were performed (100 simulations per experiment). The outcome of these experiments was used
to determine the overall best weight variance as a reference for comparing the random weight initialization
schemes of L. Bottou, F. J. Smieja, G. P. Drago et al., and D. Nguyen et al. It should be noted that
D. Nguyen et al. do not seem to use a bias in the output layer. However, neither [Nguyen-90] nor the
references mentioned in it state why. To make the simulations fair (leaving out the bias makes learning
more difficult), a bias is used in the all simulations reported in this publication.

4.2.1 The Results for Multilayer Perceptrons

The outcome of the experiments for the multilayer perceptrons are shown in tables 1 and 2. These tables
list in the first column the name of the data set, the number of neurons in the hidden layer Nj, the
convergence criterion ¢ (the notation ‘< a’ means that the mean square distance between network output
and target pattern has to be smaller than a, and ‘6%’ means that at least b percent of the patterns must
be classified correctly), and the learning rate «. The subsequent columns labeled with the initial weight
variances in table 1 and names in table 2, respectively, contain the outcome of the experiments. The
names in table 2 refer to the random weight initialization schemes described in section 2. A single number
in these columns corresponds to the mean number of required online learning cycles until convergence
(an online learning cycle is a presentation of all patterns with a weight update after each presentation).
A number printed in bold face marks the best result in a row and an entry p/c signifies that the network
did not converge in p percent of the online learning cycles, where a trial is judged as non-convergent if
the number of cycles exceeds ¢. The rightmost column in table 2 shows the maximal radius ¢,,4, of the
confidence intervals for the mean number of required learning cycles® for the methods listed in this table
and a for random weight initialization with a variance of 0.2 (see table 1).

3The radius of a confidence interval is the difference between the mean and the upper limit of the interval.

The initial weight variance o2,

Ny e o [107% 0.0001 0.001 0.005 0.01 0.05 0.1] 0.2 0.5 0.7 1.0 2.0 3.0 4.0
Solar 5 <0.06 0.3 | 202 202 195 176 174 165 167 157 148 142 1/500 157 2/500 2/500
Wine 6 90% 0.2 | 109 105 104 103 104 99.2 100| 98.5 97.0 94.3 94.6 92.1 4/500 5/500
CES 4 <0.14 0.1 | 248 171 131 108 97.9 75.1 63.1| 49.7 36.9 35.4 46.9 1/500 1/500 1/500
Servo 3 <0.08 0.1| 129 99.0 849 749 71.0 63.8 64.0/62.8 68.5 73.5 81.3 119 173 4/500

Vowels 20 90% 0.05| 158 143 133 125 122 117 113| 109 101 102 113 16/800 49/800 53/800

Auto-mpg 3 <0.06 0.3 | 35.7 33.6 339 34.0 33.6 31.9 31.5/31.5 34.7 39.2 44.4 1/500 1/500 1/500

Glass 6 <0.04 0.6| 209 17.2 156 14.1 13.7 12.2 12.0| 12.5 16.7 20.0 27.2 48.1 82.8

120

Digits 30 95% 03| 127 121 116 11.4 11.2 11.6 12.8| 15.1|32/100 46/100 25/100 98/100 100/100 100/100

Table 1: Performance of multilayer perceptrons for a uniform weight distribution over the interval [—a, a],

with @ = V302,

data Ny € o Bottou Wessels Smieja Drago Nguyen | tmaz
Solar 5 <0.06 0.3 152 146 151 153 162 3.1
Wine 6 90% 0.2 98.0 96.9 96.0 98.4 99.3 1.3
CES 4 <0.14 0.1 40.4 32.5 40.8 44.1 42.7 3.2
Servo 3 <0.08 0.1 56.6 55.6 62.2 59.9 63.2 1.4
Vowels 20 90% 0.05 110 105 111 111 115 1.0
Auto-mpg 3 <0.06 0.3 31.8 30.9 31.4 33.1 31.4 1.2
Glass 6 <0.04 0.6 11.0 11.9 11.7 12.1 11.9 0.4
Digits 30 95% 0.1 11.3 11.7 12.8 12.9 11.4 0.2

Table 2: Random weight initialization with the methods of other authors

4.2.2 Analysis of the simulations for Multilayer Perceptrons

The average convergence behavior of a multilayer perceptron is depicted in figure 2, where region A
indicates the optimum initial weight variances that have been encountered and region B non-convergence.
As the curve is flatter on the left side of the optimal initial weight variance than on the right, the loss
in performance is much more tolerable for initial weight variances smaller than the optimal value as
compared to bigger variances. Moreover, non-convergence was only encountered for simulations using
initial weight variances bigger than the optimal value.

The rather small differences obtained for an initial weight variance of 0.2 as compared to the optimal
result, suggests to use this value for a simple weight initialization method. A comparison between the
results for this simple method and table 2 shows that the weight initialization method of L. F. A. Wessels
et al., which uses the same weight variances as the method of J. W. Boers, performs the best.

Remark: Some of the weight initialization methods presented in section 2 scale the upper and lower
bound of the initial random weight interval by the reciprocal square root of the fan-in. This corresponds
to scaling the initial weight variance by the reciprocal of the fan-in. Hence, these methods assume a
negative correlation between the fan-in of a neuron and the best initial weight variance. This correlation
can not be confirmed or rejected by the results of the experiments; more experiments with other data
sets are necessary for this.

4.3 The Experiments with High Order Perceptrons

The networks used in the simulations are usually full and the biases are initialized with a random value
of the same distribution as the weights. The only exception is the network trained on the digits data
set. This network includes all first order connections and only second order connections with both inputs
corresponding to different pixels in the same row or the same column in the image. This configuration
should allow the extraction of sufficient features to learn the digits. Training sessions on the in section
4.1 described digits data set gave an acceptable recognition of untrained digits, despite the small training

Non-
Conver-
gence

é—B —

Convergence Time

| | | | | | T T
10E-6 10E-5 10E-4 0001 001 01 1 10

log(Initial Weight Variance)

Figure 2: The average behavior of a multilayer perceptron in convergence speed for changing the initial
weight variance.

set used.

The three different initial random weight distributions used are: uniform on the interval [—a, a] (with
a = v/30?), normal (restricted to an absolute value of 3¢?), and uniform over the intervals [—2a, —a] and
[a,2a] (with a = 30?/7) while zero everywhere else. The three types of activation functions used are: a
linear f;, a hyperbolic tangent f;, and a scaled/shifted hyperbolic tangent fy;, shown in figure 3. The
use of the function f;; was motivated by several ideas: the scaling in the direction of the y-axis prevents
the weights from becoming very big and thus cause the same effect as for example scaling the output
data to [—0.9,0.9] and the change of the steepness and the shifting of the sigmoid in the direction of the
x-axis were used to force the outcome of the summation step in the neurons to be in the interval [0, 1].
Also, experiments with this activation function where performed to see, whether a relation between a
deformation of the activation function and the optimal initial weight range exists. The only optimization
technique applied to speed up learning is flat-spot elimination.

file) = =
2 x
= — — 1 =tanh(=
fi(x) T Fev anh(3)
2.1
Inl@) = 1o oo — 105
= 1.05 tanh(5.052 — 2.54)

Figure 3: The activation functions

4.3.1 The Results of the Simulations for High Order Perceptrons

Tables 3, 4, and 5 show, besides entries already explained in section 4.2.1, the order w of the fully
interlayer connected network and the activation function f.

4.3.2 Analysis of the Simulations for High Order Perceptrons

The minimal convergence times for all three initial weight distributions show no difference of statistical
significance. The average behavior of the learning time as a function of the initial weight variance,
which 1s depicted in figure 4, is explained as follows. The main difference for the three distributions is
the value of the weight variance where the convergence time starts increasing drastically. This “edge”
(point A) is roughly at the same location for both the uniform distribution and the uniform distribution

The initial weight variance o

2

Table 3: Performance of high order perceptrons for a uniform weight distribution over the interval [—a, a],

with a = V302.

w f €« 10—% 0.0001 0.001 0.005 0.01 0.05 0.1 0.2 0.5 0.7 1.0 conf.
Solar 1 f; <0.08 0.1 1.3 1.4 1.3 1.4 1.5 1.9 2.5 3.7 6.1 8.6 10.2] 1.1,1.4
2 fi <0.06 0.1 56 5.4 5.6 6.1 6.6 10.9 15.6 23.4 46.5 58.3 82.0| 5.2, 5.7
3 fi <006 0.1 4.5 4.5 49 4.9 5.6 9.4 15.4 24.6 53.8 81.9 115.1| 4.3, 4.7
1 ft <0.08 0.7 4.5 4.5 4.5 4.5 4.5 4.7 4.7 4.9 5.3 5.8 6.2 4.4,4.6
2 ft <0.06 0.7 375 37.1 372 374 376 38.2 39.0 39.9 45.3 48.4 54.9(36.9, 37.3
3 ft <0.06 0.7 22.7 22.7 228 228 228 23.5 24.4 26.2 31.5 33.8 40.5(22.5, 22.8
Wine 1 fi 80% 0.5 242 242 242 242 241 241 241 240 240 237 236/ 235, 237
2 fi 90% 0.5 213 215 214 215 214 214 214 210 200 1/500 1/500| 197, 204
1 fe¢ 80% 0.02 |32.4 326 326 327 335 8/300 25/300 41/300 68/300 76/300 89/300(32.2, 32.6
2 fe 90% 0.02 |24.1 24.1 24.1 242 256 14/300 34/300 57/300 77/300 70/300 78/300(23.8, 24.4
CES 1 f; <0.14 0.1 6.0 6.0 6.2 6.0 6.0 5.9 6.4 6.4 8.4 9.3 10.4| 5.6, 6.1
2 fi <0.08 0.1 576 57.3 57.6 585 58.0 60.9 63.7 66.0 81.7 81.0 91.2(56.7, 57.9
1 fr <0.14 0.2 12.7 127 127 12.7 126 12.5 12,7 12.4 12.7 13.4 14.5(12.0, 12.6
2 fr <0.08 0.2 158 159 158 158 159 159 160 163 167 173 4/300| 157, 159
1 fst <0.14 0.01 14.1 146 147 146 151 3/300 10/300 13/300 23/300 27/300 37/300|13.7, 14.6
2 fst <0.08 0.01 23.5 23.1 236 262 286 5/300 11/300 19/300 44/300 51/300 73/300(22.7, 23.5
Servo 1 f; <0.14 0.01 21 2.0 21 2.7 3.44 5.8 8.0 9.7 11.3 15.6 16.0] 1.9, 2.2
2 fi <0.08 0.01 62 61 61 62 64 71 83 99 159 186 209| 61, 62
1 ft <0.14 0.03 19.6 19.6 19.6 19.4 19.2 18.5 18.7 19.7 23.7 27.4 35.2{18.1, 19.0
2 ft <0.08 0.03 168 168 168 168 168 171 172 183 217 231 290| 168, 168
Vowels 2 f; 65% 0.03 [30.6 31.7 31.5 324 323 36.3 42.7 51.9 73.2 82.6 103.3[29.8, 31.4
1 fi 80% 0.5 64.4 64.5 649 64.5 64.6 64.6 63.9 63.8 63.7 63.9 64.363.3, 64.1
2 fi 90% 0.5 15.3 153 15.4 153 15.3 15.2 15.3 15.1 20.0 25.2 4/400(14.9, 15.3
1 fs¢ 80% 0.03 9.0 8.9 9.0 9.0 9.8 39.1 6/400 74/400 86/400 98/400 88/400| 8.6, 9.1
2 fe 90% 0.03 |31.4 424 32.6 2/1000 5/1000 82/1000 92/1000 96/1000 98/1000 98/1000 100/1000(27.0, 40.6
Auto- 2 f; <0.06 0.03 109 10.8 109 11.4 11.9 16.3 24.2 32.9 75.3 3/200 24/200[10.7,11.0
mpg 2 ft <0.06 0.1 22.9 23.0 22.9 23.7 232 24.5 26.3 28.9 38.8 45.6 66.8(22.5, 23.3
Glass 1 f; <0.04 0.1 41 4.0 4.0 4.0 4.0 4.4 5.0 5.8 7.6 8.2 9.3 3.8,4.1
2 f; <0.03 0.005 |13.3 13.3 155 30.7 546 221 52/400 100/400 100/400 100/400 100/400|13.1, 13.5
Digits 2r f; 95% 0.0002 [44.7 46.8 63.0 119 172 100/100 100/100 100/100 100/100 100/100 100/100(44.1, 45.3
0’2
w f € o 2.0 5.0 10.0
Wine 1 fi 80% 0.5 234 4/500 20/500
2 fi 90% 0.5 4/500 24/500 58/500
0’2
w f € o 10710 108
Digits 2r f; 95% 0.0002 | 45.2 45.2

The initial weight variance o2

w f € o 10—¢ 0.0001 0.001 0.005 0.01 0.05 0.1 0.2 0.5 0.7 1.0 conf.
Solar 1 f; <0.08 0.1 1.3 1.3 1.5 1.3 1.5 1.5 1.6 2.5 5.6 7.4 10.2(1.2,1.4
2 fi <0.06 0.1 5.5 5.4 5.5 5.5 5.5 6.3 7.9 14.8 39.0 55.4 79.8| 5.3, 5.5
3 fi <0.06 0.1 4.5 4.5 4.5 4.8 4.8 5.6 8.4 14.4 45.1 68.4 1111 4.4, 4.7
1 f+ <0.08 0.7 4.5 4.5 4.5 4.5 4.4 4.5 4.6 4.7 5.2 5.8 6.4| 4.4,4.5
2 ft <0.06 0.7 37.3 37.4 374 37.2 37.2 37.3 37.7 38.9 43.9 48.1 54.6|37.3, 37.6
3 ft <0.06 0.7 22.6 22.6 22.7 22.7 22.7 22.9 23.0 24.7 29.6 34.2 38.8(22.5, 22.8
Wine 1 fr 80% 0.5 242 242 242 242 242 242 242 241 238 240 236|227, 239
2 ft 90% 0.5 215 215 215 213 214 213 216 215 204 203 199] 196, 202
1 fo&+ 80% 0.02 32.5 32.4 32.3 32.5 32.5 32.9 1/300 24/300 67/300 72/300 79/300|32.0,32.6
2 fst 90% 0.02 23.9 23.9 243 24.0 24.1 24.3 1/300 25/300 76/300 75/300 83/300|23.5,24.2
CES 1 1 <0.14 0.1 6.0 6.0 6.0 6.0 6.1 6.0 6.0 6.4 7.5 8.7 9.7 5.9,6.1
2 fi <0.08 0.1 57.7 7.8 57.7 57.8 57.6 58.1 59.5 64.2 74.4 81.6 98.7|57.4, 57.8
1 ft <0.14 0.2 12.4 12.9 125 12.7 12.8 12.8 12.5 12.5 12.1 13.4 14.7|11.4,12.8
2 ft <0.08 0.2 158 158 158 158 158 157 160 160 167 2/300 6/300| 155, 158
1 fet <0.14 0.01 15.0 14.8 145 13.9 14.7 14.6 21.7 10/300 20/300 51/300 50/300(13.4,14.3
2 fst <0.08 0.01 23.4 23.2 231 23.1 23.0 27.3 43.7 8/300 42/300 58/300 62/300(22.6,23.4
Servo 1 1 <0.14 0.01 2.1 1.9 2.0 2.1 2.1 2.8 4.7 7.7 12.7 13.3 14.7| 1.8, 2.0
2 fi <0.08 0.01 62 62 62 62 62 63 66 81 145 164 231| 61,62
1 f+ <0.14 0.03 19.6 19.6 19.7 19.6 19.6 19.3 19.3 19.5 22.5 25.6 34.2119.1,19.4
2 f+ <0.08 0.03 168 168 168 168 168 167 170 173 211 237 2/500| 166, 168
Vowels 2 f; 65% 0.03 31.7 32.4 321 30.0 31.5 32.4 34.2 41.7 68.1 80.9 100.8(28.9, 31.1
1 ft 80% 0.5 64.4 64.6 64.5 64.7 65.0 64.4 64.9 64.0 63.7 63.3 63.7162.6, 64.0
2 ft 90% 0.5 15.7 154 15.5 15.3 15.4 15.5 15.2 15.4 16.2 24.7 4/400|15.0, 15.4
1 fo&+ 80% 0.03 8.6 8.8 8.9 8.8 8.9 9.3 15.4 8/400 86/400 95/400 95/400| 8.4, 8.8
2 fst 90% 0.03 35.0 31.4 35.9 2/1000 2/1000 2/1000 26/1000 98/1000 98/1000 98/1000 98/1000|24.7, 38.0
Auto- 2 1 <0.06 0.03 10.8 109 108 10.7 10.7 11.3 13.6 23.0 69.1 3/200 28/200(10.6,10.9
mpg 2 ft <0.06 0.1 22.8 22.7 229 22.9 22.8 23.1 24.0 26.6 37.0 45.0 67.3|22.5, 22.9
Glass 1 f; <0.04 0.1 4.2 4.1 4.0 4.1 4.0 4.3 4.2 4.9 6.9 8.1 9.1] 3.8,4.1
2 f; <0.03 0.005 |13.3 13.3 13.3 13.4 13.8 39.4 128 48/400 100/400 100/400 100/400|13.2, 13.4
0.2
w f € o 2.0 5.0 10.0
Wine 1 i 80% 0.5 234 1/500 16/500
2 fi 90% 0.5 |4/500 16/500 36,500

Table 4: Performance of high order perceptrons for a normal distribution restricted to the interval

[-30?, 307].

10

Table b: Performance of high order perceptrons for a uniform weight distribution over the intervals
[—2a, —d] and [a, 2a], with ¢ = /302/7.

over two intervals, but slightly shifted to higher variances for the normal distribution. As the optimal
weight variance (point B) is similarly displaced, the performance of two networks, initialized with two
different weight distributions of the same variance, is difficult to compare. This might explain the better
performance for a Gaussian initial weight distribution in the report of P. Haffner. For the various
combinations of data set, network order, etc., the optimal weight variance was encountered in region D,
whereas non-convergence was, if at all, only observed in region C'.

As the three different initial weight distributions yield no significant difference in network performance,
only the commonly used uniform distribution is considered from now on. For the shifted/scaled logistic
and the linear activation functions, the best fixed weight variance is about 10=* (which corresponds to
an interval [—0.017,0.017]). For the logistic activation function, the best value for the weight variance
depends a lot on data set and network order. In general, the performance with optimal initial weight
variance differs not much more than about 10% from the results obtained with a variance of 10~* or even
smaller. Therefore a variance of 10~* may be used as a simple application independent random weight
initialization scheme. This initialization scheme is also justified by a smaller risk: a network performs
nearly as good for an initial weight variance smaller than the optimum. The loss in performance for
choosing the initial weight variance too small i1s much less significant than it 1s for multilayer perceptrons.

The experiments confirm also that the data set itself has a large influence on the optimal initial
weight variance: for the solar, wine, and servo data sets, the networks have about the same size for the
same order, but the optimal value for the weight variance differs a lot for the network with the logistic

0.2
w f € o 10~% 0.0001 0.001 0.005 0.01 0.05 0.1 0.2 0.5 0.7 1.0 conf.
Solar 1 f; <0.08 0.1 1.2 1.2 1.4 1.4 1.4 2.1 2.7 3.5 6.5 9.3 11.5| 1.1, 1.3
2 fi <0.06 0.1 5.4 5.3 5.6 5.8 6.7 10.1 15.0 24.1 46.0 60.2 83.5| 5.2,5.5
3 fi <0.06 0.1 4.5 4.6 4.7 5.2 5.8 10.2 14.7 24.4 56.2 77.8 114| 4.3,4.6
1 f+ <0.08 0.7 4.5 4.4 4.5 4.5 4.6 4.8 4.7 4.8 5.4 5.5 6.5| 4.3,4.5
2 ft <0.06 0.7 37.4 37.1 37.1 374 37.3 37.9 39.1 41.0 47.9 48.6 53.7(36.9, 37.4
3 ft <0.06 0.7 22.7 22.6 228 22.6 23.0 23.5 24.4 26.3 31.3 34.8 38.9(22.5, 22.8
Wine 1 fr 80% 0.5 242 242 242 242 242 241 241 241 240 238 237 231, 234
2 ft 90% 0.5 215 215 215 214 214 214 214 210 208 198 198 194, 202
1 fo&+ 80% 0.02 32.6 32.6 32.6 32.8 33.3 9/300 16/300 51/300 72/300 76/300 83/300(32.3,32.9
2 fst 90% 0.02 24.3 23.9 238 23.9 25.8 15/300 40/300 58/300 69/300 64/300 79/30|23.6, 24.3
CES 1 1 <0.14 0.1 6.0 6.0 5.9 6.1 6.0 6.0 6.0 6.6 9.0 9.8 10.5| 5.7, 6.0
2 fi <0.08 0.1 56.7 58.0 57.7 57.8 58.5 59.8 65.8 70.5 85.1 84.1 94.7|56.1, 57.3
1 ft <0.14 0.2 12.6 12.7 12.8 12.5 12.5 12.6 12.3 12.5 12.8 12.8 14.5(11.8,12.7
2 ft <0.08 0.2 159 158 158 158 159 160 162 164 176 173 7/300| 157, 159
1 fet <0.14 0.01 14.6 14.0 14.8 15.0 15.6 37.8 8/300 13/300 25/300 25/300 31/300(13.5,14.5
2 fst <0.08 0.01 23.4 22.9 23.7 26.1 30.1 3/300 11/300 29/300 51/300 65/300 74/300(22.3, 23.4
Servo 1 1 <0.14 0.01 2.1 2.3 2.1 2.8 3.0 5.9 7.7 10.0 12.7 13.5 17.3(1.9,2.3
2 fi <0.08 0.01 61.4 61.6 61.1 62.6 64.9 69.3 83.5 100 153 195 225160.4, 61.8
1 f+ <0.14 0.03 19.6 19.6 19.5 19.6 19.5 19.1 19.2 19.7 23.4 27.7 33.7|18.7,19.4
2 f+ <0.08 0.03 168 168 167 168 168 172 176 182 221 253 309| 167, 168
Vowels 2 f; 65% 0.03 30.9 32.9 30.8 32.9 33.4 38.4 41.1 50.8 73.0 85.9 101.2(29.5, 32.2
1 ft 80% 0.5 64.3 649 64.4 63.6 64.2 63.9 63.7 64.0 63.4 63.2 63.762.5, 63.9
2 ft 90% 0.5 15.3 15.3 15.2 15.4 15.6 14.9 15.5 15.6 17.9 21.9 5/400|14.6, 15.1
1 fo&+ 80% 0.03 9.0 8.7 8.9 9.3 9.8 37.2 8/400 60/400 88/400 98/400 96/400| 8.5,9.0
2 fst 90% 0.03 28.6 43.6 40.3 1/1000 2/1000 76/1000 95/1000 99/1000 98/1000 98/1000 100/1000|23.3, 33.9
Auto- 2 1 <0.06 0.03 10.8 10.8 10.9 11.5 11.8 17.0 22.5 34.0 74.0 10/200 28/200{10.5,11.1
mpg 2 ft <0.06 0.1 23.0 22.8 22.7 23.4 23.5 24.7 26.4 28.2 43.5 49.1 69.8(22.3, 23.1
Glass 1 f; <0.04 0.1 4.0 3.9 4.1 4.2 4.1 4.5 5.0 6.0 7.2 8.7 9.6| 3.7,4.1
2 f; <0.03 0.005 |13.4 13.4 15.3 29.5 52.2 223 56/400 100/400 100/400 100/400 100/400{13.2, 13.6
0.2
w f € o 2.0 5.0 10.0
Wine 1 i 80% 0.5 233 4/500 32/500
2 fi 90% 0.5 |4/500 12/500 34/500

11

Non-
Conver-
gence

Convergence Time
(@)

10E-6 10E-5 10E-4 0.001 0.01 0.1 1

log(Initial Weight Variance)

Figure 4: Average behavior of a higher order perceptron in convergence time for changing initial weight
variance

activation function. Further, the optimal value for the initial weights remained for some data sets nearly
unchanged for different net orders or even different activation functions, while it changes greatly for other
sets. It remains the question, which attribute of the data sets causes this behavior.

5 Weight Initialization Techniques for Three Layer Percep-
trons Applied to High Order Perceptrons

The most remarkable fact is that the rules based on observations (the “rules of thumb”), which seem to
perform well for multilayer perceptrons, do not apply directly to high order perceptrons. Uniform weight
distributions with an initial weight range of [—1, 1] (which corresponds to a variance of about 0.33) or
bigger are definitely a poor choice for most of the examples considered. The mean convergence time is
for some of the examples more than four times higher than the best initial weight range found or, even
worse, they do not converge in a reasonable time.

The approaches using an interval [—a/v/d;y,, a/+/d;,] with a more or less arbitrary constant a, do not
outperform the weight initialization with a fixed variance of 0.0001 or vice versa. Nevertheless, one would
expect that more sophisticated methods for random weight initialization perform better than a scheme
with fixed initial weight variance.

One such a sophisticated scheme was described by L. F. A. Wessels [Wessels-92], and is here recalcu-
lated for a second order net with linear activation functions. The method tries to initialize the weights in
such a way that the variance 05 of the network output 1s equal to the expected variance 05 of the target
patterns.

A random weight initialization allows the calculation of the variance 05 depending on the network
topology (N; is the number of neurons in the input layer, w; a weight, z; an input value):

05 = E[yY] - E*[y] = E[%*] as the weights are independent from the input values
Ny Ny
= E[Z WW; ;%5 + Z wijwklxixjxkxl]
ij=1 3,4k, 1=1
Ny Ny
= ZE[wZZ]E[l‘ZZ] + Z E[wa]E[xlszZ] as Elwjjwjpr] =0if i £ kor j £
i=1 i,j=1

12

Ny 1 Ny 1.9 Ny 1
= E[wz](ZﬁJr”Z (%) +Z@)
=1 i,j=1;i#j =1
2
_ NI 13N
720

This assumes that all w; and all z; are independent random variables in the interval [—1, 1] and [0, 1]
respectively, and therefore E[z?] = 1/12 and E[z?*] = 1/80, as shown by the following equations:

1
co 1
E[xz] = f_oo(x - %)2Funiform [0,1]d$ = / (l‘ - 5)2dl‘ = —
0

1
o0 1
E[lA] = f_oo(x - %)4Funiform [0,1]d$ = / (l‘ - —)4dl‘ = —
0 2 80
The variance ¢2 of a variable w is equal to the expectation of its squared value E[w?]:

£/302 9
E[2] ffooo wz*Funiform,a(w)dw f—\/Bagjw dw % -2 \/30'5)3 9
w = — —_

ffooo Funiform,a(w)dw B f_\/ 3;2w2 1dw - 2.4 /30-73) w

Therefore the initial condition, equation 05 = 05, can be fulfilled by setting

720 ,
w = 7 Ty
BN17 4+ 133N,

Where o7 is equal to 1/3 for boolean data and data which are scaled to the interval [-1, 1], and 1/12 for
data which are scaled to the interval [0, 1].

Similar formulas can easily be calculated for networks of different orders. The evaluation of these
formulas gives an optimal initial weight variance between 0.3 and 0.02 for the examples considered in this
publication. These values are usually much too high as compared to the results listed in the tables. No
effort was therefore done to solve the same problems for the other (non-linear) activation functions.

For the activation functions f; and fs; the heuristic of L. Bottou comes the closest to the optimal
weight variance and may therefore be considered as being better. Comparing the variances suggested
by his heuristic to table 3, one finds that his method may be improved by using about one tenth of the

suggested variance.

6 Conclusion

The experiments show that a suitable and convenient weight initialization method for high order per-
ceptrons? with identity activation function® is a random initialization with a rather small variance of
about 10=* (which corresponds to a weight range of [—0.017,0.017]). If a hyperbolic tangent is used
as activation function, the best performance is obtained for the interval [—a//din, a/+/din], where a is
chosen such that the weight variance corresponds to one third of the distance between the points of
the maximal curvature of the activation function® (this is approximately 0.8 for an unscaled hyperbolic
tangent with steepness one). The “rules of thumb” which perform well for multilayer perceptrons are not
suitable for high order perceptrons (which can be explained by their different topologies).

The steepness (and/or the horizontal shift) of the activation function has a big influence on the
convergence time of high order perceptrons. A mathematical study, partly inspired by this research,

4 The results of this study apply in part to standard (first order) perceptrons, since high order perceptrons are a gener-
alization of standard perceptrons.

5 A linear activation function of steepness one.

6 This results in about one tenth of the weight variance.

13

showed that this is indeed the case if the steepness of the activation function is changed (assuming the
initial weight range is adapted) [Thimm-94.2].

On the other hand, the shape of the initial weight distribution of three rather different distributions
showed no or only very little effect on the optimal convergence time of high order perceptrons. The main
effect observed is a dislocation of the optimal value for the initial weight variance. There is consequently
no preference for one of the three distributions as the optimal learning speeds are similar.

For multilayer perceptrons with one hidden layer, the weight initialization method of L. F. A. Wessels
et al. performed on average the best, but the performance of the methods proposed by J. W. Boers et
al., L. Bottou, F. J. Smieja, G. P. Drago et al., and D. Nguyen et al. are nearly as good. Despite the fact
that the method of L. F. A. Wessels et al. and L. Bottou apply the same initial weight variances for the
experiments performed for this publication, the first should be preferred, as it scales the initial weight
variances depending on the activation function (due to the calculation of the network output variance).

The experiments show that the best initial weight variance for both types of neural networks is
determined by the data set. Consequently, some reasoning on the data set has to be included in the
determination of this value, if better values than those proposed in this publication are desired. On the
other hand, an initial weight variance close to the optimal value is often acceptable, as the impact on the
number of required learning cycles is not too big for small deviations in variance. In general, the loss in
convergence speed for both types of neural networks is bigger when too high a variance is chosen than
when too small a variance is chosen, as compared to the optimal value.

The evaluation of the experiments performed in order to find the best weight initialization scheme
for high order and multilayer perceptrons includes the calculation of confidence intervals for the mean
convergence time. This is a much more reliable measure than simply counting the number of simulations
performed, as used in most other publications. Moreover, the simulations showed that some data sets
require a bigger amount of simulations for a sufficiently small size of the confidence interval than others.
In the experiments performed in this research, these numbers varied between 50 and 2,000. The authors
encourage other researchers to report their results in a similar way.

Acknowledgments

The authors want to thank the Institute for Logic, Complexity, and Deduction Systems at the University
of Karlsruhe for the supply of computing power, which allowed the performance of the simulations.

References

[Bellido-93] I. Bellido and E. Fiesler. Do Dackpropagation Trained Neural Networks Have Normal
Weight Distributions? In Stan Gielen and Bert Kappen (eds.), ICANN ’93; Proceedings of
the International Conference on Artificial Neural Networks, pp. 772-775, London, U.K., 1993.
Springer-Verlag.

[Boers-92] E. J. W. Boers and H. Kuiper. Biological Metaphors and the Design of Modular Arti-
ficial Neural Networks. Master’s thesis, Leiden University, Leiden, The Netherlands, Aug.
1992.

[Bottou-88] L.-Y. Bottou. Reconnaissance de la Parole par Reseaux Multi-Couches. In Neuro-

Nimes’88; Proceedings of the International Workshop on Neural Networks and Their Applica-
tions, pp. 197-217, 1988. ISBN: 2-906899-14-3

[Chen-91] C. L. Chen and R. S. Nutter. Improving the Training Speed of Three-Layer Feedforward
Neural Nets by Optimal Estimation of the Initial Weights. In International Joint
Conference on Neural Networks, vol. 3, pp. 2063-2068. IEEE, 1991.

[Denoeux-93] T. Denoeux and R. Lengellé. Initializing Back Propagation Networks with Prototypes.
Neural Networks, vol. 6, pp. 351-363, Pergamon Press Ltd., 1993.

[Drago-92] G. P. Drago and S. Ridella. Statistically Controlled Activation Weight Initialization
(SCAWI). IEEFE Transactions on Neural Networks, vol. 3, num. 4, pp. 627-631, Jul. 1992.

[Fahlman-88]

[Fiesler-94]

[Garris-92]
[Hertz-91]

[Haffner-88]

[Judge-85]

[Kolen-90]

[Kim-91]

[Lee-86]

[Lee-93]

[Murphy-94]

[Nguyen-90]

[Pao-89]

[Platt-91]

[Rumelhart-86]

[Smieja-91]

[Thimm-94.1]

[Thimm-94.2]

14

S. E. Fahlman. An Empirical Study of Learning Speed in Backpropagation Networks.
Technical Report CMU-CS-88-162, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, Sep. 1988.

E. Fiesler. Neural Network Classification and Formalization. In J. Fulcher (ed.), Com-
puter Standards & Interfaces, vol. 16, num. 3, special issue on Neural Network Standardization,
pp- 231-239. North-Holland/Elsevier, 1994. ISSN: 0920-5489

M. D. Garris and R. A. Wilkinson. NIST Special Database 3. National Institute of Standarts
and Technology, Advanced System Division, Image Recognition Group, Feb. 1992.

J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computa-
tion, vol. I. Addison Wesley, 1991. ISBN: 0-201-51560-1

P. Haffner, A. Waibel, H. Sawai, and K. Shikano. Fast Back-Propagation Learning Meth-
ods for Neural Networks in Speech. Technical Report TR-1-0058, ATR Interpreting Tele-
phony Research Laboratories, 1988.

G. G. Judge, W. E. Griffiths, R. Carter Hill, and T.-C. Lee. The Theory and Practice of
Econometrics. Wiley Series in Probability and mathematical statistics. John Wiley and Sons,
2nd edition, 1985.

J. F. Kolen and J. B. Pollack. Back Propagation is Sensitive to Initial Conditions.
Technical Report TR 90-JK-BPSIC. Laboratory for Artificial Intelligence Research, Computer
and Information Science Department, 1990.

Y. K. Kim and J. B. Ra. Weight Value Initialization for Improving Training Speed
in the Backpropagation Network. In International Joint Conference on Neural Networks,
vol. 3, pp. 2396-2401. TEEE, 1991.

Y. C. Lee, G. Doolen, H. Chen, G. Sun, T. Maxwell, H. Lee, and C. L. Giles. Machine Learning
Using a Higher Order Correlation Network. Physica D: Nonlinear Phenomena, vol. 22,
pp. 276-306, 1986. ISSN: 0167-2789

Y. Lee, S.-H. Oh, and M. W. Kim. An Analysis of Premature Saturation in Back
Propagation Learning. Neural Networks, vol. 6, pp. 719-728, 1993.

P. M. Murphy and D. W. Aha (Librarians). UCI Repository of machine learning databases
[Machine-readable data repository], anonymous-ftp access ics.uci.edu: pub/machine-learning-
databases, 1994.

D. Nguyen and B. Widrow. Improving the Learning Speed of 2-Layer Neural Networks
by Choosing Initial Values of the Adaptive Weights. In Proceedings of the International
Joint Conference on Neural Networks (IJCNN) San Diego, vol. I11, pp. 21-26, Edward Brothers,
1990.

Y.-H. Pao. Adaptive Pattern Recognition and Neural Networks. Addison-Wesley Pub-
lishing Company, Inc., Reading, Mass., 1989. ISBN: 0-201-12584-6

J.C. Platt. Learning by Combining Memorization and Gradient Descent. In R. P. Lipp-
man et al. (eds.), Advances in Neural Information Processing Systems, vol. 111, pp. 714-720.
Morgan Kaufmann, San Mateo, 1991.

D. E. Rumelhart, J. L. McClelland, and the PDP Research Group. Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, vol. 1: Foundations. The
MIT Press, Cambridge, Mass., 1986. ISBN: 0-262-18120-7

F. I. Smieja. Hyperplane “Spin” Dynamics, Network Plasticity and Back-Propagation
Learning. GMD report, GMD, St. Augustin, Germany, Nov. 28, 1991.

G. Thimm, R. Grau, and E. Fiesler. Modular Object-Oriented Neural Network Simula-
tors and Topology Generalizations. In M. Marinaro and P. G. Morasso (eds.), Proceedings
of the International Conference on Artificial Neural Networks (ICANN 94), vol. 1, pp. 747-750,
London, U.K., 1994. Springer-Verlag. ISBN: 3-540-19887-3

G.. Thimm, P. Moerland, and E. Fiesler. The Learning Rate and the Gain of the Acti-
vation Function in Backpropagation Neural Networks are Exchangeable. Submitted
to Neural Computation. See also P. Moerland, G. Thimm, and E. Fiesler. Results on the
Steepness in Backpropagation Neural Networks. In Marc Aguilar (ed.), Proceedings of
the '94 SIPAR-Workshop on Parallel and Distributed Computing, Inst. of Informatics, Univer-
sity Pérolles, Chemin du Musée 3, Fribourg, Switzerland, pp. 91-94, Oct. 1994. SI Group for
Parallel Systems.

[Wessels-92]

[Watrous-93]

15

L. F. A. Wessels and E. Barnard. Avoiding False Local Minima by Proper Initialization
of Connections. IEEE Transactions on Neural Networks, vol. 3, num. 6, pp. 899-905, Nov.
1992.

R. L. Watrous and G. M. Kuhn. Some Considerations on the Training of Recurrent
Neural Networks for Time-Varying Signals. In M. Gori (ed.), Second Workshop on Neural
Networks for Speech Processing, pp. 5—17, Trieste, Italy, 1993. Universita di Firenze, Edizioni
LINT Trieste S.r.l.

