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ABSTRACT

A new algorithm for �nding lines in images under a bounded er�
ror noise model is described� The algorithm is based on a hier�
archical and adaptive subdivision of the space of line parameters�
but� unlike previous adaptive or hierarchical line �nders based on
the Hough transform� measures errors in image space and thereby
guarantees that no solution satisfying the given error bounds will
be lost� In addition� the algorithm can �nd interpretations of all
the lines in the image that satisfy the constraint that each image
feature supports at most one line hypothesis�a constraint that is
often useful to impose in practice� The algorithm can be extended
to compute the probabilistic Hough transform and the generalized
Hough transform a variety of statistical error models e�ciently�

� Introduction

Finding straight lines in images is one of the most fundamental problems in
computer vision� This paper describes a new algorithm for 
nding lines in
images� The algorithm di�ers in a number of important ways from existing
methods� It can also be extended to detect other analytic shapes or even
arbitrary geometric models� in this paper� we will focus our attention on a
version of the algorithm that 
nds lines in an image subject to given bounds
on the deviations of the location and orientation of image features from a
hypothesized line�

This paper has been submitted for publication to �Pattern Recognition��
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The algorithm can be used to 
nd the maximal or 
optimal� line in an
image� in the sense of 
nding the line for which the greatest total length is
supported by edge pixels in the image under the given error bounds�

An extension of the algorithm can be used to 
nd quickly a global inter�
pretation of the edge pixels in an image as lines in decreasing order of length
of support� imposing the constraint that no edge pixel can be part of two
di�erent lines�

There are a number fundamental concerns for any method for 
nding
lines� These can be roughly grouped into correctness and e�ciency� Let
us illustrate these concerns using the simple or standard Hough transform�
probably the most popular method for 
nding lines in images�as an example��� �

The standard Hough transform is implemented in the following way� Lines
are considered to be parameterized by �� their distance from the origin� and
�� their angle with the x�axis �other parameterizations are possible� and used
commonly�� In the computation of the Hough transform� the parameter space
is quantized and represented as a discrete data structure� often an array or
a hash table� Each 
cell� or 
bin� in this data structure corresponds to a
small range of parameters � and ��

For each edge pixel �optionally associated with a local orientation�� there
is an associated set of lines that the edge pixel could be a part of� This set of
lines corresponds� in turn� to a set of bins in the quantized parameter space�

The standard Hough transform now considers each edge pixel in the in�
put image and increments a counter in each of the corresponding bins in the
quantized parameter space �
vote for that bin� in the language of the Hough
transform�� More sophisticated versions of the Hough transform do not in�
crement each counter by a 
xed amount� but instead compute a 
degree of
membership�� for example related to a probability distribution� for each edge
pixel to a bin in the quantized parameter space�

In a 
nal stage� the quantized parameter space is searched for bins that
contain a number of votes that is larger than a given threshold and�or forms
a local maximum�

There are a number of theoretical and practical problems with such a
simple approach� and a large number of solutions and modi
cations to the
simple Hough transform have been proposed and studied in the literature�

First� the quantization of parameter space can easily result in the split�
ting of the votes belonging to a single hypothesized line among a number of
bins� To overcome this problem� parameter space is sometimes subjected to

ltering operations� or� similarly� neighboring bins are considered together
in the 
nal evaluation of the quantized parameter space��� � Quantization
has been found to be a problem� for example� with the Adaptive Hough
Transformation�� and methods for 
anti�aliasing� the Hough transformation
have been proposed�� The method described in this paper explicitly avoids
quantization errors� and no separate post�processing step to counteract the

	



e�ects of quantization is necessary�
Closely related is the issue that errors in the localization of edge pixels are

modeled in parameter space rather than in image space� Since properties of
the processing stages preceding line 
nding �edge detection� pixel chaining�
etc�� are most often naturally expressed in image space� this complicates
the problem of obtaining solutions with well�de
ned geometric or statistical
properties��� �� �� �� 	

Furthermore� the votes in a single bin may represent multiple� di�erent
lines �e�g�� nearby parallel lines or widely separated colinear segments that
should be treated separately�� This problem has been addressed partially in
the literature by backmapping the edge pixels from a bin in the quantized
parameter space into the image and applying some kind of veri
cation pro�
cedure to the set of edge pixels obtained in that way��
� �� However� such an
approach is not entirely satisfactory� because the constraints used for ver�
i
cation might also pro
tably be employed during the construction of the
quantized parameter space� not just in a 
nal veri
cation step� The method
described in this papers allows a wide range of constraints on the solution of
the line 
nding problem to be incorporated at all stages of the computation�

Finally� Hough space can be big� Even just generating and searching
a ��	���	 bin Hough space is non�trivial once more sophisticated peak�
detection and backmapping algorithms are being used� For analytic shapes
or objects �rigid or non�rigid�� parameter space might even be much higher
dimensional than just two�dimensional� Methods like the Adaptive Hough
Transform�� �AHT� and the Fast Hough Transform�� �FHT� have tried to
address this problem using recursive subdivisions of parameter space� The
algorithm presented in this paper is also based on a recursive subdivision
of parameter space� but avoids the quantization errors common to those
algorithms�� and extends the method in several ways� such as the simultane�
ous accumulation of multiple solutions�

� Algorithm

��� Line Finding

The basic line 
nding algorithm is given in Figure �� The algorithm es�
sentially implements a depth�
rst search of a spatial decomposition of the
parameter space by a binary tree �in practice� a best�
rst algorithm is actu�
ally used��

That is� at each step� there is a box �or rectangle� �variable� box� in
parameter space that is under consideration� Initially� that box consists of the
set of all possible parameters� During the execution of the algorithm� the box
will be subdivided� Regions or boxes that provably cannot contain a solution
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under the given error bounds will be eliminated from further consideration�
A representative subdivision of transformation space as it is explored

during an actual line 
nding problem is shown in Figure ��
Associated with each box is a set of image features that are consistent

under the given error bound with any of the lines corresponding to the pa�
rameters contained in box� It is crucial to realize that consistency with the
box is de
ned here as consistency under the given error bounds as measured
in the image� In this� the algorithm di�ers from other line 
nding algo�
rithms based on the Hough transform or based on recursive subdivisions of
parameter space�

The next ingredient of the algorithm is a function bound quality that�
given box and the set of image features consistent with box� estimates an
upper bound on the quality of any solution to the line 
nding problem for
all the combinations of line parameters contained in box under the given
error bound� by 
quality� we mean for the purposes of this paper the the
total length of segments of the line accounted for by edge pixels in the image
under the given error bound�

However� other notions of quality are desirable in some applications� For
example� we might want to penalize hypothesized lines that are supported by
a large number of fragmented� short stretches of edge pixels� compared with
hypothesized line that are composed of a small number of long� connected
stretches of edge pixels�

Another notion of quality might weight features di�erently depending on
the amount of their deviation from the hypothesized line� For example� if we
assume that pixel deviations from the line are given by some distribution ��
we might weight the additional support that a feature gives to a hypothesized
line by some function F �d�� where d is the distance of the feature from the
line� such methods are described in the literature��� �� �� 	

For using any kind of quality measure with the line 
nding algorithm
described in this paper� all that is necessary is that we can quickly bound the
largest possible quality for any hypothesized line described by line parameters
contained in box�

We can now sketch the operation of the function search� the heart of the
algorithm� Initially� it is given a rectangular region in parameter space� box�
and a set of features� features� The subset of features consistent with box

under the given error bound is found �consistent features�� Now� there
are two major cases�

First� the current box does not yet represent an accurate solution to the
line 
nding problem for the set of consistent features� This is determined
by the function is done �we will discuss how this is determined in more detail
in Section 	���� In that case� the current box is split into two halves� and the
search is repeated for each half of box in parameter space�

Of course� a conceptually trivial and quite useful modi
cation of this step
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is to explore that half of box 
rst that has the larger upper bound on the
potential solution� a kind of best�
rst algorithm� To keep the presentation
simple� this is not shown in Figure ��

The second case is that the current box and the current set of
consistent features represent a possible solution� In that case� the al�
gorithm compares this possible solution against the best solution found so
far� If it is better� it is recorded in the variables best quality� best box�
and best features� In either case� the algorithm returns in order to allow
the exploration of other parts of parameter space�

At the end of this process� the best solution� in the sense of the
quality measure� is left in the variables best quality� best box� and
best features� Of course� often we are interested in identifying multiple
lines in an image� not just in 
nding a single 
optimal� or 
maximal� line�
how we can go about doing this is discussed in Section 	���

��� Testing for Consistency

One of the key components of the algorithm is the test of whether an indi�
vidual feature is 
consistent� with a given box of line parameters under the
given error bounds�

The exact nature that this test takes depends on the primitive features
that we extract from the image� The two kinds of features we are considering
in this paper are point features and line segment features�

Point features correspond to individual edge pixels in the image� Each
point feature has a location and an associated orientation�

Line segment features can result� for example� from a polygonal approx�
imation to the output of an edge detector� Line segment features have two
end points and an orientation �the orientation may either be the orientation
of the line passing through the endpoints of the segment� or it may be mea�
sured from the gradient associated with the edge pixels making up the line
segment��

To test for consistency of either kind of feature with a hypothesized line
under bounded error� we use two primitive tests� a test of whether a point
is within a given error bound of some line described by the line parameters
contained in box and a spatial error bound� �point consistent�� and a test
whether the orientation is within a given angular error bound from within
the orientation of a range of orientations� �angle consistent��

The implementation of angle consistent is relatively straightforward
and will not be discussed here� The implementation of point consistent�
however� involves some subtleties�

We parameterize lines by their angle � with the x�axis and their distance
� from the origin� A box in transformation space consists of a range of angles
��
� ��� and a range of possible angles ��
� ����
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Figure 	 shows the four lines parameterized by ��
� �
�� ���� �
�� ��
� ����
and ���� ���� corresponding to the four corners of the box� These four lines
enclose a bow�tie shaped region in image space� Since we want to determine
whether a given image point p lies within a distance of � of any one of
the lines determined by any pair ��� �� of parameters contained in box� we
might at 
rst sight conclude that all we need to determine is whether p is
either directly contained in that bow tie shaped region� or whether it is at
least located within a distance of � of that region� This test is neither very
di�cult nor very expensive� we need two dot products to determine whether
a point is above or at most a distance � below either line ��
� �
� or ���� �
��
Likewise� we need two dot products to determine whether a point is below
or at most a distance � above either line ��
� ��� or line ���� ����

However� this is not quite accurate� In fact� some points that lie on lines
parameterized by parameters ��� �� contained in the box are actually outside
this bow�tie shaped region� We therefore need to modify the above procedure
slightly� This is illustrated in more detail in Figure ��

Here� two lines� corresponding to the lower two lines delimiting the bow
tie� are shown �marked ��
� �
� and ���� �
��� But consider now the line
� �����

�
� �
�� Its parameters are certainly contained within the box of parame�

ters ��
� ���� ��
� ���� However� there is a non�negligible segment of that line
between points A� and B� that falls outside the bow tie region� Therefore� if
we simply used the bow tie region to test for consistency of a feature with
the set of lines corresponding to the parameters inside the box� we would run
the risk of falsly classifying a point as 
inconsistent�� even though it actu�
ally can be found within the given error bound of some line contained in the
box�

There two possible solutions to this problem� First� we could simply
carry out the exact test� This would require testing whether a given point
is within a distance � of the curved triangle ABC� Such a test is not too
di�cult to carry out� but the runtime cost is non�negligible� Given that the
consistency test is in the inner loop of the algorithm� and� as it turns out�
actually dominates the running time of the algorithm as determined by an
execution pro
le� we would prefer a method that a�ects the running time of
the algorithm less�

The second solution is to overestimate the region in which points are
accepted as consistent slightly� This does not present a problem as long
as the overestimation is su�ciently small in absolute terms and goes to zero
quickly as the dimensions of box shrink during the execution of the algorithm�
This was the approach adopted in the algorithm actually implemented�

There are two simple methods that o�er themselves for modifying the
constraints in order to ensure that no consistent image point is falsely re�
jected� We can either translate both lines ��
� �
� and ���� �
� closer to the
origin by a small amount � � or we can introduce a third line passing through
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AB with line parameters of � �����
�

� �� � � and say that a point is consistent
if it is consistent under bound � with either �but not necessarily both� of
the two linear constraints for �
 or the line AB� and if it is consistent under
bound � with either of the two linear constraints for ���

Using elementary geometry� the distance � � which is the same in both
cases� can be read from Figure � as

� � � �� � cos
��

	
�

where �� is the di�erence between �� and �
� It should be noted that �

approaches � as the square of ���
Now� we can return to the original problem of determining when a point

feature �edge pixel� or a line segment is consistent with a given box� We
say that a point feature or edge pixel is consistent with a given box if its
location satis
es the point consistent test and its orientation satis
es the
angle consistent test with the parameters contained in the box�

For a line segment feature� we would like to say that it is consistent with
a given box if all the edge pixels that make up the line segment feature sat�
isfy the point consistency test� However� such a test is� again� relatively
costly� A simpler approach is to test whether each of the two endpoints satis�

es the point consistent test� While this not imply that all the individual
edge pixels that make up the line segment feature are contained in the im�
age region swept out by the lines described by parameters in the box under
the given error bound� the approximation to the precise test becomes nearly
perfect as the current box shrinks� In the limit of �� � �� the test is easily
seen to be exact� In addition to testing the endpoints� we also test whether
the orientation of the line segment feature satis
es the angle consistent

test� since very short line segment features would otherwise be nearly uncon�
strained in their orientation�

��� Termination

Before going on� we should discuss the issue of termination� that is� when
the function is done in Figure � returns true� There are� in fact� a number
of di�erent criteria we might want to use for stopping�

Ideally� we would like to determine exactly whether the set of edge seg�
ments represented by the variable consistent features represents a solu�
tion to the line 
nding problem under the given error bounds� If yes� then
we can simply accept this set as a solution and return� While such a compu�
tation is possible in principle� in practice it is far too expensive� given that
the test for termination is one of the most frequently executed operations in
the algorithm�
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A much simpler termination condition is to check whether the current box
has become 
su�ciently� small� The notion of 
su�ciently� here requires
some explanation�

As we saw above� the test for consistency of a feature with the current
box allows for two kinds of uncertainty� the 
rst results from the given
error bounds� while the second results from the 
nite dimensions of the box
itself� That is� the current set of consistent features is not necessarily
an exact match under the given error bounds� but instead a match under
slightly larger error bounds that are determined� for a given image� by the
dimensions of the box�

If we terminate the search when the box has become su�ciently small�
rather than by verifying consistency exactly of the result with the given
error bounds� the line 
nding algorithm is transformed into a weak geometric
algorithm��� That is� the error bounds satis
ed by the maximal solution are
uncertain by at most a small bounded amount determined by the maximal
dimensions of the input image and the chosen dimensions for the terminal
box�

The Hough transform� of course� also su�ers from the same problem�
The weakness of the Hough transform is related to the size of the individual
bins in the quantized parameter space� However� in contrast to the Hough
transform� with the present methods� we can easily choose error bounds
and the weakness of the solution completely independently� While for the
Hough transform� the dimension of the individual bins is related to the size
of the accumulator array as the inverse square� which means that making
the individual bins signi
cantly smaller increases both the running time and
the amount of space required by the Hough transform greatly� the running
time and amount of space required by the present algorithm only varies
proportionally to the logarithm of the weakness parameter �see below��

��� Global Interpretation

In the algorithm shown in Figure �� only a single maximal solution is found�
where 
maximal� refers to the line that corresponds to the greatest total
length of edge segments in the image compatible with that line under the
given error bounds�

Often� we are not interested in just 
nding a single maximal line� but
instead in 
nding all 
reasonable� lines in the image� For the Hough trans�
form� probably the most common approach is to report all those bins in
Hough space that form local maxima and that are above some threshold�

Such an approach is somewhat unsatisfactory because it usually results in
the reporting of multiple lines that are really only slightly di�erent interpre�
tations of nearly identical sets of edge segments� To alleviate this problem�
it is possible to permit the reporting of only a single local maximum within
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a bounded region in Hough space�
We will use a similar idea below� Before proceeding� however� it is a

good idea to re�ect upon the real�world constraints that give us the intuition
that multiple nearby line hypotheses are unlikely and undesirable in the 
rst
place� There are essentially two basic reasons�

First� image acquisition is a band�limited process� and edge detection it�
self usually involve some kind of convolution operation� This� however� limits
the density of parallel lines that can be resolved� and postulating that two
lines that are closer to one another than this limit are present simultaneously
in the image is not sensible� given that there is no way we could support such
a conclusion from the input data to the line 
nding algorithm� This suggests
that if there are two very similar line hypotheses� we should choose only one�

Furthermore� in many applications we can use the assumption of a 
gen�
eral viewpoint�� that is� that the image was taken with very high probability
from a position such that di�erent lines do not coincide� This means that we
should not allow two di�erent line hypotheses to share any edge pixels�

Incorporating these additional constraint then suggests the following ap�
proach to 
nding a global interpretation of the lines in the image� We start
by running the line 
nding algorithm to 
nd the maximal solution given all
edge pixels in the image� We then remember this solution and remove the
corresponding edge pixels from the image �they would not be allowed to par�
ticipate in the match of any other line�� We then re�apply the line 
nding
algorithm to the remaining edge pixels and repeat this process until we have
explained all the edge pixels in the image� Restarting the algorithm multi�
ple times seems somewhat costly� however �and that suspicion is born out
in practice� being nearly �� times slower than the alternative approaches
described below��

We might reduce this cost if we do the we somehow run it in a way to

nd a representation of the set all possible solutions� and then enforce the
constraint of unique correspondences in a second step�

If we discretize parameter space su�ciently coarsely �similar to a Hough
transform� and set a lower threshold on the total length of support for a
line that we are interested in� this turns out to be a feasible approach �the
FHT algorithm��� for example� also returns such a complete representation of
Hough space�� While the list of all solutions contains many redundancies and
duplications� the simple greedy postprocessing algorithm shown in Figure �
then quickly 
nds the desired interpretation�

This greedy algorithm works similarly to the sequential interpretation
process we described above� That is� from the list of all hypotheses� it picks
the best hypothesis� Then� it removes all the features associated with this
best hypothesis from the support for all the remaining hypotheses and recom�
putes the quality for each remaining hypothesis� The process is then repeated
until either no hypotheses remain� or until the quality of the remaining best
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hypothesis falls below some threshold�
But ideally� we would like to avoid generating a complete list of hypothe�

ses� In particular� if we choose as our termination criterion simply the di�
mensions of the box in parameter space� the number of hypotheses generated
in this way can be seen to grow as the square of the dimensions of the box
at a leaf� Clearly� this is not very desirable� and we would like to be able to
choose the termination criterion� which determines the accuracy or weakness
of the solution� without paying such a high cost�

A solution to this dilemma is to accumulate solutions for small regions
of transformation space� That is� we replace the variables best quality�
best box� and best features themselveswith arrays corresponding to quan�
tized versions of parameter space� We can choose the quantization of those
arrays to be signi
cantly coarser than the dimensions of the terminal box in
the search algorithm� The e�ect of this is that locally sub�maximal solutions
near �in parameter space� a locally maximal solution tend to be suppressed�
By choosing the quantization of the arrays holding the locally optimal so�
lutions suitably� we can make certain that sub�maximal solutions only are
suppressed if they share a signi
cant number of features with the nearby
maximal solution�

Because of the quantization of the arrays holding the locally maximal
solutions� this approach does not guarantee� however� that solutions in dif�
ferent bins do not share features� Therefore� even in this approach� we still
need to run the greedy algorithm shown in Figure � to make sure that all
the line hypotheses found by the line 
nder are supported by disjoint sets of
features in the image�

� Results

The algorithm as described above has been implemented
in CMU CommonLisp�� on a SparcStation 	� The input to the algorithm
was obtained by using a Canny�Deriche edge detector��� �� implemented in
ANSI C�

The algorithm is currently being used in the development of a vision sys�
tem for an industrial inspection task� However� for the following discussion�
we will use the example image in Figure �� a ��� by ��� pixel image of � BIC
razors� For all the experiments described below� the error bounds were set
to two pixels�

As we mentioned above� the line 
nder described in this paper can cope
with both point features and with line segment features�

Using point features is perhaps the most straightforward comparison with
the Hough transform� The image shown in Figure � yields ���� point features
�edge pixels with associated orientation�� If we apply the line 
nder described
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above directly to these features� 
nding the solution �essentially the same
solution as shown in Figure �� takes ��� seconds �a little less than � minutes��
While this is quite slow compared with a simple Hough transform� it should
be kept in mind that the algorithm 
nds solutions under well�de
ned error
bounds� that it ensures a unique interpretation of each edge pixel� and that
it is not subject to the aliasing problems of the standard Hough transform�

Fortunately� we have means at our disposal for speeding up the operation
of the algorithm signi
cantly� In particular� instead of using point features
as input to the algorithm� we can use line segment features�

For the standard Hough transform� there is no signi
cant advantage
to grouping edge pixels into line segments before carrying out the Hough
transform�each edge pixel is only considered once by the algorithm� and all
the 
intelligence� for the Hough transform is put into post�processing the
accumulator space�

The line 
nder described in this paper� however� carries out repeated
geometric operations involving the input features� It pays therefore to pre�
process the input features in such a way as to represent themmore compactly
and better suited for carrying out these geometric operations�

In order to do this� each connected chain of pixels in the edge image
output by the Canny�Deriche edge detector is identi
ed and approximated
to within an error bound of one pixel by a polygonal chain using a splitting
algorithm�

This step greatly reduces the number of features that need to be consid�
ered by the line 
nding algorithm� Instead of ���� point features� it can now
operate on ��� line segment features� The time required for the execution of
the line 
nding algorithm is reduced from ��� seconds to � seconds� The sub�
division of transformation space explored during this line 
nding problem is
shown in Figure ��

In using this grouping step� we have to ask ourselves� however� whether it
a�ects the accuracy or robustness of the line 
nding algorithm signi
cantly�

With regards to accuracy� a point on the line segment is at most one pixel
away from the location of the corresponding edge pixel� and this amount
could be reduced as much as desired using sub�pixel accuracy edge detection
and approximation�

With regards to robustness� we have to ask ourselves whether the group�
ing of edge pixels into line segments prior to the line 
nding algorithm per�
haps precludes some important line hypotheses from being found� But line
segments are only extracted for connected chains of pixels and are �by neces�
sity� broken at points of high curvature� Therefore only pixels that naturally
form part of the same line hypothesis are grouped together� and the subset
structure imposed on the set of all edge pixels by the grouping step is still
completely compatible with all 
reasonable� line hypotheses�

The next question that is important to ask is how the running time of
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the line 
nding algorithm is related to the number of input features� From
benchmarks and the analysis of a related algorithm��� we expect a nearly
linear dependence of the running time on the number of input features� To
see whether this is true of the line 
nding algorithm as well� the line 
nding
algorithm was applied to randomly generated test images�

Each of the test images consisted of between 	� and ��� randomly placed
line segments that were each �� pixels long� In addition� each image contained
� randomly placed long lines� Each of those lines was visible as � line segments
in the image with a total length of ��� pixels� The line 
nding algorithm
was required to 
nd any line that was supported by at least ��� pixels in the
image� An example of one of these images is shown in Figure ��

The results of these simulations are shown in Figure �� Each 
�� symbol
represents the average running time of ��� trials� We 
nd a nearly linear re�
lationship between the number of edge pixels �or� equivalently� line segments�
in the image and the running time of the algorithm�

Another interesting question to ask is how the running time of the algo�
rithm depends on the termination condition� For the experiments above� we
chose to terminate the exploration of a solution as soon as the box in trans�
formation space had dimensions smaller than � pixel in the � dimension and
��	�� in the � dimension� For the present example� this corresponds to a
Hough space of about ��� by ��� pixels�

As we saw above� this adds some additional uncertainty �
weakness�� to
the error bounds� and for certain applications� we may prefer more exact
solutions� Figure �� shows the dependence of the running time of the algo�
rithm for di�erent choices of the dimensions of terminal box when applied
to the image in Figure �� The horizontal axis �on a logarithmic scale� shows
the size of the terminal box� with a scale of � corresponding to a terminal
box of dimensions � pixel by ��	��� �To compensate for variability due to
garbage collection times and operating system overhead� each data point is
the average of 
ve runs on the same data��

As we can see� the running time of the algorithm is approximately log�
arithmic in the inverse of the dimensions of the terminal box �a similar re�
lationship holds for the amount of space required�� This is similar to the
adaptive or multiresolution Hough transforms� but is in signi
cant contrast
to the standard Hough transform� for which the running time and space re�
quirements are quadratic in the inverse of the dimensions of each Hough
bin�

� Discussion

This paper has described an e�cient algorithm for 
nding lines with well�
de
ned geometric and combinatorial properties� In particular� lines found
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by the algorithm satisfy a bounded error criterion� and it is guaranteed that
each feature is counted towards only a single line hypothesis�

In applications� we have found that picking parameters for the algorithm
is simple and intuitive� The only parameters that are critical are the error
bounds on location and orientation of features relative to a hypothesized line
and the minimum total length of edge pixels by which a hypothesized line
must be supported in the image� these parameters depend� of course� on the
application�

The only other parameters that need to be picked are the weakness pa�
rameters �the dimensions of the box or rectangle in parameter space at which
we terminate the search�� and the size of the bins for the local maximiza�
tion of results� Because the running time of the algorithm depends only
linearly on the magnitude of the logarithm of the weakness parameters� we
can pick them conservatively in applications that require that the speci
ed
error bounds be satis
ed accurately� The choice of the size of the bins for
the local maximization of line hypotheses depends on properties of the edge
detector and on the particular applications� but in most applications� we do
not require the detection of very closely spaced parallel lines� and bins that
are of the order of magnitude of � pixels in the � dimension and ��� in the �
dimension have proven su�cient for several applications�

Given the vast amount of research on the subject� it is not surprising that
the line 
nder described in this paper has close relations to a number of other
approaches�

Foremost� the algorithm is similar to an adaptive or dynamically quan�
tized version of the Hough transform���� ����	��� It is also somewhat reminis�
cent of an exploration of Hough transform space using the converging squares
algorithm��� Like those methods� it begins with a coarse subdivision of pa�
rameter space and re
nes it in regions that look 
promising�� in the sense
of possibly containing good line hypotheses� However� the present method
di�ers from those other methods in its error model�

Other methods compute the set of all possible transformations that would
be compatible with a given edge pixel in image space without explicitly tak�
ing into consideration the amount of error that may be present on the location
of that edge pixel� Some robustness against errors is then achieved by in�
tegrating votes over local regions in parameter space� usually collections of
small� non�overlapping rectangles�

From our foregoing geometric analysis in Section 	�	� the problems with
such an approach should be clear� a rectangle in parameter space corresponds
to a bow�tie region �plus a curved triangle� in image space� something that
hardly constitutes a good implementation of any interesting noise model of
lines in images� Furthermore� the fact that the accumulator rectangles in
parameter space are non�overlapping in many Hough transform based line
detection methods means that votes may be split among several rectangles�

��



The line 
nder presented in this paper interprets the subdivision of pa�
rameter space more carefully� For each rectangle in parameter space� it asks
which edge pixels are compatible with any of the lines described by parame�
ters in that rectangle under the given error bounds� In the standard Hough
transform view� this would mean that each rectangle in the subdivision is
dilated before testing it against the line parameters corresponding to a par�
ticular edge pixel�

More importantly� other error models� such as those based on in�uence
functions or probabilistic considerations�� 	� �� � can easily be used with the
current algorithm� in place of the uniform error bounds used in the descrip�
tion and derivation above� Even the direct incorporation of constraints such
as connectivity requirements in image space�� into the current algorithm is
easy�

It is also interesting to relate the current algorithm to the optimization
view of the Hough transform�� Stephens views the problem of line detection
as the problem of maximizing the logarithm of the likelihood function of
the line parameters given the edge pixels in the image� and he proposes
the use of local optimization algorithms like gradient ascent to 
nd optimal
solutions for line parameters� The scheme described in this paper can be
viewed as a simple yet powerful global optimization algorithm applied to the
maximization of a likelihood function�

Abstractly� in order to maximize a function f on a region D� it divides
D into two subregions D� and D�� and computes an upper bound bi on
maxx�Di

f�x�� It then explores Di further only if bi is greater than the best
maximal solution found so far� if it is not� then Di can safely be excluded
from further exploration�

An approach for 
nding lines that is completely di�erent from the Hough
transform is based on search������ In that approach� pairs of lines are grouped
together if they satisfy certain tests of colinearity and�or proximity� Such
an approach can also be regarded as related to the line 
nder described
in this paper� Like the line 
nder described here� such methods are often
based on more complex features than individual edge pixels�for example�
line segments� However� the search strategy itself is entirely di�erent� since
search based methods are organized around extending collections of features�
rather than around regions in parameter space� This dichotomy is similar
to the dichotomy between search�based approaches to object recognition and
parameter space based approaches for object recognition such as the Hough
transform� the main disadvantage of search based approaches is that they
tend to have exponential time complexity unless they incorporate heuristic
pruning methods���

��



In summary� this paper has presented an e�cient algorithm for 
nding
lines under bounded error� useful for many practical applications� In ad�
dition� the key idea of organizing the search around adaptive subdivisions
of parameter space while at the same time measuring errors in image space
should prove fruitful for a much larger class of problems� including e�cient
computation of the probabilistic Hough transform and general object recogni�
tion� Some tentative steps in that direction have already been undertaken���
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� global functions� bound�quality� evaluate�quality global
� parameters� rmax� error�bounds global variables�
� best�quality� best�box� best�features

� procedure rast�lines�features�
� begin
� best�quality �� �
� best�box �� none

� best�features �� none

� box �� �����������rmax��
�	 search�box�features�
�� end procedure

�� procedure search�box�features�
�� begin
�� consistent�features �� select features consistent with box

�� under the given error�bounds

�� if not is�done�box�consistent�features� then
�� bound�on�quality �� bound�quality�consistent�features�
�� if bound�on�quality 	 best�quality then
�� split box into box
 and box�
�	 search�box
�consistent�features�
�� search�box��consistent�features�
�� end if
�� else
�� quality �� evaluate�quality�consistent�features�
�� if quality 	 best�quality then
�� best�quality �� quality

�� best�box �� box

�� best�features �� consistent�features

�� end if
�	 return from search

�� end if
�� end procedure

Figure �� The basic line 
nding algorithm� In practice� the algorithm is
implemented as a best�
rst search� and there are a number of small modi
�
cations described in the text�
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Figure 	� The geometry of consistency between a point and a box of line
parameters ��
� ���� ��
� ��� in parameter space under an error bound of �� See
the text for a more detailed explanation�
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Figure �� The derivation of the distance � in the previous diagram�
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� global parameter� minimum�quality

� function greedy�post�process�set�of�hypotheses�
� Note� each hypothesis in set�of�hypotheses consists of a pair

� of line parameters ��� �� and a set of edge segments that

� are matched by that hypothesis� the set of features associated with

� each hypothesis is destructively modi�ed during the execution of

� the algorithm�

� begin
� if set�of�hypotheses � the empty set then
�	 return the empty set

�� end if
�� best �� the hypothesis in set�of�hypotheses whose features

�� have the best total quality

�� if quality�best� � minimum�quality then
�� return the empty set

�� else
�� remaining �� set�of�hypotheses � fbestg

�� remove the features matched by the hypothesis best from

�� each hypothesis in remaining

�	 processed �� greedy�post�process�remaining�hypotheses�
�� return fbestg � processed

�� end if
�� end function

Figure �� The greedy algorithm used for post�processing a list of hypotheses
to ensure that the set of features matched by any two hypothesized lines are
disjoint from one another�
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Figure �� The input image �a collection of � BIC razors� used for Figure ��
Applying the Canny�Deriche edge detector to this image yields ���� edge
pixels that can be grouped into ��� line segment features within an error
bound of one pixel�
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Figure �� The features found by the method described in the text� Detec�
tion of candidate lines took � seconds using the algorithm described in the
text� and post�processing to obtain a unique interpretation for each edge seg�
ment took ��� seconds on a SparcStation 	 in CommonLisp� Error bounds
were set to 	 pixels� and the minimum required total length for the edge seg�
ments corresponding to a line was set to be �� pixels� a choice which selected
speci
cally the handles and heads of the razors�

		



Figure �� The subdivision of parameter space explored during the detection
of the features shown in Figure ��

Figure �� A representative example of a simulated image used for the bench�
marks for ��� randomly placed background segments�
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Figure �� The running time of the algorithm on simulated images� Each
image contained � di�erent groups of � colinear edge segments of a total
length of ��� pixels plus between 	� and ��� randomly placed segments of
�� pixels each�
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Figure ��� The running time of the algorithm for di�erent choices of the size
of the terminal box �
weakness��� The image used in this benchmark was
the same as in Figure ��
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