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Abstract

Deformable 3–D models can be represented either as traditional explicit surfaces, such as trian-

gulated meshes, or as implicit surfaces. Explicit surfaces are widely accepted because they are simple

to deform and render, but fitting them involves minimizing a non-differentiable distance function. By

contrast, implicit surfaces allow fitting by minimizing a differentiable algebraic distance, but are harder

to meaningfully deform and render.

Here we propose a method that combines the strength of both approaches. It relies on a technique

that can turn a completely arbitrary triangulated mesh, such as one taken from the web, into an implicit

surface that closely approximates it and can deform in tandem with it. This allows both automated

algorithms to take advantage of the attractive properties of implicit surfaces for fitting purposes and

people to use standard deformation tools they feel comfortable for interaction and animation purposes.

We demonstrate the applicability of our technique to modeling the human upper-body, including

face, neck, shoulders and ears, from noisy stereo and silhouette data.
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I. INTRODUCTION

In the world of Computer Vision and Computer Graphics, 3–D objects tend to be modeled as

explicit surfaces such as triangulated meshes or parametric surfaces. Because such representations

are intuitive and easy to manipulate, they are widely accepted both by researchers and by

graphics designers. These representations, however, are not necessarily ideal for fitting surfaces

to potentially noisy and incomplete data such as 3–D points produced by stereo systems or 2–D

points from image contours. Fitting typically involves finding the facets that are closest to the

3–D data points or most likely to be silhouette facets, which introduces non-differentiabilities

that degrade the convergence properties of most optimizers.

Implicit surfaces are well-suited for simulating physically based deformations [25], [28], [37]

and for modeling smooth objects [2], [39]. Because the algebraic distance to an implicit surface

is differentiable, they do not suffer from the drawbacks discussed above when it comes to fitting

them to 2 and 3–D data [29], [35]. However, they have not gained wide acceptance, in part

because they are more difficult to deform and to render than explicit surfaces.

In short, explicit surface representations are well suited for graphics purposes, but less so for

fitting and automated modeling. The reverse can be said for implicit surface representations. In

this paper, we propose to combine the strengths of both approaches and to avoid their drawbacks

by:

1) transforming explicit triangulated surfaces into implicit ones, whose shape closely approx-

imates that of the original triangulations;

2) deforming the implicit and the explicit surfaces in tandem for fitting and rendering pur-

poses.

We achieve this by attaching a volumetric primitive to each facet of the explicit mesh to turn

it into an implicit mesh as shown in Fig. 1. Its shape depends only on the facet geometry and,

when a facet deforms, so does the corresponding primitive. For fitting purposes, we can use any

appropriate parameterization of the explicit surface since it uniquely defines that of the implicit

one. In this work, we use either Dirichlet Free Form Deformations [26] or PCA weights [4].

Our contribution is therefore an approach to surface reconstruction that lets us take an explicit

surface model of arbitrary complexity and regularity, turn it into an implicit mesh, and take

advantage of the attractive properties of implicit surfaces for fitting purposes. Because the implicit
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surface closely approximates the explicit one and they deform together, the reshaped explicit

mesh is also available for rendering and animation. This lets us handle arbitrary triangulations

that were not necessarily designed with fitting in mind.

Fig. 1. Converting an explicit surface into an implicit mesh. From left to right: single facet, explicit surface mesh before and

after deformation. The implicit meshes that approximate them are shown in transparent light gray.

In the remainder of the paper, we first briefly review earlier approaches. We then introduce our

approach to creating implicit meshes and fitting them to image data. Finally we demonstrate its

applicability to the complex task of fitting upper-body model that include head, neck, shoulders,

and ears, to stereo and silhouette data.

II. Related work

Three-dimensional reconstruction of visible surfaces continues to be an important application

of Computer Vision and many approaches relying on full 3–D explicit representations, such as

3–D surface meshes [6], [38], parameterized surfaces [24], [34], local surfaces [14], particle

systems [36] and PDE-based models [10], [20] have been proposed. In the Computer Graphics

world, there has also been a great deal of work on fitting parametric surfaces, such as B-spline

patches [11], [21], and subdivision surfaces [16], [23], to unorganized 3D data. They are typically

used to reconstruct surfaces from relatively clean laser-scanned data without using a predefined

model. Some of these methods can automatically retrieve the structure from unorganized sets

of data points [11], [16]. However, when dealing with very noisy and incomplete data such as

the stereo disparity maps we use, they are less than ideal. Furthermore, tangent plane or G1

continuity constraints have to be enforced at the boundaries between patches, which may result

in an ill-posed constrained least-square problem.
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There has also been sustained interest in the use of volumetric primitives [28], [38] and

implicit surface representations [8], [27], [29], [32], [35] for fitting purposes. Most of these

methods have been tailored for specific shapes such as the human body. However, more generic

methods that rely on implicit algebraic surface splines have also been investigated [2]. These

representations are based on both the parametric and implicit nature of B-spline basis functions.

Because, complex shapes may require very many patches, fitting such a model to 3–D data would

involve a large number of control parameters to optimize. Implicit surfaces can be deformed by

twisting, bending, and tapering the space in which the model lives using a suitable warping

function [3], [5], [31], [40]. However, these deformations are limited to surfaces with both

parametric and implicit representations, such as spheres or cylinders.

Radial basis functions (RBF) based implicit surfaces [12], [13], [39] and Moving Least-Square

(MLS) surfaces [1], [22], [32] have proved extremely effective for tasks such as interpolating

scattered data, especially when obtained using laser scanners. However, they are not designed to

handle the kind of noise one encounters when fitting surfaces to image data extracted using purely

passive techniques such as stereo. Furthermore, an RBF surface is controlled by the position of

the RBF centers and by the off-surface points, required to eliminate trivial solutions. Fitting

them then requires computing the RBF weights which uniquely determine the surface. This

entails an increase in the number of the variables to be optimized during surface fitting, which

is suboptimal in the presence of noisy data because it tends to result in an over-parameterized

model and ill-posed fitting problem that requires sophisticated regularization constraints to be

solved. We are not aware of any existing technique that can do this. The same can be said

for MLS surfaces that achieve smooth interpolation by joining local patches, defined on a local

reference domain. By contrast, we will show that because the shape of our implicit meshes only

depends on the 3-D position of the underlying explicit mesh, we can easily use well established

techniques to reduce the number of optimization variables.

In short, both explicit and implicit approaches to 3–D modeling have their strengths and

weaknesses. Explicit surfaces are easy to deform and render, but are not ideal for fitting purposes

because of the non-differentiability of the distance function. Implicit surfaces do not suffer from

this problem [29], [35], but it is not always easy to control their shape in an intuitively pleasing

way. To combine the strengths of both approaches, it is therefore important to be able to go

back and forth between the two kinds of representations, which is what we propose here.
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Fig. 2. Distance function for triangular metaballs. (a) Seven-region segmentation of the facet plane used in Eq. 1. We

also represent the local coordinate system {m1,m2,m3}. (b) Distance function d(x) for a standardized facet with vertices

P1 = {0, 0, 0}, P2 = {1, 0, 0} and P3 = {0, 1, 0} when x moves in the z = 0 plane. Note that it is smooth across the facet

edges. (c) Exponential potential field function, showing how the smoothing parameter k controls the range of influence of the

primitives and, thus, the amount of smoothing.

III. FROM EXPLICIT TO IMPLICIT MESHES

To create an implicit mesh that can deform in tandem with an explicit one, we define an

implicit surface that closely approximates the explicit mesh and whose deformations depend

only on the motion of its vertices.

To this end, we attach a volumetric primitive, or metaball, to each facet. This can be done in

two different ways. The simplest is to use spherical primitives as was done in [18], which works

best for fairly regular and high-resolution meshes. The more general approach to accurately

approximating arbitrarily low-resolution or irregular meshes we advocate here is to use the

triangular metaballs depicted by Fig. 1. These are defined in terms of a C 1 distance function d

that closely approximates the orthogonal distance to the whole facet as a piecewise-polynomial

function and is computed as follows.

Let x be a 3–D point and F a facet with vertices P1, P2, and P3. To compute d(x), the

distance of x to F , we first define the seven-region partition of the facet plane depicted by

Fig. 2(a) and compute Px, the orthogonal projection of x into that plane. When x projects inside

the facet, Px belongs to reg1 and we take d(x) to be the squared orthogonal distance to the

plane. If x projects outside of the facet but in in the bands perpendicular to the edges, Px falls
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d(x) =



















(

n•(x−P1)
‖n‖

)2

if Px ∈ reg1

‖(x−Pi)•e‖
2

‖e‖2 if Px ∈ reg2, reg3, reg4, Pi ∈ {P2, P3, P1}

‖x − Pi‖
2 if Px ∈ reg5, reg6, reg7, Pi ∈ {P2, P3, P1}

(1)

within regions reg2, reg3 or reg4. We then take d(x) to be the squared Euclidean distance from

the closest facet edge. In the remaining cases, Px falls within regions reg5, reg6 or reg7 and

we take d(x) to be the Euclidean distance to the closest vertex. We therefore write where n

is the facet normal and e ∈ {P2P3, P1P3, P1P2} is the direction vector of the edge closest to

Px. Fig. 2(b) depicts d(x) for a standardized facet with vertices P1 = {0, 0, 0}, P2 = {1, 0, 0}

and P3 = {0, 1, 0} when x moves in the z = 0 plane. Inside the triangle, the distance is zero.

Outside, it is a quadric that derivatives are zero along the edges and at the vertices, which results

in smooth blending across regions.

Note that the distance of a point to a facet’s edge that appears on the second line of Eq. 1

is the cylindrical distance to that edge. Similarly, the distance to a vertex that appears on the

third line of Eq. 1 is the spherical distance to that vertex. Intuitively, a triangular metaball can

be understood as being made of two planes, one on each side of the explicit facet, that blend

seamlessly with three implicit cylinders whose axes are aligned with the edges and three implicit

spheres centered at the vertices. The cylinders and spheres are represented by dotted lines in

Fig. 2(a). In a companion report [19], we formalize these observations in terms of a matrix

representation, which we then use to formally prove that the distance of Eq. 1 is C 1 with respect

to the 3–D coordinates of both the vertices and data points.

Finally, the distance function can be incorporated in the following potential field function

fi(x) = exp(−k(di(x) − d2
0)) , (2)

where d0 represents the constant thickness of the implicit surface. Again, the total field is the

sum of the individual metaball fields, which yields the final expression of the implicit surface

as the set of points x ∈ R3 such that

F (x) = T −
N
∑

i=1

exp(−k(di(x) − d2
0) . (3)
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where T is a given iso-value. Note that the isosurfaces of the potential field, and therefore the

shape of the implicit mesh, are relatively unaffected by changes in the resolution of the explicit

surface. This is because the isosurfaces tend to be parallel to the facet planes and their distances

to the facets depend only on the d0 and k parameters of Eq. 2, over which we have full control,

as opposed to facet sizes.
In practice, both the d0 thickness and k smoothing parameters of Eq. 2 influence the smooth-

ness and accuracy of the implicit mesh. Increasing d0 or decreasing k tends to smooth the implicit

surface at the cost of increasing the volume they enclose. Our goal is therefore to find the best

possible compromise between accuracy and smoothness as a function of k and d0. To quantify

the influence of these two parameters, we introduce quantitative measures of smoothness and

accuracy that depend on the thickness of the volume enclosed by the implicit mesh.

• Surface waviness = w(k, d0): Average ratio of minimal and maximal volume thickness

evaluated respectively at the center of gravity of the facets and at their vertices.

• Surface thickness = t(k, d0): Average volume thickness measured at the same locations as

those used to evaluate waviness.

In practice, we constrain d0 to be less then 10% of the average edge length and seek values of

d0 and k such that

w(k, d0) > 1.0 − wmax , (4)

t(k, d0) < d0 + tmax , (5)

where wmax and tmax are two user specified thresholds [19]. Note that for generic models such

as the ones of Fig. 3(a), this computation needs only be performed once and the optimal values

of k and d0 stored and reused for all subsequent fits to image data.

IV. OPTIMIZATION FRAMEWORK

In this section, we introduce the framework we have developed to fit generic models such as

the ones of Fig. 3(a,c) to the image data, which here comes in the form of 3–D point clouds

from stereo and 2–D silhouette points from occluding contours.

A. Reparametrizing the Implicit Meshes

The shape of our implicit meshes depends only on the position of the 3–D vertices of the

corresponding explicit meshes. In theory, for fitting purposes, we could optimize the shape with
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(a) (b) (c) (d)
Fig. 3. Surface and control triangulations. (a,c) The generic low-resolution triangulation we use for upper-body and ear modeling.

(b,d) A subset of vertices serve as DFFD control points. They are themselves triangulated to impose the regularization constraints

of Section IV.

respect to the coordinates of these vertices. However, because image data is very noisy, this

would amount to over-parameterization and would not yield good results. In earlier work [17],

we showed that introducing Dirichlet Free Form Deformations (DFFDs) is an effective way to

handle this problem when fitting explicit meshes.

Unlike other Free Form Deformation methods [7], [31], DFFDs do not require the control

points to lay on a regular rectangular grid. This is achieved by replacing the usual rectangular

local coordinates by generalized natural neighbor coordinates [33]. This gives us the ability

to place control points at arbitrary locations. Given such a set of control points {P1, . . . , PN}

the surface shape is entirely described by the state vector S = {∆P1, . . . , ∆PN}formed by

concatenating the displacements of all the control points with respect to their original positions.

This approach naturally extends to implicit meshes since the distance d(x) of Eq. 1 depends

only the 3–D coordinates of x and on the corresponding facet’s vertices displacements, that are

themselves linear functions of the ∆Pi displacements introduced above. We therefore rewrite

the distance function of Eq. 1 as d(x,S), where S is the state vector defined in the previous

paragraph. Similarly, when considering all the facets together, we rewrite the field potential

function F of Eq.3 as

F (x,S) = T −

N
∑

i=1

exp(−k(di(x,S) − d2
0)) , (6)

where x is a point in R3 and di is the distance to facet Fi.
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In this fashion, we have parametrized both the explicit and the implicit surface in terms

of the S state vector. As discussed in the following section, this will allow us to deform

both representations in tandem to fit the corresponding surface to image data by minimizing

a differentiable objective function.

B. Objective Function for Implicit Meshes

In the case of implicit meshes, we use the image data to write nobs observation equations of

the form

F (xi,S) = εi , 1 ≤ i ≤ nobs , (7)

where F is the field function of either Eq. 6, xi one of the data points, S the state vector, and

εi the corresponding residual. εi is the algebraic distance to the implicit mesh and should be as

small as possible. Fitting therefore implies minimizing

χ2 = v
tWv (8)

where v = [ε1, . . . , εnobs
] is the vector of residuals and W a diagonal weight matrix associated

to the observations. In practice, our system must be able to deal with observations coming from

different sources. To guarantee that their influences are commensurate, we assign a weight wtypei

to each kind of observation, where typei is the nature of the observation, and minimize

χ2 = 1/2
∑

wtypei
ε2
i , (9)

where the wtypei
are chosen so that the contribution to the objective function gradients of all the

observations of a particular kind are of similar magnitudes [15].

Because there are both noise and potential gaps in the image data, we found it necessary to

introduce a regularization term that garantees smooth deformation of the generic model. This is

achieved by triangulating the control points as shown in Fig. 3(b,d) and introducing a deformation

energy ED that approximates the sum of the square of the derivatives of displacements across

the control surface. By treating the control triangulation facets as C 0 finite elements, we can

write

ED = ∆T
x K∆x + ∆T

y K∆y + ∆T
z K∆z (10)
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where K is a stiffness matrix and ∆x, ∆y and ∆z are the vectors of the x, y and z coordinates

of the control vertices’ displacements. The term we actually optimize becomes

ET = χ2 + λDED , (11)

where λD is a small positive constant. Because F is differentiable everywhere, so is ET .

Furthermore, this formulation allows us to treat stereo and silhouette data in a similar way.

V. RESULTS

To validate our approach, we focus on using stereo and silhouette data because they are

complementary sources of information. Stereo works well on textured surfaces facing the camera

but fails where the view direction and the surface normal is close to being orthogonal, which is

exactly where silhouettes provide robust information.

We first illustrate the behavior of our implicit meshes on upper body data, including head,

neck, shoulders, and ear. We compare our triangular implicit meshes against traditional explicit

meshes and discuss fitting accuracy and computational complexity issues.

A. Fitting to Stereo and Silhouette Data

In the example of Fig. 4 we use as input an initially uncalibrated 11–frame video sequence in

which the camera moves around a static subject. We first used a model-driven bundle-adjustment

technique [15] to compute the relative motion and, thus, register the images. We then ran a

maxflow graph-cut algorithm [30] to derive disparity maps from consecutive image and produce

the clouds of 3–D points depicted by images (b,d) in the figure’s middle row. We used snakes

to outline the silhouettes shown as white lines in the top row. We also picked five 2–D points—

outside corners of the eyes, corners of the mouth and tip of the nose—to compute rotations

and translations that roughly line up the generic model with the images. As shown in images

(a,c,e) of the figure’s middle row, even though the face is relatively well aligned, the generic

shoulders are fairly far from the real ones. The bottom row of the figure depicts the fitted and

textured model whose projections are now correct in all views. This shows that the recovered

shape is geometrically accurate even at places where the surface slants away from the cameras

and, therefore, where stereo fails. Note that these texture-mapped views were generated using

standard OpenGL tools to render the explicit surface that was deformed in tandem with the
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(a) (b) (c) (d) (e)
Fig. 4. Reconstruction from an uncalibrated video sequence. Top row: 5 of 7 images from a short video sequence with overlaid

silhouettes for the neck and shoulders. Middle row: (a,c,e) Projection of the initial 3–D wireframe model on the image (b,d)

Projection of the cloud of 3–D points computed using a maxflow graph-cut stereo algorithm. Bottom row: Textured reconstructed

models obtained by using a triangular implicit mesh model for the upper body.

(a) (b) (c) (d)

Fig. 5. Comparing explicit and implicit approaches to fitting our model to the stereo and silhouette data of Fig. 4. We show

magnified front view of the shouldes and side view of the face of the shaded model with the occluding contours overlaid as

white lines. (a,b) Using explicit surfaces yields a poor fit around the shoulders and the face. (c,d) Implicit surfaces yields a 3–D

surface whose projection matches the occluding contours much better.

implicit one. In other words, having both kinds of representation simultaneously available at the

same time spared us the need to use sophisticated and time consuming implicit surface rendering

techniques.
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The results of Fig. 4 were obtained by attaching triangular primitives to the low resolution

model of Fig. 3(a). In Fig. 5, we compare the results of fitting the model to the same data

using either our implicit surface formalism or a more traditional scheme. In both cases, the

meshes were parameterized in terms of the DFFD control points of Fig. 3(b). When not using

implicit surfaces, we minimize an objective function that is designed to constrain facets near

the occluding contour to be seen edge-on [19]. More precisely, given a silhouette point and the

line-of-sight it defines, we look for a facet that is almost parallel to it and such that there is a

3–D point along this line for which the Euclidean distance from the point to the facet is small.

If such a facet exists, we introduce in the objective function a term proportional to the square

of this distance. Minimizing the objective function then tends to make the distance even smaller

and results in the facet producing an occluding contour that goes through the silhouette point.

This explicit formulation is much more sensitive than the implicit one to the presence of large

facets that degrade the accuracy and yields noticeably worse results near the occluding contours.

In a second example, we consider a human ear, whose shape is far more complex. As shown

in Fig. 6(a), we projected textured light on an ear and acquired a stereo pair of images, which

allowed us to compute a fairly dense disparity map. We then outlined occluding contours in

both images and fitted the model of Fig. 3(c), which we found on the web, to this stereo and

silhouette data, both with and without using our implicit surface formalism. Again, as shown in

Fig. 6(d), it is only when using our implicit surfaces to perform the fit that the model’s occluding

contours end up lining up correctly with the silhouettes.

In the final example of Fig. 8, we demonstrate the versatility of our approach by replacing the

DFFD models we have used so far by high resolution morphable face models parameterized in

terms of PCA weights [4]. In earlier work [9], we showed that they can be fitted to short video

sequences using point correspondences. Here, by simply turning them into implicit meshes and

retaining the same parameterization, we can further refine them using silhouette information.

Note that even though the model, with its 75972 vertices and 150958 facets, is very complex,

fitting was performed in a reasonable time of approximetly 10 min on a 2.8GHz PC.

B. Accuracy and Computational Complexity

To quantify fitting error and computational complexity, we started with Ear0(1167 vertices,

1620 facets), the model of Fig. 3(c). We then subdivided its facets to obtain three additional
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(a) (b) (c) (d)
Fig. 6. Ear modeling. (a) One image of the stereo pair with overlaid silhouettes. (b) Corresponding cloud of 3D points.

(c) Shaded ear model fitted using explicit surfaces. (d) Shaded ear model fitted using implicit surfaces. Note that the model’s

occluding contours match the actual silhouettes much better.

(a) (b) (c)

Fig. 7. Measured fitting errors and computation times as a function of increasing resolution. (a) Mean distance in millimeters

of explicit and implicit mesh to the silhouette data. (b) Computation times for explicit and implicit mesh fitting on a 2.6GHz

PC in seconds. (c) Influence of the regularization constant λ on the root mean square error of the fit.

models of increasing complexity: Ear1(3954 vertices, 6480 facets), Ear2(14388 vertices, 25920

facets) and Ear3(54696 vertices, 103680 facets). Fig. 7(a) depicts the mean distance of the lines

of sight defined by the silhouette points to the models fitted with or without using implicit

meshes. When using them, the accuracy varies little with mesh resolution and, as observed

before, is much better than the one obtained without them. As shown in Fig. 7(b), there is a

computational price to be paid for using implicit meshes. Note however that, because the result

is fairly insensitive to mesh resolution, there is no advantage to subdividing the mesh and one

need therefore not incur this penalty. Furthermore, even for the model with 103680 facets, the

computation time remains manageable on a modern machine.

To gauge the influence of the regularization constant λD of Eq. 11, in Fig. 7(c), we plot the
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(a) (b) (c) (d) (e) (f)
Fig. 8. Head modeling using high resolution morphable models. (a,b) Two images from a short video sequence with outlined

silhouettes. (c,d) Recovered face shape using only correspondences. Note that the shape of the occluding contours is somewhat

inaccurate. (e,f) Improved shape using silhouette information.

value of
√

(
∑

wtypei
ε2
i /
∑

wtypei
), the root mean square residual of our fit using the notations

of Eq. 9. For very small values of λD, the influence of the regularization term is insufficient to

“convexify” the problem and the optimizer tends to get trapped in meaningless local minima. For

very large values of λD, the model becomes too stiff again resulting again in increased errors.

However, between these extremes, there is a large range in which the result is fairly insensitive

to the exact value of λD, making it easy to pick an appropriate value.

VI. CONCLUSION

We have presented an approach to combining explicit and implicit surface representations that

allows us to take advantage of the strengths of both. To this end, we have developed a technique

for creating implicit meshes from explicit ones by attaching triangular primitives to their facets.

These primitives are defined in such a way that their shape depends only on the 3D location of

the mesh vertices, which allows us to simultaneously fit both representations to image data by

minimizing a differentiable objective function.

We have chosen to use DFFD control points to parameterize the position of the mesh vertices,

which allows us to perform this minimization with respect to a limited number of parameters.

Our method, however, is generic as we demonstrated by also applying it to morphable face

models [4].

We used the example of upper-body modeling using stereo and silhouette data to demonstrate

the power of this approach. The explicit models we used were not tailored for fitting purposes and

exhibited both highly irregular facets and a complex topology, none of which had a significant

impact on the quality of the fitting.
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[17] S. Ilić and P. Fua. Using Dirichlet Free Form Deformation to Fit Deformable Models to Noisy 3-D Data. In European

Conference on Computer Vision, Copenhagen, Denmark, May 2002.
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