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Abstract

In this paper, we propose a face reconstruction technique
that produces models that not only look good when texture
mapped, but are also metrically accurate. Our method is
designed to work with short uncalibrated video or movie
sequences, even when the lighting is poor resulting in spec-
ularities and shadows that complicate the algorithm’s task.

Our approach relies on optimizing the shape parameters
of a sophisticated PCA based model given pairwise image
correspondences as input. All that is required is enough rel-
ative motion between camera and subject so that we can de-
rive structure from motion. By matching the results against
laser scanning data, we will show that its precision is ex-
cellent and can be predicted as a function of the number
and quality of the correspondences. This is important if one
wishes to obtain the appropriate compromise between pro-
cessing speed and quality of the results.

Furthermore, our method is in fact not specific to faces
and could equally be applied to any shape for which a shape
model controlled with relatively small number of parame-
ters exists.

1 Introduction

In recent years, the movie industry has produced such re-
alistic 3-D face models from images that we have come to
take them for granted. However, a quick look at the credits
at the end of a movie such as “The Matrix Reloaded” and
at the budgets that are involved, should alert the careful sci-
entist to the fact that this is a misperception. As explained
in a recent SIGGRAPH sketch [1], the extraordinary qual-
ity of the models shown in that movie required the use of
a studio with five calibrated high resolution cameras, care-
fully controlled lighting, and an untold number of hours of
work. Furthermore the 3-D shapes were obtained not di-
rectly from the images but by laser-scanning a plaster cast
of the actors’ faces.
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A few years ago, Blanz & Vetter [2] have proposed
an extremely impressive appearance-based approach that
addresses this issue using a sophisticated statistical head
model. It includes shape and texture components that have
been learned from a large database of human heads. It al-
lows reconstruction from a single image and uses the Phong
illumination model to handle illumination effects, but the
shape and texture recovery may be perturbed by large cast
shadows or specularities [3, 4]. In this paper, we propose
a technique that reduces the sensitivity to illumination by
replacing the texture component of the model by informa-
tion provided by 2-D point correspondences in all pairs of
consecutive images. This helps because such correspon-
dences tend to be affected comparatively little by illumi-
nation changes given proper normalization. Furthermore,
this approach has the potential for increased automation by
eliminating the need for 3—D feature points whose projec-
tions are known.

The main insight of this paper is that, given enough such
correspondences in all consecutive pairs in the sequence and
a linear shape model, recovering both the shape and the pose
of all cameras with respect to it can be formulated as a least-
squares problem that is both close to being quadratic and
well conditioned. We can therefore do it accurately even
though many correspondences may be erroneous and the
others are only precise to the nearest pixel. This results in a
method that

e Allows the automated construction of models that not
only look good when texture mapped but are also met-
rically accurate.

e Deals with uncalibrated sequences acquired with un-
controlled scene illumination that may produce cast
shadows and specularities.

Figs. 1 and 2 depict two such sequences that our algo-
rithm handles well, even though they create major problems
for some of the best current structure-from-motion methods
such as graph-cuts stereo algorithms [5, 6]. Our approach
is related to the Model-Based Bundle adjustment technique
proposed by Shan et al. [7] but we do away with the require-
ment for a set of 3-D feature points whose projections are
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Figure 1: (a,b,c) Three grainy 160 x 236 images from a sequence of five, digitized from an old celluloid film. (d) Reconstructed model
shaded using a light source estimate. Note that the pattern of the shadows corresponds quite accurately to those that appear in (b), which
indicates that both the shape the light source estimate are correct. This actor is known to have been a chain smoker. We therefore took the
liberty of adding a virtual cigarette, which casts a shadow at the appropriate place. (e,f) Texture-mapped views of the model without and

with the virtual cigarette.

known, which, in practice, results in a relatively complex
processing chain [8].

This leads to a streamlined algorithm that only requires
an approximate 3—D pose estimation in one image and pos-
sibly noisy 2-D correspondences between frames to pro-
duce high-quality models. We will use laser scanning data
to show that, given enough correspondences, they are metri-
cally accurate and that the precision can be estimated from
the recovered camera configuration and number of corre-
spondences. As a result, if speed is more important than
precision, one can be traded for the other with predictable
results by reducing the number of correspondences.

Our contribution is therefore a face reconstruction algo-
rithm that is metrically accurate, predictable, amenable to
full automation, and can handle the kind of images one is
likely to obtain in uncontrolled environments. Furthermore,
our method is in fact not specific to faces and could equally
well be applied to any shape for which a shape model con-
trolled by a relatively small number of parameters exists.
We chose to implement and evaluate our approach in the
context of head-modeling because heads are one of the most
complex objects for which the appropriate low-dimensional
models have been developed.

In the reminder of the paper we first brifly discuss ear-
lier appraches. We then introduce our apprach to recon-
struction. Next we analyse and validate our method and
finally show results of face reconstruction under hard light-
ening conditions and compare them with the laser—scanned
ground truth.

2 Related Work

Our approach incorporates a sophisticated face model into
a bundle-adjustment framework. We briefly review related
techniques.

2.1 Bundle-Adjustment and Autocalibration

Bundle-adjustment is a well established technique in the
photogrammetric community. Lately, it has been increas-
ingly used in the computer vision community but most re-
sults have been demonstrated in man-made environments
where feature points can be reliably extracted and matched
across images [9]. One cannot assume that those results
carry over directly in the case of ill-textured objects for
which correspondences cannot be established with great
precision.

In earlier work [10], we have shown that a generic face-
tized model could be used to derive shape constraints that
adequately regularize the problem. Similarly, Shan et al. [7]
introduced a model-based bundle adjustment technique in
which the optimization variables are the camera positions
and the model shape parameters. However, both these ap-
proaches rely on face models that are too simple to be accu-
rate and involve the use of 3-D features points whose pro-
jection is known. Our new approach does away with both
of these limitations.

2.2 Using Head Models

In recent years, a great many approaches to modeling faces
from image and range data have been proposed. They rely
on user-supplied correspondences [11], stereo [12], shad-
ing [13, 14], structured light [15], silhouettes [16] or low-
intensity lasers.

Successful approaches to automating the fitting process
have involved the use of optical flow [17] or appearance
based techniques [18] to overcome the fact that faces have
little texture and that, as a result, automatically and reli-
ably establishing correspondences is difficult. This latter
technique is closely related to ours because head shape and
camera motion are recovered simultaneously. However, the
optical flow approach avoids the “correspondence problem”
at the cost of making assumptions about constant illumina-
tion of the face that may be violated as the head moves.
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Figure 2: (a,b,c) Three images of a face lighted by a single directional light source. Note the strong shadows that can create problems
for traditional stereo algorithms. (d) Shaded model shaded using the estimated light source vector for image (c). The regions in shadow
are shown in black and their pattern corresponds to that of the shadows in the image, indicating that both the shape and the light source
direction are approximately correct. (e,f) A profile image that has not been used to perform the reconstruction and the model seen from
the same viewpoint. (g,h,i) Three images of the same face under a much more diffuse lighting but with some specularities on the forehead
and nose. (j) Shaded view of the model reconstructed using these images, whose shape is almost exactly the same as that shown above.
(k) Cumulative function of distances between the two models. The median distance is 0.35mm, which corresponds to reprojection errors

smaller than 0.5 pixels on average. (1) Profile view that is almost indistinguishable from the one shown in (f).

This tends to limit the range of images that can be used,
especially if the lighting is not diffuse.

The original Blanz & Vetter approach [2] uses a so-
phisticated statistical head model that includes shape and
texture components that have been learned from a large
database of human heads. Its shape and texture parameters
can be adjusted so that it can synthesize images that closely
resemble the input image or images. While excellent re-
sults have been obtained using a single image, their quality
can degrade in the presence of large specularities and cast
shadows, which can be mistakenly interpreted as changes
in shape. We therefore chose to use only the shape com-
ponent of the model and to replace the appearance-based
approach by one that relies on pairwise image-point corre-
spondences. Because these can be obtained using normal-
ized cross correlation, which minimizes the influence of il-
lumination changes, our method is robust to such changes,
at the cost of having to use a short sequence as opposed to
a single image.

3 Approach

In this section, we introduce our approach to head modeling
from uncalibrated image sequences that may contain strong
specularities and shadows. We use 2-D point correspon-
dences in pairs of consecutive images as our main source
of information because the disruptive effect of illumination
changes are minimized for images whose viewpoints are
close and can be further attenuated by normalization.

In theory, given one image for which the 3-D head pose
is roughly and a second one seen from a relatively similar
viewpoint, we could recover shape and camera position as
follows:

1. Sample the face area in the first image.

2. Use a straightforward normalized cross correlation[19]
technique to find corresponding points in the second
image.

3. Minimize in the least-squares sense the image distance
between these corresponding points and those obtained
by backprojecting the points in the first image to the
model and reprojecting them into the second image.

In practice, because correspondences can be expected to be
noisy, we use an iterative reweighted least square technique
and, more importantly, we work with more than two im-
ages simultaneously. In the next section, we will show that
using in this manner the two consecutive pairs of a three
image sequence allows us to formulate a least-squares prob-
lem that is well conditioned and, therefore, noise resistant.
Our complete approach therefore iteratively adds images at
both ends of the sequence by establishing correspondences
between the first and last images that have already been pro-
cessed and neighboring ones that have not been considered
yet.

At each step of this process, we perform a least-squares
minimization that progressively refines model shape and
pose for all cameras. Unlike earlier approaches[7], our



method has no notion of a reference image and the pose
in the first image does not need to be precise because it will
be refined as all the others.

In the remainder of this Section, we introduce the state
variables of our models. We then describe in more detail
our optimization scheme using a single image pair and then
extend it to the processing of a complete sequence.

3.1 Shape and Pose Parameters

We use the face models developed by Blanz & Vetter[2],
which are stored as triangulated meshes with 75292 ver-
tices. Given such a mesh, let us consider S, the shape vector
obtained by concatenating the X,Y and Z coordinates of all
its vertices. A database of 3-D faces was used to compute
the shape vectors for 200 people and Principal Component
Analysis to approximate them as.
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where S represents an average face model, the S; are or-
thogonal vectors, and the «; are weights. By varying the
«; one can create a whole range of new faces and we treat
them as the state variables that control shape. These mod-
els also include texture descriptors but we do not use them
in order to increase our method’s robustness to illumination
changes. In our optimization scheme, we take the position
and orientation of the model to be fixed and compute the
position and orientation of each cameras with respect to it.
This entails no loss of generality and allows us to put all the
images on an equal footing.

We assume that the intrinsic camera parameters remain
constant throughout the sequence. In theory, given high pre-
cision matches, bundle-adjustment can recover both intrin-
sic parameters and camera motion [9]. In practice, how-
ever, we must be prepared to deal with the potentially poor
quality of the point matches. Therefore, we have chosen to
roughly estimate the intrinsic parameters and to concentrate
on computing the extrinsic ones using bundle-adjustment:
We use an approximate value for the focal length and as-
sume that the principal point remains in the center of the
image.

In short, given an m image sequence, the state of our
model is defined by 6 * m + n parameters where m is the
number of images and n the number of « shape coefficients.

3.2 Transfer Function in a Single Image Pair

Given images ¢jand io, let us assume that approximate
camera pose parameters are roughly known for the first
one. This lets us project the model into image 7; and sam-
ple the face area more or less densely depending on the

amount of computational power and processing time avail-
able. Given one such sample pgl , we use normalized cross
correlation[19] to find a corresponding point pgz in the sec-
ond image. We also compute a 3-D point by intersecting the
line of sight defined by pgl with the 3—-D model, and project
it into image %2, which yields the 2-D point ﬁfz. The func-
tion ¥ that maps pglinto f)?Z is known as the transfer func-

tion. It depends on both cameras pose parameters and on
model shape. If they are correct and if the correspondences

are perfect, we should have pfz = ﬁgz vl < j < my
and the reprojection error for point j can be expressed as

Apgm.2 = (pg2 — ﬁgl). Given a large enough set of sam-

ples Q;, = {p/,,1 < j < m;, }, we can therefore recover
the shape and position parameters by minimizing
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where A is the vector of « shape parameters, and C;, and
C;, are the extrinsic parameters for both cameras. We do
not assume either camera to be fixed, which is important
because we do not want to rely on perfect initialization in
any given image. It has been verified that all the parameters
can be correctly recovered even when the initial pose esti-
mate is off by a few degrees. Our formulation of F intro-
duces a slight bias because we do not treat the two images
symmetrically. This could be corrected by using a slightly
more sophisticated criterion[7]. In our case, however, be-
cause we use several pairs the biases cancel each other and,
as a result, have not noticeable influence.

3.3 Complete Sequences

The approach outlined above is not limited to an image pair
and extends naturally to triplets of images ¢ — 1,¢,7 + 1 in
the sequence, given an an approximate value for C;. We
a create (; set of samples in image ¢, compute correspon-
dences in the other two, and form the three-image objective
function

F3(A,Ci-1,Ci,Cit1) = ZHApg,i—1||2+|‘Apg,i+l||2

JEQ;

In Section4, we will argue that minimizing F3 is a well
conditioned least-squares problem if we use enough corre-
spondences and can therefore be used to derive reliable esti-
mates of both camera and shape parameters. We can further
refine this estimate by using additional images: We sample
independently images ¢ — 1 and ¢ + 1 to create sample sets
Qi—1 and Q;41, compute correspondences in images i — 2
and ¢ + 2 and form the objective function

F5(A,Ci—2,Ci-1,Ci,Cit1,Cite) = F3(A,Ci-1,C4,Cita)

+ Z HAPLM‘%H2 + Z ||Apz+l,i+2||2

JEQi—1 JEQit1



that we minimize with respect to all the parameters. This
process can then be repeated recursively for the whole se-
quence and the objective function we end up minimizing is
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where i, is the index of the one image for which we need

an initial pose estimate. Note, that because C;_is optimized
at the same time as the other extrinsic camera parameters,
that estimate need not be exact. This is made possible by the
fact that in our approach, there is never an explicit associa-
tion between 2—-D sample points in the images and specific
vertices or facets of the 3—D models. Instead, these associ-
ations are computed dynamically during the minimization
and can change.

In practice, we developed an optimization schedule in
which the number of shape parameters that are allowed to
vary progressively increases. Because the correspondences
are noisy, we perform iterative reweighted least-squares and
add a small regularization term. The function we actually
minimize is therefore:
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where the og, are the eigen values of the shape covariance
matrix provided with the model [2] and o an initially large
constant that progressively decreases.

4 Analysis and Validation

In practice, as shown in the example of Fig. 2, we get sim-
ilar results even when we use different sets of images of
the same subject and allow both shape and camera param-
eters to vary freely. In a companion techical report[20] we
analyzed the theoretical underpinning of this desirable be-
havior. We observed that, at least near its minimum, the ob-
jective function F' of Eq. 4 is close to being quadratic, so
the transver function tends to be quasi-linear for the values
of the v shape parameters being in the range —1, 1 as shown
in Fig. 3(b,c). It is therefore well suited for Levenberg-
Marquardt style minimization we can analyze its optimiza-
tion behavior of this procedure by simply looking at its Ja-
cobian, which is explained bellow.

Let S =[A,Ch,...,Cn], where A is the vector of shape
coefficients the C; are the pose parameters of each cam-
era, be the state vector with respect to which we optimize
the function Fiy of Eq. 4. For a given S, let Obs(S) be
the observation vector whose components are the individual

(b)

Figure 3: One coordinate of the transfer function for a particu-
lar facet as a function of the first two « shape parameters. (a) In
the range —10, 10 it is non-linear. (b) However, in the range of
“meaningful” shape parameters —1, 1 it is very close to being lin-
ear. (c¢) Similar linear behavior for another facet with a different
orientation.

Apg)wl Hterms that appear in Eq. 4 and J(S) be its Jaco-

bian with respect to the state variables. Minimizing F' us-
ing the Levenberg-Marquardt algorithm involves iteratively
incrementing S by vectors proportional to dS' such that

JT(S)J(S)dS = —J(S)Obs(S)

Because Fly is close to being linear, the eigenvalues of J7'.J
can be used to evaluate how well conditioned the system is.
In particular, if they are strictly positive, the system has a
single solution in the vicinity of the minimum we find. In
that case robustness to noise should increase with the re-
ciprocial value of the condition number, that it the square
root of the ratio of the smallest to the largest eigenvalue.
When computing in double-precision, it should be at least
bigger then 1012,

To test this, we performed Monte-Carlo experiments us-
ing three different types of head motions with three views
each time:

e Pure rotation around the head’s vertical axis, without
translation

e Rotation around the head’s vertical axis with small ro-
tations and translations around the other axes

e Significant rotations and translations around all three
axes

Fig. 4(a) depicts the average condition number over many
trials as a function of the number of correspondences being
used. The different curves correspond to the three different
types of head motions discussed above. In all cases, when
there are not enough correspondences, the system is under-
constrained, which results in one or more eigenvalues being
zero. However, as soon as the number of correspondences
is large enough, the system becomes over-constrained and
the condition numbers increase, which implies that the op-
timizer can be expected to converge towards a single mini-
mum. As could be expected from self-calibration work [21,
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Figure 4: (a) Number of correspondences vs. reciprocal condition number for three cases of head motion (Test Z — corresonds to rotation
around the z-axis, Test main Z — to rotation around the z-axis with the small rotations and translations around the other axes and Test
global — significan rotations and translations around all three axes) (b) Number of correspondences vs. median error for the case of major
rotation around the head’s vertical axis and small rotations around the other axis for ideal case and for different amount of Gaussian noise

(sigma = 1, 2,3 ) added to the established correspondencies.

22], pure rotation around a single axis yields the lowest con-
dition numbers while rotations around all three axis yields
the best.

Dominant rotation around the vertical axis yields inter-
mediate numbers and is therefore the most difficult con-
figuration one is likely to encounter in practice, as people
will rotate their heads around their necks but would be hard
pressed to completely avoid any rotation around the other
two axes. It is therefore the configuration we use in the ma-
jority of examples shown in Section 5. Fig. 4(b) depicts
the median error in that configuration when using synthetic
correspondences that are corrupted by increasing amounts
of noise and allowing all o shape parameters to vary. As
expected, as the number of correspondences increases and
with it the condition numbers, so does the system’s accu-
racy. These graphs can be used to predict the required num-
ber of 2-D correspondences needed to achieve a certain
level of precision given the accuracy of the algorithm used
to establish them. This is important if one is interested in in-
creasing speed by using as few of them as possible without
compromising the quality of the results.

5 Results

In all cases shown here, we initialized the system by roughly
specifying the 2—-D projection of 5 points in one single im-
age of each sequence to compute an approximate initial
pose estimate [23]. These points, however, were never used
again and that this initial estimate was refined at the same
as the pose estimates in all the other images.

Figs. 1 and 2 depict difficult images acquired under chal-
lenging lighting conditions. Those of Fig. 1 are small and
were digitized from an old celluloid version of the film.
Moreover non fixed eye gaze and the slight change in a fa-
cial expression did not disturb the final reconstruction. The

images in the first row of Fig. 2 were acquired with a strong
directional source that creates cast shadows and speculari-
ties. To illustrate those difficulties, in Fig. 5, we show the
output of Roy’s [5] maximum-flow stereo algorithm that we
ran on those images after having registered them using an
earlier technique [10]. To increase its robustness, we modi-
fied the code that is available on the web by introducing nor-
malized cross correlation into the objective function. The
results are good for the images in the second row of Fig. 2
because the lighting is closer to being diffuse but much less
so for the other two sequences. In other words, our method
does a good job of using the model to pool noisy informa-
tion. Note, in particular, that the shapes of the two recov-
ered models of Fig. 2 are very similar even though they have
been acquired under very different illumination conditions.
In other words, our approach is relatively insensitive to such
changes.

To quantify the accuracy of our method we used the two
seven image video sequences depicted by Fig. 6 and the
laser scans shown in Fig. 7(e). They were acquired using a
Minolta’™ laser scanner, whose theoretical precision is ap-
proximately 0.3 millimeters but which evidently also pro-
duces some completely erroneous points. As discussed in
Section 3, because we do not use the true intrinsic parame-
ters but estimated ones, our reconstruction can only be ex-
pected to be correct up to an affine transform. To evaluate
our results, we therefore compute the affine transform that
best maps them onto the laser-scanner data. In Fig. 7(f), we
plot the median distances between the affine-transformed
model and the scanner data. As expected, they are inversely
proportional to the number of images used and are in the
range predicted by the synthetic experiments of Section 4
given that accuracy of the correspondences in the order of
a pixel and the accuracy of the “ground truth” is somewhat



Figure 5: (a): Disparity map and corresponding shaded surface for the images of Fig. 1. (b, ¢): Similar results for the images of Fig. 2.

less than 0.3 mm. As in the case of the images of Fig. 2, ob-
served median distances of 0.55mm correspond to reprojec-
tion errors that are on average smaller than 0.5 pixel, which
again indicates that information from the various images has
been correctly merged to achieve an overall accuracy that is
greater than that of the individual correspondences while
rejecting erroneous ones. This also justifies our choice of
not attempting to recover the implicit camera parameters:
In theory it is possible, but, in practice, it would require
establishing much more accurate 2-D correspondences and
therefore using much higher resolution images than the ones
shown here.

6 Conclusion

We have presented a model-based structure-from-motion
approach to reconstructing faces from uncalibrated video
sequences that is robust to uncontrolled scene illumination.
Furthermore, it is amenable to full automation because it
can be initialized by simply providing a rough initial pose
estimate in one view, which many algorithms can now do,
and unlike earlier approaches does not require the use of
3-D feature points whose projections are known.

The main ingredient of this approach, a linear model of
a deformable objects that can be used to pool information
though a bundle-adjustment procedure, is in fact not spe-
cific to faces. It could be used for all manner of deformable
objects for which a geometric models may be available but
whose texture, unlike that of a face, may be arbitrary. This
will require defining the kinds of shapes for which the trans-
fer function has the quasi-linear behavior we have observed
in the of faces and, in future work, we will focus formalizing
this issue further with a view to developing fast algorithms
that exploit this property.
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1.2

Figure 6: First Row: Three images of short sequences of two different people. Second row: Shaded views of the reconstructed models.
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Figure 7: Comparison against profile views and laser scans. (a) Profile views of the two subjects of Fig 6 that have not been used for
reconstruction purposes. (b,c) Shaded and texture-mapped views of the models in a similar pose. (d) Occluding contour of the model
overlaid on the profile image. (e) Laser scans. (f) Median distance between the two reconstructed models and the two corresponding laser
scans as a function of the number of images(3, 5 and 7) used to perform the reconstruction. The error for zero images is the error between
the average face and the scanned one.
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