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Abstract

We present a novel method for performing data association
that handles complex motion models while increasing the
robustness of tracking and being suitable for real-time ap-
plications. Instead of using motion model in standard recur-
sive fashion, we robustly fit it over multiple frames simulta-
neously. This allows us to naturally handle arbitrarily com-
plex motion models, to automate the initialization and to
deal with occlusion and false alarms. This is effective even
if the motion model is not entirely accurate and if there are
frequent false-negatives and false-positives. Our algorithm
is easy to implement and we show its performances on two
real examples of complex motion tracking.

1. Introduction

Most online approaches to tracking are intrinsically recur-
sive: At time � , a state containing the objects parameters
is estimated, according to the observations in the coming
frame and the state estimated at the previous step. It con-
tains the object position as well as dynamics estimated from
the previous frames, and can be regarded as a summary of
earlier observations in the images. The successive states
are assumed to form a Markov chain, and using a predic-
tive motion model, the state at time � is predicted from state
estimated at time ����� only.

This “standard” approach has several drawbacks. First,
the Markov chain assumptions implies that previous states
are not updated according to the observations in new
frames, and one single erroneous state can make the tracker
fail. Many solutions to this problem have been proposed.
In Multiple Hypothesis Tracking, the several hypothesis of
assignments between targets and measurements are simul-
taneously tracked, and by pruning the tree after a while, the
correct assignments can be estimated in retrospect. Particle-
set algorithms use multiple samples of the state to han-
dle multiple hypothesis, and do not directly give a single�
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estimated object position but require a batch-mode post-
processing [1]. Secondly, the motion model has to be ex-
pressed in a recursive way, which can be difficult or im-
possible. The resulting models often rely on simplifying as-
sumptions such as constant velocity or acceleration that pre-
vent them from being accurate. This can be disastrous when
occlusion or false negatives due to cluttered background oc-
cur in a large number of consecutive frames: The predicted
position can be far from the actual position, especially if the
target moves fast.

In this paper, we propose a formulation of online track-
ing that does not suffer from these limitations. Instead of
tracking frame by frame, we fit a motion model to the can-
didate positions of the target object in an interval of frames
around the current one. This solution is a good compromise
between the traditional recursive tracking approach and a
post-processing of the whole sequence, which is impracti-
cal for online applications. This delay in our method can
be compared to the delay involved in multiple hypothesis
tracking to wait for hypothesis branches pruning [2, 3]. This
introduces a small delay in the tracking, but allows to get a
robust motion estimate. We compute the motion that maxi-
mizes a specified likelihood using a robust estimator to han-
dle occlusions and false alarms. The mixture parameters in-
volved in the likelihood expression are estimated iteratively
and enforce the temporal coherence of the tracking. Fur-
thermore the motion model can be arbitrarily complex, pro-
vided we can use enough frames forward and backwards at
each time step. Because the usual recursive motion mod-
els can easily be expressed in this manner, we can handle a
larger class of motions than traditional recursive tracking.

In short, the proposed approach has the following
strengths:	

it easily deals with complex motion models ;
	

it easily deals with abrupt motion changes ;
	

it can easily handle a relatively large number of mis-
detections, even consecutive ones, and provides an ac-
curate estimate of the target position even when a mis-
detection occurs ;

	
the output of our algorithm is the actual target posi-
tion, and not a density that requires a post-treatment.
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a. b.

Figure 1: Ball and golf club tracking with our method: (a) the ball tracking is performed without any manual initialization
and is not perturbed by motion discontinuities which tend to break Kalman style approaches; (b) the golf club tracking is
unperturbed by the mis-detections (corresponding to black disks) and the false-alarms, intentionally added to try to distract
the tracker.

This makes it highly suitable for applications such as
broadcasting or motion recognition...

The paper is organized as follows. Section 2 introduces
our approach. Section 3 demonstrates the applicability of
our algorithm on two real world applications. Section 4
compares our approach with more traditional ones. Possible
extensions of our method are discussed in the conclusion.

2. Robust Data Association

In this section we first state our problem and show how to
robustly estimate the local motion. Then we discuss how
the different steps of the algorithm can be performed online
and we give a pseudo code description of this algorithm.

2.1. Problem Statement

Assuming that the time is discretized and frames are in-
dexed by their acquisition time, let ����� ���	��	
�
�
 ������� be the
set of hypotheses on the target generated by a detection al-
gorithm for frame � . The

���� are real vectors of dimension�
. The true target location ��� can be present in ��� or not, in

case of failure of the detection algorithm.
We denote by � � the interval of frames acquired between

time � ����� and ������� , and  � � � � �"! �# 
$
%
 � �'& )( � the
hypotheses for frames in � � . We assume that the successive
target positions � � satisfy a known motion model * , at
least over the interval � � . For each � , we want to determine
which

���� corresponds to the target � � or decide that a detec-
tion failure has occurred and give an estimate of � � in this
case. We also want to do this by only considering the mea-
sures done over time to avoid any user interaction. In this
paper we assume that only one target object satisfies * .

2.2. Local Motion Definition
We want to estimate the target motion over � � , i.e., the
successive target positions + � � � � �"! �#-, 
$
$
 , � �'&  � � , or
equivalently the motion model parameters. Since we con-
sider only the frames in � � , + � can be taken to be the motion
with maximum posterior probability given the measures  � ,.0/2143�576 +98  �;: . According to Bayes’ rule, we have:

+ � � argmax3 576 +98  �;: � argmax3 < 576  � 8 + : 5�6 + :5�6  =� :?>
We have some prior knowledge about the motion. Some
motions, even if they satisfy the motion model, are physi-
cally impossible, e.g., because of unrealistic velocity or ac-
celeration; in this case we set the prior 5�6 + : �A@ . For
simplicity, all possible motions are given a uniform prior
probability, but a better estimate could be used. 5�6  �B: is
constant, irrespective of + . So our new aim is to find+��C� argmax3 576  =�$8 + :ED 6 + :
where D 6 + : � � if the motion + is possible and 0 other-
wise.

2.3. Robust Estimation
A good way to estimate + � is to use a random sampling
paradigm such as the robust estimators RANSAC [4] and
MLESAC [5]. They are usually employed in computer vi-
sion for recovering epipolar geometry and estimating 3D
motions from a set of matched points, but they are in fact
general algorithms for robust estimation. Here, the random
sampling approach is useful to handle mis-detections and
false alarms.

The space of possible target motions is randomly sam-
pled with F motion samples + S (with F being large
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Figure 2: One motion used for the random motion space
sampling, in the two-dimensional case. The motion has
been computed from the hypotheses represented by rounded
boxes.

enough, see section 2.7), computed from minimal sets of
measures. Each set is made of � randomly selected mea-
sures from different frames in � � , which are utilised to pre-
dict a target trajectory + S � � � �"! �#�� S , 
%
$
 , � �'& �(�� S � over� � as depicted by Figure 2. We keep the sample

�+ that max-
imizes the “likelihood” over the motion space sampling:�+ � argmax3

S

576  � 8 + S :ED 6 + S : 
 (1)�+ is an initial estimate of + � , computed from a minimal
set of measures. It can be refined using more measures, as
we will show section 2.6.

2.4. The Observation Model
As in classical tracking work, the measures are assumed to
be independent, both mutually and with respect to the target
motion, so that 5�6  �$8 + S : in Equ. 1 can be written:

576  � 8 + S : � & )(���� ! �# 5�6 � �'& � 8 � �'& � � S : 

Note that 5�6 � �'& � 8 � �'& � � S : has the same form as the observa-
tion model in classical tracking methods, and we will re-
fer here to common reasoning used in target tracking [6] to
define its expression. In the following, the index � �
	 is
omitted for readability.

We make the following standard assumptions. The clut-
ter is modeled with a Poisson process with spatial density �
in the image. Any true target measurement is assumed to be
unbiased and to have a normal distribution with covariance��

. We also consider
���

, the covariance of � S, since � S is
computed from noisy measurements.

We compute the “innovation” � � :� � � � � � � S

of all � candidate measurements and their covariance��� � �� � ��� 

We finally get the observation density:

5�6 ��8 � S : ������� � �� � � � ��� 1���� �
�� � �! � ! �� � �!"# 6%$'& :)( 8 �*� 8 ,

where the � � are mixture parameters (with + � � � � � � � ).
2.5. Estimating The Mixture Parameters

The parameter � � � � 6 �-,/.0, � � : can be interpreted as the
probability that the target corresponds to measurement

� �� at
time � , and � � � � can be interpreted as the probability that a
detection failure occurs at time � . A good initial guess for
the � � � � is: � � � � � � ��132 if the target measurement is in� � with probability 1 2 ; 1 2 reflects the performance of the
target detector, and for �4,5.-, � � , � � � � �76�8 � .

Next the � � � � are re-estimated as follows. We introduce
the indicator variables 9 �� , where 9 �� � � if the target corre-
sponds to the . th measure at time � ( 9 �� � � if a detection
failure occurs), and 9 �� � @ otherwise ( 9 �� � @ if the target
has been detected). We have:5�6 9 �� � ��8 � ,  �": � .0/213 576 9 �� � � , +98 � ,  �":� .0/213 576 9 �� � � 8 + , � ,  =� : 5�6 +98 � ,  =� :: .0/213 576 9 �� � � 8 + , � ,  �;: 5�6  � 8 + , � :BD 6 + : 

The term 5�6  � 8 + , � :ED 6 + : is computed as before. 576 9 �� ���8 + , � ,  =� : can be estimated as:5�6 9 �� � � 8 + , � ,  =� : � 5 �+  �; � � 5 ; ,
where 5 � is the likelihood of a measure given that is the
target 6 ��,<.=, � �E: , and 5 � is the likelihood of a detection
failure: >

? @ 5 � �A�B�C�5 � �A� ��DFEHG 6 !JIK �MLONQPSR IT �ML :U V �XW'Y[Z]\ P3^ \ �_,5.`, � � 

The new estimates of the � � � � are:

�ba � � � �Ac 
 5�6 9 �� � ��8 � ,  �;: ,
in which c ensures that + ��� � � � a � � � � � . This estimation
should be iterated until convergence.
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2.6. Estimating the Target Position
Once the final estimates � � are computed, an initial estimate+ of the motion is computed using equation (1). This mo-
tion is computed from a minimal set of target positions and
can be refined. Reference [5] minimises a robust cost func-
tion over all the input data. We prefer the method usually
used after RANSAC: the motion is refined using the mea-
sures “close” to the predictions � over the image interval� � . A measure

�
in a frame is considered to be close to the

prediction � in this frame if

� 1���� � �� 6 � � � :  � ! �� 6 � � � :��# 6%$'& : ( 8 ��� 8 ���
� 6�� @
	 , � : 


If several measures are close to the prediction, only the clos-
est one is kept. Finally, the refined motion provides a good
prediction for the target position in frame � , and it is given
as the output: if the target is not detected, it is a good es-
timation; otherwise this is usually a better estimation than
the detection.

2.7. Number of Motion Samples
The number of motion samples F should be chosen suf-
ficiently high to ensure (with a probability 5 ) that at least
one of the sets used for sampling contains only measures
originating from the target. Literature on the RANSAC al-
gorithm provides a formula to estimate F that we can easily
adapt in our context: the probability that a selected mea-
sure in frame � is originating from the target is 1 2�� � � , and
approximately equals 1 2�� � , with � the average number of
detections. Then at least F selections (i.e., F sets of � mea-
sures) are required, where 6 � � 6 1S2 � � :� :�� � � � 5 , so F
should be chosen as:F�� �����

6 � � 5 :
�����

6 � � 6 1 2�� � :  : 

Numerical example: the values 5 � @ 
 ��� , 1S2 � @ 
 � , � �� , � ��� give F�� � ��� .

2.8. Algorithm
The recursive estimation of both the mixture parameters and
the target position can be performed online, if we accept a
small delay between the acquisition of a frame and the tar-
get position output. The number of re-estimations of the
mixture parameters is fixed. For this description, we as-
sume that only one re-estimation is done, but adding more
iterations is straightforward. We also assume that �����
measures are required to estimate a motion.

Our algorithm can be summarized as follow. At time � :	
Detection is performed on frame � ;	
Computation of the � a � is performed on frame � � ���
using the detections in frames ��� ��� � ��� to � ;

t−nA t

Computation

Detection
Acquisition

j’γof

t−2nA−nB t−nA−nBt−2nA

estimation
Target position

Figure 3: Actions performed at time � .	
All the � a � for frames between � � � � � $ � � and � � � �
have been computed. Their values are employed to
estimate the target position for frame � � $ � � .

This is illustrated by Figure 3. A pseudo-code description is
given below. For numerical stability, log likelihood motion
samples is computed instead of likelihood, i.e., we compute:

log-likelihood 6 + : � & �(���� !  # ����� 6�5 6 � �'& � 8 � �'& � � S : : 

Tracker()

For each time � :
Call detector on frame � to generate � �
ComputeThe � a ForFrame( � � ��� )
ComputeTargetPositionForFrame( � � $ ��� )

ComputeThe � a ForFrame( � )� a � � �! @ for @ , .-, � �
Repeat F times:+ S  GenerateOneMotionSampleForFrame( � )

If + S is impossible (unrealistic velocity, etc...)
continue"#" + S  log-likelihood( + S, � )

Compute the 5 � , the measures likelihoods��$&%  +  �� � � 5 �
For . � @ to � �

If � a � � � � ' L
)(+* � 1���6 "," + S :� a � � �! ' L
)(+* � 1���6 "," + S :

Normalise the � a � � � such as + � a � � � � �
ComputeTargetPositionForFrame( � )"," +.-0/ E  @

Repeat F times:+ S  GenerateOneMotionSampleForFrame( � )
If + S is impossible (unrealistic velocity, etc...)

continue"#" + S  log-likelihood( + S, � a )
If
"#" + S � "," + -0/ E+  + S"," + -0/ E  "," + S

Refine + (see section 2.6)
Refined + provides the target position in frame �
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GenerateOneMotionSampleForFrame( � )
Select randomly 3 frames 6 � � , � � , ��� : such as:� ��� � � ,�� ; , ����� � � � � , $ , ���� ���� � � , � ���� � � , � � �� � � 

Select randomly one measure

� �	� for each � ;
Compute + from 6 � � I , � � K , � ��
 : .
Return +

3. Results
We show the applicability of our algorithm to two real world
applications. The first one is tennis-ball tracking with a sin-
gle camera, e.g., for broadcast enhancement purposes. The
second one is golf-club tracking during a swing.

3.1. Tennis Ball Tracking
3.1.1. Ball Detection

Ball detection consists of detecting moving objects, and
keeping those that approximately match our expectation for
color, size and aspect ratio for the ball. To this end we com-
pute two masks. The first is derived by differencing current
and previous frames and thresholding the result. The same
operation is performed on current and next frames to obtain
the second mask. A logical AND operation between these
two masks gives the mask of the moving objects in the cur-
rent frame. Some criteria on color and shape are applied to
clusters in the resulting mask to keep only those that look
like a tennis ball and to generate hypotheses on the ball po-
sition. Note that due to the relatively poor quality of the
images the color test is not sufficient by itself to detect the
typical tennis ball color.

3.1.2. 2D-Motion Model of the Ball

We need to express the motion model and to compute the
motion parameters from a set of measures. If the camera is
in a “natural” position (image plane approximately perpen-
dicular to the ground without tilt), the ball trajectory in the
camera coordinate system can be expressed as:� 6 � : ����� � � ���� �� � � � �� � � � ���� � � ���� � ��
where

�
is the acceleration due to gravity. The ball trajec-

tory in the image is :>��
? ��@ $ 6 � : ��$ � ����� V! #" & �%$ #" Y& " & �'$& " ��$ � � ��� V)( "* " & �,+( "* " Y� & �-+* "* ". 6 � : � . � ���0/ V213" & �4$15" ! � K76 Y& " &��'$& " � . � � ��/ V�8 "* " & � +8 "* " ! � K-9* " Y� & �:+* "* "

where $ � , . � , ; ( , ;=< are the — unknown — camera inter-
nal parameters. In the following, we take 6 $�� , . � : to be at
the image center. Given three ball 2D positions at different
times � � , � � , ��� , the motion parameters can be computed by
solving the linear system >@? �BA with:

> � CCCCCC�
� � � @ @ @ � � � $ 6 � � :@ @ � � � � � � � � � � . 6 � � :� � � @ @ @ � � � $ 6 � � :@ @ � � � � � �� � � � . 6 � � :� ��� @ @ @ � ��� $ 6 ��� :@ @ � � � � � �� � � � . 6 � �?: �EDDDDDD� , ? � CCCCCCCC�

; (  #"& "; ( $ #"& ";4< 15"& ";4< $15"& "; < 6& "$& "& "
�EDDDDDDDD�A �GF $ 6 � � : � $ � , . 6 � � : � . � ,IH3HIH , . 6 � �?: � . ��J  




The refined motion can be computed the same way, with
more 2D positions as explained in section 2.6. Let � �K � 6 A : be the ball position at time � for this trajectory, the
covariance matrix

� �
of this position can be approximated

as <�L K �L A >NMPO � . . . O /RQ
<SL K �L A >  

where T ( and T�< are the standard deviation on measure-
ments. The analytical expression for U5V �U5W can then be easily
derived using Maple, for example.

3.1.3. Tracking Results

We demonstrate our ball tracker on a long video sequence
composed of about 1000 deinterlaced frames. The tracking
task is made difficult by the presence of different objects
moving in the background. The average number of false
detections is about 4 per frame. The ball sometimes goes
near the camera, and the apparent displacement becomes
large. On the other hand, the ball is sometimes far from the
camera, and becomes too small to be detected. Since the
ball goes in and outside the camera field, we use a simple
test based on the likelihood on the refined motion: If it is
lower than a threshold, we consider that the ball is not seen
by the camera.

We use the values ����� ��� �YX , and two re-estimations
of the mixture parameters. As shown in Figure 5, this is
usually enough for convergence. Figure 6 presents three
motion samples used for a frame of the trajectory shown
Figure 7.a, which have a likelihood respectively equal to
0.0077, 0.0036 and 0.00445. We verify on the whole se-
quence that the likelihoods of the samples that are close to
the actual motion (like the first one) are effectively much
higher than the likelihoods of the bad samples.

The tracking is performed well despite the appearance
and disappearance of the ball and the motion discontinu-
ities: The “future” frames allow to track the ball when it
is appearing or just after it bounced. More traditionally,
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Figure 4: Two examples of ball detection results.

Figure 5: Estimation of the mixture parameters. The de-
tected position at left corresponds to the ball and the right
one is a false alarm. Their respective � � parameter takes
successively the values (0.45, 0.45), (0.72, 0.1), (0.73,
0.08).

the ball can be tracked when disappearing or before it will
bounce thankful to the considered “past” frames. Two re-
covered trajectories are shown in Figures 1.a and 7.

3.2. Golf Club Tracking
The second example is golf club tracking during a swing.
The difficulties are first in the detection because the club is
thin and reflective. Furthermore, during a swing, the club
velocity is very high and its acceleration varies significantly
during the transition between upswing and downswing.

3.2.1. Club and Club Motion Model

The golf literature provides a good swing model, called the
double-pendulum model [7]. This model consists of two
levers, hinged in the middle. The upper lever roughly corre-
sponds to the golfer’s shoulders and arms, while the lower
lever corresponds to the club and the “hinge” between them
corresponds to the wrists and hands. The hinge works only
in a single plane in which the upper lever is swung about its
fixed pivot at the top which is roughly located in the middle
of the golfer’s upper chest. The double-pendulum model
is three-dimensional, and we consider here its orthographic
projection in the image plane of a camera placed in front
of the golfer. As shown in Figure 8, this projection can be
parameterised by:
- the 2D point � , the fixed pivot;
- the 2D distance � between � and the second pivot;
- the 2D length � of the club;
- the angle � between the upper lever and the $ -axis;

Figure 6: Three motion samples used for a frame of the
trajectory shown in Figure 7, with likelihoods respectively
equal to 0.0077, 0.0036 and 0.0045. The first sample, the
one with the best likelihood, is close to the actual motion.
The squares indicate the hypotheses employed to compute
the sample, the black disks correspond to the predictions,
and the ellipses represent their covariances. The gray disks
correspond to the detections, their gray level indicating their
detection time.

Figure 7: A recovered trajectory from a monocular se-
quence. Tracking is not lost after the ball has bounced.

C

ψ

l
R

ϕ

Figure 8: The double-pendulum model for a golf swing.
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- the angle � between the two levers.
The point � is assumed to be known, and the club measures
are parametrised as

� � 6 � , � , � , � : . We model the club dy-
namics as a second order process (including the 2D lengths

� and � : they are the projections of constant lengths in 3D
and also varying). Given three club measures at different
times � � , � � , ��� , the motion parameters can be computed by
solving the linear systems >@? ' � A ' with:> � � � � � � � �� � � � ��� ��� � �� ��
where ? ' is a vector among>

? @ � � 6 @ :�� 6 @ :�
� 6 @ : �� , � � 6 @ :�� 6 @ :�

� 6 @ : �� , � � 6 @ :�� 6 @ :�
� 6 @ : �� , � � 6 @ :�� 6 @ :�� 6 @ : �� � �

�

and A ' the corresponding vector among>
? @ � � 6 � � :

� 6 � � :
� 6 � �%: �� , � � 6 � � :

� 6 � � :
� 6 � �%: �� , � � 6 � � :

� 6 � � :
� 6 � ��: �� , � � 6 � � :

� 6 � � :
� 6 � �%: �� � �

� 

The covariance on the prediction � 6 � : can be computed as in
the previous example. As before, unrealistic predicted mo-
tions (based on the computed velocities and accelerations)
are rejected.

3.2.2. Club Position Hypotheses Generation

The club detection is done as follows. First we detect the
moving objects using the same technique as before. Seg-
ment detection is then performed on these objects. We con-
sider only pairs of close parallel segments because they are
a good cue for the club position in the image. Then the two
segments of each pair are merged in one segment. Generally
the resulting segments cover only a part of the shaft (even if
they correspond to the club) because the segment detection
does not work as well as we would like. The club extrem-
ities are then estimated by looking for color discontinuities
along the segment. At this stage, we do not know which
extremity corresponds to the club head, and each detection
give us two hypotheses 6 � � , � , � � , K � : and 6 � � , � , � � , K � : .
3.2.3. Golf Club Tracking Results

We have tested our algorithm on several sequences of vari-
ous swings over a cluttered background. The average num-
ber of detections is about 5, and 1S2 varies between 0.8 and
0.95. During a swing, the shaft acceleration is not constant
and can take on a large range of values. We use the values��� � ��� � � , so the acceleration of the shaft is assumed
to be approximately constant over an interval of 11 frames.

a. b.

c. d.

Figure 9: (a) detections over the first golf sequence and
(b) the tracking result; (c) and (d) other results for differ-
ent swings. The black disks corresponds to the club head
when the club has not been detected.

To demonstrate the robustness of our algorithm to suc-
cessive mis-detections and false-alarms, we have manu-
ally replaced the correct detections by false-alarms when
the golf club velocity is particularly high for the sequence
shown Figure 9.a and b. Figure 9.b presents the tracking re-
sult and the three added false alarms. In spite of this “trap”
and the high velocity and high variations of the acceleration,
the tracking performs remarkably well.

The Figure 9.b shows the robustness of the tracker to
mis-detections and false-alarms (the club detections over
time for this sequence are shown Figure 9.a). The movie
attached to this paper shows the tracking and the detections
frame by frame. Figure 9 also presents the recovered club
head trajectory for different swings. Some correct detec-
tions have been randomly removed to test the robustness,
but nevertheless the tracking is unperturbed. All the same
parameters values have been used for these sequences.

4. Comparing to Recursive Ap-
proaches

In classical recursive approaches, a state � � represents the
current estimate at time � of the target parameters. In the
case of Kalman filtering, this state is a single hypothesis for
the target position and dynamics and an associated covari-
ance matrix. In Multiple Hypothesis Tracking, the state is
represented using a mixture of Gaussians. In particle-set
tracking [8], the particles both represent the multiple hy-
pothesis and the state density.
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In all cases, the tracking relies on the same principle:
The successive states � � embed information about target
dynamics estimated from previous observations; the state
in the coming frame is predicted using a recursive motion
model and its density is estimated according to the obser-
vation in this frame. When the target is not detected or is
occluded in successive frames, the prediction becomes less
and less accurate, and the error estimate becomes larger and
larger. In particle-based trackers, this also supposes a par-
ticularly large number of particles to represent the error. If
then an abrupt change in the direction of motion occures,
the tracker would probably fail.

By contrast, our approach is robust enough to tolerate
weak motion models, even under difficult conditions. For
example, during the golf upswing and even more during
the downswing, the constant acceleration motion model is
a very poor approximation of reality. These motions fea-
ture large accelerations and an abrupt change in the direc-
tion of motion, that would probably defeat kalman-based
approaches. Our approach is also robust enough to handle
the frequent false-negatives and false-positives that detect-
ing a thin object such as a golf club entails.

5. Conclusion and Future Work

We have presented a new approach to online tracking that
relies on fitting a local motion model to detections over time
using a robust algorithm. Considering an interval of frames
to estimate the target motion makes our approach more ro-
bust and accurate than classical recursive ones. It can be
employed for all applications that allow a small delay be-
tween the acquisition of a frame and the tracker output for
this frame.

Our first example consisted of the tracking of a tennis
ball that goes into and outside the camera field of view and
bounces when hitting the ground and the tennis racket. Our
algorithm is not perturbed by these motion discontinuities
and tracks the ball without any manual initialization. Our
second example, the golf swing tracker, demonstrated that
our approach is resistant to successive mis-detections and
false-alarms even when the target velocity is particularly
large.

In future work, we will improve our tracker in several
ways. Here we assume that the target is always visible. The
fact that it may not be visible should be explicitly integrated
into the method. The tracker should also be able to handle
several targets. Another very promising extension is to con-
sider multiple motion models: By recovering the actual mo-
tion model that fits the data, this method could be employed
for motion recognition. Last, our approach could easily be
generalized to more complex objects such as human faces
or bodies detected using appearance based techniques.
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