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Abstract. Free-form deformations (FFD) constitute an important geometric
shape modification method that has been extensively investigated for computer
animation and geometric modelling. In this work, we show that FFDs are also
very effective to fit deformable models to the kind of noisy 3–D data that vision
algorithms such as stereo tend to produce.
We advocate the use of Dirichlet Free Form Deformation (DFFD) instead of more
conventional FFDs because they give us the ability to place control points at
arbitrary locations rather than on a regular lattice, and thusmuch greater flexibility.
We tested our approach on stereo data acquired from monocular video-sequences
and show that it can be successfully used to reconstruct a complex object such as
the whole head, including the neck and the ears, as opposed to the face only.

1 Introduction

Free-form deformations (FFDs) constitute an important approach to geometric shape
modification that has been extensively investigated for computer animation and geomet-
ric modelling [15,3,9,2,13]. In the vision community, they have also been used to fit
parametric models to medical data [17,1] or animation masks to semi-automatically ex-
tracted silhouette data [12]. In this work, we show that FFDs also are also very effective
to fit deformable surface models to the kind of noisy 3–D data that vision algorithms
such as stereo tend to produce.

The initial FFD approach [15] and all subsequent ones involve embedding the object
model into a volume whose shape can be changed by moving a number of control
points. Here, we take the embedded object to be a triangulated mesh and the embedding
guarantees that each model vertex is influenced by the deformation of the control grid.

In this work, we advocate the use of Dirichlet Free Form Deformations (DFFDs)
[13] because, unlike more conventional FFDs, they do not require the control points to
lay on a regular rectangular grid. This is achieved by replacing the typical rectangular
local coordinates by generalized natural neighbor coordinates, also known as Sibson
coordinates[16]. That property give us the ability to place control points at arbitrary
locations—that is, on the object, inside of it or outside—rather than on a regular lattice,
and thusmuchgreater flexibility. In particular, someof the control points canbe important
feature points that must be controlled in a specific way.
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This flexibility of DFFDs has been put to good use in earlier face-modelling
work [12]. That approach, however, takes silhouettes extracted from orthogonal im-
ages as input and does not allow for potential errors in the data. By contrast, we expect
our input data to be both noisy and possibly incomplete. We have therefore developed a
least-squares adjustment framework that lets us impose appropriate regularization con-
straints on the control mesh and obtain good fitting results even when using poor quality
data.

We chose to demonstrate and evaluate our technique mainly in the context of head-
modelling: More specifically, we use a technique we developed in earlier work [7] to
computemotion parameters for heads seen in uncalibrated video-sequences and compute
disparity maps from consecutive image pairs. We derive 3–D point clouds from these
maps and fit a complete head model, including face, ears and neck, to them. Given the
relative absence of texture one typically finds on faces and the uncalibrated nature of
the sequences, the point clouds cannot be expected to be error-free and, yet, we obtain
realistic models, whose geometry is correct and for which we can compute good texture
maps by averaging the gray levels in all the images of a sequence.

We concentrate on head-modelling to demonstrate our technique because it is the
application for which all the tools required to perform the complete reconstruction are
available to us. We will, however, argue that the approach is generic and can be applied
to any task for which deformable facetized models exist. In particular, we will show
that we can also use our approach for high-resolution modelling of the human ear. We
therefore view our contribution as the integration of a powerful shape deformation tool
into a robust least-squares framework.

In the remainder of this paper, we first describe DFFDs in more detail. We then
introduce our least-squares optimization framework and, finally, present results using
both calibrated and uncalibrated image sequences.

2 Dirichlet Free Form Deformation(DFFD)

FFDs and their many extensions, such as rational FFD, extended FFD, direct FFD,
NURBS based FFD and many others [15,3,2,8,11], are well known in the Computer
Graphics community. They are used to globally deform a shape by embedding it into
a volume controled by a small number of control points. The volume’s shape is then
deformed by moving the control points and the motion of the shape points is obtained
by interpolating that of the control points.

In the original FFD, the control points must be placed on a regular lattice, which
severely limits the range of allowable deformations that can be modeled. Most FFD
extensions aim at overcoming this limitation, often by using a more sophisticated in-
terpolant, but without addressing the basic problem that there is little flexibility in the
positioning of the control points. By contrast, DFFDs [13] remove the requirement for
regularly spaced control points that is the main conceptual geometric limitation of FFDs
by replacing rectangular local coordinates by generalized natural neighbor coordinates,
also known as Sibson coordinates, and using a generalized interpolant [4]. This idea
comes from the data visualization community that relies on data interpolation and, thus,
heavily depends on local coordinates.
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2.1 Sibson Coordinates
All FFDs can be viewed as a data interpolation scheme where the interpolating function
is a 3–D function specifying point displacements. The displacement is known at the con-
trol points and we want to interpolate it to the points of the object to deform. To this end,
DFFDs replace standard rectangular or barycentric coordinates that constrain the control
grid’s shape by Sibson coordinates [16]: Given a set of points P = {P0, P1, . . . , Pn},
these coordinates let us express any point within the convex hull of P as a linear com-
bination of its natural neighbors within P . To find them, we compute a 3-D Delaunay
triangulation and its Voronoi dual in which the cells are polyhedra.

A given point p may sit inside several several Delaunay spheres—that is, spheres
circumscribed around Delaunay tetrahedra—-and the vertices of all these tetrahedra are
taken to be the so-called natural neighbors. In other words, p is inside the sphere of
influence of its neighbours. Let this set of natural neighbors be Qk ⊂ P , where k is
number of points inflencing p. The elements of Qk are the natural neighbors of p and
their influence is expressed by the Sibson coordinates ui such that:

p =
k∑

i=0

uiPi, Pi ∈ Qk

with
∑k

i=0 ui = 1 and ui > 0.
These coordinates are “natural” in the sense that points in P that are closer to the

point p have greater influence on it, that is, the corresponding ui is larger. They are
computed using the partitioning of the space induced by the Voronoi diagram which is
the dual of the Delaunay triangulation.

2.2 Introducing Deformations
As will be discussed above, our goal is to deform a surface triangulation using the
vertices of a much sparser control triangulation, as our control points. We therefore
take the control points to the vertices of the control triangulation complemented by the
corners of the surface triangulation’s bounding box, so as to guarantee that the whole
object is contained in their convex hull.

Let P be this set of all control points and Po the set of vertices of the surface
triangulation. For each point p ∈ Po, we find its natural neighbors Qk⊂ P and the
corresponding Sibson coordinates. This is referred to as freezing the control mesh to the
object. Once computed, Sibson coordinates do not need to be changed when the object is
deformed.When we move some of the control points from the setQk, the displacement
of the model points is computed as follows:

∆po =
k∑

i=0

∆Piui (1)

where ∆Pi is displacements of control point from Pi ∈ Qk, i = 0, . . . , k . Finally,
new object point position is computed as:

p′
o = po +∆po, (2)

In short, the deformations are local and defined by the natural neighbors, which helps to
improve the flexibility of the approach and the realism in the final results.
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3 Least Squares Framework for DFFD Fitting

In this section, we introduce the framework we have developed to fit surface models such
as the ones of Fig. 1 to noisy image data. Our goal is to deform the surface—without
changing its topology, that is the connectivity of its vertices—so that it conforms to the
image data. In this work data is made of 3–D points computed using stereo. In standard
least-squares fashion, for each point xi, we write an observation equation of the form
d(xi, S) = obsi + εi, where S is a state vector that defines the shape of the surface,
d is the distance from the point to the surface and εi is the deviation from the model.
In practice d(x, S) is taken to be the orthonormal distance of x to the closest surface
triangulation facet. This results in nobs such observations forming a vector

F (S) = [..., d(xi, S) − obsi, ...]t1≤i≤nobs (3)

that we minimize in the least squares sense by minizing its square norm

χ2 = 1/2||F (S)||2|| .

In theory we could take the parameter vector S to be the vector of all x, y, and z
coordinates of the surface triangulation. However, because the image data is very noisy,
we would have to impose a very strong regularization constraint. For example, we have
tried to treat the surface triangulation as finite element mesh. Due to its great irregularity
and its large number of vertices, we have found the fitting process to be very brittle and
the smoothing coefficients difficult to adjust. This is why we chose to use the DFFD
deformation approach instead.

Fig. 1. (a,b) Complete head and neck animationmodel, shown as awireframe and a shaded surface.
(c,d) generic ear model

3.1 DFFD Parametrization

We therefore introduce control triangulations such as the ones of Fig. 2. Their vertices
are points located at characteristic places on the human head or ear and defining their
rough shapes and serve as DFFD control points. Some of these control points also are
vertices of the surface model, while other are simply close to it and either inside or
outside of it. This ability to place the control points is unique to DFFDs as compared to
all other kinds of FFDs. The control triangulation facets will be used to introduce the
regularization constraint discussed below. We tried to use several levels of resolutions



708 S. Ilic and P. Fua

of control meshes, but we found that increasing the number of control points does not
influence final results of the deformation. This means that keeping low number of the
control points, as we did, greatly saves time for computation.

Fig. 2. Control triangulations for head (face (a) and profile (b)) and ear(c).

In our scheme, we take the state vector S to be the vector of 3-D displacements of
the DFFD control points, which is very natural using the DFFD formalism:As discussed
in Section 2.2, we first freeze the control mesh to the model vertices. This means that for
each vertex on the model we compute the influence of certain subset of control points.
Those influences are expressed in terms of the Sibson coordinates from Section 2.1 and
allows us to express displacement of every model vertex as the linear combination of
displacements of control points which influence them.

3.2 3D Observations

Weuse several sets of stereo pairs or triplets from the sequence of images of a given object
as our input data such as those of Fig. 3(a,b,c). We then ran a simple correlation-based
algorithm [5] to compute a disparity map for each pair or triplet and by turning each
valid disparity value into a 3–D point. This resulted in a large cloud of 3–D points that
form an extremely noisy and irregular sampling of the underlying global 3–D surface.
To reduce the size of the cloud and begin eliminating outliers, we robustly fitted local
surface patches to the raw 3–D points [6]. We then fed the centers of those patches,
shown in Fig. 3(d), as input to our surface fitting algorithm.

The center of each patch can then be treated as an attractor. The easiest way to handle
this is to model it as a spring attached to the mesh vertex closest to it. This, however, is
inadequate if one wishes to use facets that are large enough so that attracting the vertices,
as opposed to the surface point closest to the attractor, would cause unwarranted defor-
mations of the mesh. This is especially important when using a sparse set of attractors.
In our implementation, this is achieved by writing the observation equation as:

da
i = 0 + εi (4)
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where da
i is the orthogonal distance of the attractor to the closest facet, whose nominal

value is zero. It can be computed as a function of the x, y, and z coordinates of the vertices
of the facet closest to the attractor.

Because some of the observations, derived on the way explained above, may be
spurious, we weigh them to eliminate outliers. Weighting is done as the preprocessing
step, before the real fitting is started. In each iteration after fitting is done, we recompute
the attachments and also recompute the observation weightwi and take it to be inversely
proportional to the initial distance di of the data point to the surface triangulation. More
specifically we compute wi weight of the obsi as:

wi = exp(
di

di

), 1 ≤ i ≤ n (5)

where di is the median value of the di. In effect, we use di as an estimate of the noise
variance and we discount the influence of points that are more than a few standard
deviations away.

3.3 2D Observations

In our optimization framework besides 3D stereo observations we introduce also 2D
observations. For each vertex (xi, yi, zi) of the surface triangulationwhose 2D projection
in image j is (uj

i , v
j
i ) is known, we can write two observation equations:

Pru(xi, yi, zi) = uj
i + εui

Prv(xi, yi, zi) = vj
i + εui

where Pru and Prv stand for the projection in u and v. In this way we do not need the
explicit 3D position of these feature points, only their 2D image location.

3.4 Regularization

Because there are both noise and potential gaps in the image data, we found it necessary
to introduce a regularization term comparable the one proposed in [1]. Since we start
with a generic model, we expect the deformation between the initial shape and the
original one to be smooth. This can be effectively enforced by preventing deformations
at neighboring vertices of the control mesh to be too different. If the control points
formed a continuous surface parametrized in terms of two parameters u and v, a natural
choice would therefor be to take this term to be

ED =
∑

s∈x,y,z

EDs (6)

EDs =
∫∫ (

∂

∂u
δs(u, v)

)2

+
(
∂

∂v
δs(u, v)

)2

du dv ,

where δs(u, v) stands for the displacement along the x,y or z coordinates at each point
of this control surface. In fact, the control surface is a triangulated one and we only have
deformation values at the vertices. We are therefore use a finite element approach to
compute EDs.
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Stiffness Matrix for C0 Triangular Elements. We write the EDs term of Eq. 6 as

EDs = λ/2
∑

1≤j≤n

ED
j
s

where ED
j
s represents a summation over a facet j and λ is a regularization coefficient.

In fact, we only know the deformations sj1,s
j
2 and s

j
3 at the vertices of the facet and we

treat it as a C0 triangular element. Over this specific facet, we write

δjs(u, v) = (1 − u− v)sj1 + usj2 + vsj3 (7)

where u, v ∈ [0, 1] and u+ v < 1. It is then easy to show that ED
j
s is the quadratic term

[s1s2s3]Kj
s


s1s2
s3


 ,

where Kj
s is a 3 × 3 symmetric matrix that only depends on the shape of the triangle

and, therefore, does not change during the optimization. These matrices can be summed
into a global stiffness matrix Ks so that EDs becomes

stKss

where s stands for the vector of displacements at each vertex in one of the three coordi-
nates. By summing these three terms, we obtain the final quadratic form or our complete
regularization term

ED(S) =
λ

2
StKS (8)

where S is the complete state vector.

Incorporating the Stiffness Matrix into the Least-Squares Framework. We use
the Levenberg-Marquardt algorithm [14] to iteratively minimize the square-norm of the
obervation vectorF (S) of Eq. 3.At each iteration, given the current stateS, the algorithm
attempts to find a step dS that minimizes

χ2(S + dS) = 1/2||F (S + dS)||2 = 1/2F (S + dS)tF (S + dS) . (9)

At the minimum, we should have

0 =
∂χ2

∂dS
= AtF (S + dS)
≈ At(F (S) +AdS) ,

where A is the jacobian of F . dS is therefore taken to be the solution of

AtAdS = −AF (S) . (10)
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Adding a regularization term means that instead of minimizing simply the χ2 term
of Eq. 9, we minimize

χ2(S) + ED(S) =
1
2
||F (S + dS)||2 +

λ

2
(S + dS)tK(S + dS) . (11)

At each iteration, we therefore solve

0 =
∂χ2

∂dS
+ λK(S + dS)

≈ At(F (S) +AdS) + λK(S + dS) .

dS therefore becomes the solution of

(AtA+ λK)dS = −AtF (S) − λKS . (12)

Note that solving Eq. 10 or 12 involves the same amount of computation so that our
regularization scheme adds very little to the computational complexity of the algorithm.
Note also that the proposed optimization scheme is a semi-implicit one very similar
to the one proposed for the original active contours [10] and that greatly improves the
convergence properties of the algorithm.

4 Results

We demonstrate and evaluate our technique mainly in the context of complete head, that
is including face, ears and neck, from calibrated and uncalibrated video sequences. We
show its flexibility by also using it to fit a generic ear model using a stereo-pair.

4.1 Calibrated Video Sequence

We first illustrate the effectiveness of our approach using relatively clean stereo data.
We use the sequence of forty 512x512 images where some are depicted by the first
row of Fig. 3. They were acquired with a video camera over a period of a few seconds
by turning around the subject who was trying to stand still. Camera models were later
computed using standard photogrammetric techniques at the Institute for Geodesy and
Photogrammetry, ETH-Zürich. The centers of the local surface patches fitted to the raw
stereo data shown on Fig. 3(d) are used as an input to our surface fitting algorithm.

We initialized themodel bymanually picking thefive 2–Dpoints overlaid in Fig. 3(b).
We used them to compute a 4x4 rotation-translation matrix Rt such that five specific
3–D points on the generic model—outside corners of the eyes, corners of the mouth
and tip of the nose—once multiplied by this matrix project as close as possible to the
hand-picked 2–D location. Because these points are not coplanar, this guarantees that,
when we multiply the generic model by this Rt matrix, we obtain an initial head model
that is roughly aligned with the point cloud. We use it as the surface model that we
deform using our DFFD approach, yielding the results shown in Fig. 3(e,f,g). In this
case we did not use additional 2D observations provided manualy. The resulting shape
corresponds to the real head shape except around the ears that stick outmore from the real
head then from the reconstructed model. The reason for this behavior is because of well
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Fig. 3.Calibrated video sequence: (a,b,c) Three images chosen from the calibrated video sequence,
courtesy of IGP, ETH Zürich. (d) Centers of local surface patches fitted to the raw stereo data.
(e,f,g)Automatically obtained shaded model after fitting to the stereo data and projected using the
same perspective transform as that of the images. (h) Shaded model after interactive correction of
the ears.

known fact that minimizing orthonormal distance of data points to the closest surface
triangulation facet may have difficulty in deforming the model into concave objects [18].
More accurate deformation can be obtained when 2D projected observation are included
in the objective function what is used in the examples of uncalibrated video sequence
Fig. 4. One of the advantages of DFFD is that this can be fixedmanually very quickly and
very intuitively by moving one control point per ear to produce the model of Fig. 3(h).

4.2 Uncalibrated Video Sequence

Fig. 4 depicts two examples of reconstruction from uncalibrated images. First row
shows images from differnet image sequences: one image from the stereo pair of im-
ages Fig. 4(a) and three frames from other uncalibrated video sequence. In both cases,
we had no calibration information about the camera or its motion. We therefore used a
model-driven bundle-adjustment technique [7] to compute the relative motion and, thus,
register the images. We then used the same technique as before [6] to derive the clouds
of 3–D points depicted by Fig. 4(e,f,g,h).

Because we used fewer images and an automated self-calibration procedure as op-
posed to a sophisticated manual one, the resulting cloud of 3–D points is much noisier
and harder to fit. Shaded models obtained after the fitting are dispicted on Fig. 4(i,j,k,l).
Notice they shaded models are shown in the same projection as the corresponding im-
ages on Fig. 4(a,b,c,d). In Fig. 4(d) and (l) we overlay on both the original image and the
shaded projection of the mask the outlines of the face. Note that they correspond to the
outlines predicted from the recovered 3–D geometry, thus indicating a good fit. These
models can also be reused to resynthesize textured images such as the ones of Fig. 5.
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Fig. 4.Uncalibrated video sequence: (a) One image from the stereo pair of images with overlayed
manualy provided 2D observations. (b,c,d) Three images from the uncalibrated video sequence out
of eight images. On the image (c) 2D observations are despicted. (d) The image with overlaid face
outline. (e,f,g,h) Centers of local surface patches fitted to the raw stereo data. (i,j,k,l)Automatically
recovered shaded headmodel projected using the (a),(b),(c) and (d) image camera models. (l) Face
outlines overlaid on the shaded projection in image (d).

We also animated generated models after the automatic fitting procedure using DFFD
and produced complex facial expressions Fig. 5(i,j).

Least-square adjustment is applied in several iterations for the same value of regular-
ization parameter λ. However, we tested how fitting to the uncalibrated data Fig. 4(b,c,d)
is influenced by different choice of regularization parameter, in our case ranging from
λ = 1.0 to λ = 10, and checked median error of the model to observations distance for
certain number of iterations what is depicted on the Fig. 6(a). It is easy to see that final
results do not depend on the choice of the regularization parameter since the median
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Fig. 5. Textured models we created from the calibrated video sequence:(a,b,c), from stereo pair
(d,e) and from uncalibrated video sequence:(f,g,h); Animated model showing complex facial
expressions(i,j)
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Fig. 6. (a) Least square median error for different regularization parameter λ ranging from 1.0 to
10.0 in respect to the number of iterations for video sequence whose three images are Fig. 4(b,c,d).
(b) Fitting time in respect to the input data complexity
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error of the model to observations distance does not greatly change with the increasing
of the regularization parameter.

4.3 Ear Modelling

Finally, we will show that we are also able to model some other complex geometrical
shapes such as human ear. The model we have is of very bad quality and we got it from
the web Fig. 1(c,d). Data are produced from two images taken with the structure light
Fig. 7(a). The control mesh is created manually Fig. 2(c), but this time there are no
control points which exactly match some of the points on the model. Once again we
demonstrated the power of DFFD based fitting to the noisy data. Results we obtained
are again realistic and reliable. Deformed model on Fig. 7(c) is close to the ear shown on
the Fig. 7(a). Using such complex shape to deform we can argue that the approach used
is generic enough that it could be applied to any shape for which we have triangulated
model.

(a) (b) (c)

Fig. 7. (a) Ear image “Courtesy of U.Maryland”, (b) data cloud, (c) automatically obtained shaded
deformed model shown in the same perspective as the ear on the image

4.4 Performance Measures

In our framework we use generic model of the human head including ears and neck from
Fig. 1(a,b) which consists of 1396 vertices and 2756 facets. This generic model is used
in all tests we performed to model heads. Control mesh is the one from Fig. 2(a, b).
Generic ear model from Fig. 1(c,d) is built of 1167 vertices and 1620 facets, while its
corresponding control mesh is shown on Fig. 2(c) has 46 vertces and 87 facets. System is
tested on ancient Silicon Graphic Octane work station with R12000 prosessor working
on 300MHz, and with 512Mb RAM memory.
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The process starts with freezing the control mesh to the surface triangulation com-
puting necessary Sibson coordinates. This is done once at the very begining and it is
used for all input data. Freezing the control mesh of the head takes 65s. On the Fig. 6(b)
is shown how the time for fitting depends on complexity of input data. Fitting time in-
cerases with the complexity of the data, but also depends on its configuration. For this
test the number of fitting steps is fixed to three iterations and the stiffness parameter is
set to λ = 1.0. Input data of the size 103, are fitted for the shorter time then the one
of the lower complexity 5 · 103, since its configuration is initially closer to the generic
model, so the least-square minimization converges faster.

5 Conclusion

In this work, we proposed to use the powerful DFFD extension to the conventional FFD
shape deformation approach to fit deformable surface models to noisy 3–D image data.
DFFDs give us the ability to place control points at arbitrary locations rather than on a
regular lattice, and thus much greater flexibility.We demonstrated the effectiveness and
robustness of our technique in the context of complete head modeling. We also showed
that, in fact, we can model any complex shape for which a deformable triangulated
model exists.For the specific application we chose, DFFDs offer the added benefit that
they can be used to animate the head models we create and to produce realistic human
expressions. The proposed framework could thus be extended to head motion tracking.

In future work we intend to investigate the possibility of using DFFDs to deform
implicit surfaces as opposed to the explicit onesweuse here. In unrelated body-modelling
work, we found that implicit surface formulations lend themselves extremely well to
fitting to the kind of data because they allow us to define a distance function of data
points to models that is both differentiable and computable without search. Combining
both approaches should therefore produce an even more powerful modelling tool.
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