Cryst.Struct.Comm. (1981). 10, 533.

Bis(n-TETRADECYLAMMONIUM) TETRACHLOROZINCATE(II),

(C₁₄^H29^{NH}3) 2^{ZnCl}4

F. Javier Zuniga and Gervais Chapuis Université de Lausanne, Institut de cristallographie, BSP, 1015 Lausanne, Switzerland.

Preliminary information

Compounds of the type $(C_nH_{2n+1}NH_3)_2MX_4$ where M = Cu, Mn, Cd, Zn, Co and X = Cl, Br have been studied extensively in the last few years owing to the similarities of their properties with phospholipids membranes and smectic liquid crystals (Blinc et al., 1979). The structure of all these compounds consists of alternating layers of alkylammonium ions and metalhalogen macro-ions but considerable differences remain in the packing modes of the aliphatic chains. In addition, they exhibit numerous phase transitions which have been studied both theoretically and experimentally (Socias et al., 1980, Kind et al., 1979) for metal with octahedral or quadratic coordination (M = Cu, Mn, Cd) whereas little is known for compounds with tetrahedral coordination (M = Co, Zn). This structure has been solved as part of a study on the phase transitions of these compounds.

Crystal Data

 $(C_{14}H_{29}NH_3)_2ZnCl_4$ is monoclinic, space group P2₁/c (no. 14). The lattice constants at 293 K are a = 7.3980(7), b = 10.254(1), c = 47.659(5) Å and β = 92.794(7)^O as determined from single crystal diffractometry with CuK_{α} radiation (λ = 1.54178 Å). Z = 4, D_c = 1.17 g cm⁻³.

Structure determination and refinement

Intensities were measured on a Syntex P2₁ autodiffractometer by the θ - 2 θ scan technique up to sin $\theta/\lambda = 0.54$ Å⁻¹ with Ni-filtered CuK_{α} radiation. An absorption correction was applied to the measurements ($\mu = 37.2$ cm⁻¹). Of the 3977 reflections, 854 intensities smaller than 3 σ were considered as unobserved. For the reduction of the data and refinement of the structure, the X-Ray System of Programs (Stewart et al., 1972) was used. Atomic scattering factors of Zn²⁺, Cl⁻, N, C, H (Cromer and Mann, 1968) and anomalous dispersion terms for Zn and Cl were used for the structure factor calculation.

The structure was solved by the Patterson method and refined by least-squares with a block-diagonal matrix. The nonhydrogen atoms were refined with anisotropic thermal parameters. The calculated positions of the H atoms were included in the

Fig. 1

final step of the refinement but not refined. After completion of the refinement the residuals R = 0.040 and $R_w = 0.050$ were obtained and the largest peak intensity on a difference Fourier synthesis was 0.39 e/A^3 . Residuals without the contribution of H atoms were R = .057 and $R_w = .082$.

Discussion

A projection of the structure along <u>a</u> is shown on fig. 1. Atomic parameters, bond distances and angles are reported on Tables I and II. The structure consists of two types of alternating layers stacked along <u>c</u>. Interpenetrating chains of alkylammonium ions form one type whereas isolated $\text{ZnCl}_4^{2^-}$ form the second type. This structure is similar to $(\text{C}_{12}\text{H}_{25}\text{NH}_3)_2\text{ZnCl}_4$ (Ciajolo et al., 1977).

- 535 -

Table I. Atomic parameters

ATOM	x	Y	Z
ZN	0.24609(8)	0.23049(5)	0.48541(1)
CL1	0.2317(2)	0.0192(1)	0.47320(3)
CL2	0.3181(2)	0.2495(1)	0.53231(2)
CL3	-0.0140(2)	0.3346(1)	0.47341(2)
CL4	0.4742(2)	0.3295(1)	0.46351(2)
N1	0.7215(5)	0.1101(3)	0.02518(7)
N 2	0.7229(6)	0.0613(3)	0.46082(6)
C 1	0.8349(7)	0.1789(4)	0.0467(1)
C2	0.7664(7)	0.1648(5)	0.0757(1)
C3	0.8725(8)	0.2466(4)	0.0979(1)
C4	0.8279(7)	0.2098(4)	0.1277(1)
C5	0.9362(7)	0.2798(4)	0.1509(1)
C6	0.8986(7)	0.2256(4)	0.17982(9)
C 8 C 9	1.0065(7) 0.9699(8) 1.0779(7)	0.2892(4) 0.2294(4) 0.2900(4)	0.2325(1) 0.2570(1)
C10	1.0413(8)	0.2283(4)	0.2852(1)
C11	1.1503(8)	0.2877(4)	0.3097(1)
C12	1.1143(8)	0.2256(5)	0.3382(1)
C13 C14	1.2258(8)	0.2846(5) 0.2295(6)	0.3624(1) 0.3907(1)
C21 C22 C23	0.6448(7) 0.6959(7)	0.0160(5) 0.0469(5)	0.43140(9) 0.41033(9) 0.38049(9)
C24	0.5735(7)	-0.0118(4)	0.3573(1)
C25	0.6183(7)	0.0363(4)	0.32811(9)
C26	0.5009(7)	-0.0201(4)	0.30408(9)
C27	0.5433(7)	0.0349(4)	0.27573(8)
C28	0.4303(7)	-0.0209(4)	0.2515(1)
C29 C210 C211	0.4702(7) 0.3609(7) 0.4036(7)	0.0374(5) -0.0177(4) 0.0399(5)	0.1984(1) 0.17023(9)
C212	0.2988(7)	-0.0183(5)	0.14552(9)
C213	0.3444(8)	0.0350(5)	0.1177(1)
C214	0.2432(8)	-0.0266(5)	0.0929(1)
H 1 N 1 H 2 N 1	0.7190	0.0134 0.1470	0.0302
H 3 N 1 H 1 1 H 1 2	0.9678 0.8448	0.1414 0.2763	0.0470 0.0420
H21 H22	0.6324 0.7725	0.1918 0.0671	0.0752
H32 H41	0.8478	0.3433 0.2340	0.0941 0.1299
H 4 2	0.8407	0.1122	0.1303
H 5 1	1.0715	0.2650	0.1474
H 5 2	0.9100	0.3769	0.1499
H 6 1	0.7620	0.2439	0.1834
H 6 2	0.9174	0.1280	0.1803
H 7 1	1.1446	0.2730	0.2006

Table I (cont.)

ATOM	X		Y		Z		
H72	0.9865	- 62	0.3866		0.2043		
H 8 1	0.8326		0.2453		0.2360		
H82	0.9895		0.1311		0.2322		
H91	1.2152		0.2745		0.2535		
H92	1.0568		0.3874		0.2576		
H101	0.9052		0.2441		0.2892		
H102	1.0622		0.1304		0.2849		
H111	1.2880		0.2719		0.3061		
H112	1.1310		0.3857		0.3104		
H121	0.9774		0.2421		0.3420		
H122	1.1328		0.1274		0.3375		
H131	1.3629		0.2659		0.3590		
H132	1.2112		0.3840		0.3626		
H141	1.0522		0.2485		0.3952		
H142	1.2039		0.1304		0.3916		
H143	1.2638		0.2685		0.4077		
H1N2	0.6031		0.1093		0.4624		
H2N2	0.7057		-0.0350	0.000	0.4654		
H3N2	0.8144		0.0996		0.4753		
H211	0.8011		0.1694		0.4264		
H212	0.9027		0.0247		0.4293		
H221	0.6356		-0.0827		0.4132		
H222	0.5192		0.0563	2 1015	0.4135		
H231	0.7043		0.1454		0.3780		
H232	0.8264		0.0089		0.3781		
H241	0.5777	- 013	-0.1099		0.3582		
H242	0.4422		0.0187		0.3609		
H251	0.6163		0.1356		0.3272		
H252	0.7516		0.0069		0.3245		
H261	0.5067		-0.1180		0.3040		
H262	0.3659		0.0068		0.3078		
H271	0.5328		0.1343		0.2759		
H272	0.6776		0.0116	1.1.1.1	0.2725		
H281	0.4418	24150	-0.1186		0.2510		
H282	0.2942		0.0019		0.2551		
H291	0.4552		0.1360		0.2233		
H292	0.6057		0.0172		0.2195		
H2101	0.3769		-0.1157		0.1979		
H2102	0.2261	C24 - 1	0.0028		0.2017	•	
H2111	0.3815		0.1381		0.1702		
H2112	0.5396		0.0240		0.1671		
H2121	0.3199	- 810 -	-0.1168		0.1454		
H2122	0.1634	1	-0.0014		0.1482		
H2131	0.3185		0.1346		0.1170		
H2132	0.4814		0.0234		0.1149		
H2141	0.2679		-0.1256		0.0927		
H2142	0.1051	-	-0.0144		0.0948		
H2143	0.2729		0.0091		0.0735		

- 537 -

Table II. Bond lengths $(\overset{O}{A})$ and angles $(\overset{O}{})$

Zn -	Cl	1	2.245	(1)		Cl1	-	Zn -	Cl2	110.01(5)
-	Cl	2	2.281	(1)		Cl1	-	Zn -	Cl3	111.29(6)
-	Cl	3	2.250	(1)		Cl1	-	Zn -	Cl4	109.88(5)
-	Cl	4	2.267	(1)		Cl2	-	Zn -	Cl3	111.38(5)
			55.0			Cl2	-	Zn -	Cl4	105.61(5)
N1 -	Cli	2	3.345	(4)		Cl3	-	Zn -	Cl4	108.49(5)
-	Cl ⁱⁱ	3	3.273	(4)						
-	cl ⁱⁱⁱ	4	3.277	(4)		N 1	-	C 1 -	C 2	112.8(4)
-	Cli	4	3.442	(4)		C 1	-	C 2 -	C 3	113.4(4)
-	сţі	3	3.557	(4)		C 2	-	C 3 -	C 4	112.4(4)
N2 -	cť	1	3.252	(3)		C 3	-	C4-	C 5	115.8(4)
-	cť	2	3.220	(4)	2801.0	C 4	-	C 5 -	C 6	112.1(4)
-	Cl	3	3.448	(4)		C 5	-	C 6 -	C 7	114.7(4)
-	Cl	4	3.315	(4)		C 6	-	C 7 -	C 8	113.2(4)
						C 7	-	C 8 -	C 9	114.3(4)
N 1 -	C 1		1.472	(6)		C 8	-	C 9 -	C10	113.6(4)
C 1 -	C 2		1.502	(7)		C 9	-	C10-	C11	113.8(4)
C 2 -	C 3		1.536	(7)		C10	-	C11-	C12	114.0(4)
C 3 -	C 4		1.520	(7)		C11	-	C12-	C13	113.4(4)
C4-	C 5		1.516	(7)		C12	-	C13-	C14	114.5(4)
C 5 -	C 6		1.523	(7)						
C 6 -	C 7		1.518	(7)		N 2	-	C21-	C22	113.9(4)
C 7 -	C 8		1.526	(7)		C21	-	C22-	C23	111.3(4)
C 8 -	C 9		1.515	(7)		C22	-	C23-	C24	115.5(4)
C 9 -	C10		1.523	(7)		C23	-	C24-	C25	112.7(4)
C10-	C11		1.513	(7)		C24	-	C25-	C26	115.0(4)
C11-	C12	!	1.535	(7)		C25	-	C26-	C27	113.3(4)
C12-	C13	1	1.512	(7)		C26	-	C27-	C28	114.3(4)
C13-	C14		1.500	(8)	9251.0	C27	-	C28-	C29	114.1(4)
						C28	-	C29-	C210	115.4(4)
		•								
				0.9.00				98215		

Table II (cont.)

N2	-	C21	1.484(6)		C29	-	C210	-	C211	114.9(4)	
C21	-	C22	1.488(7)		C210) —	C211	-	C212	114.7(4)	
C22	-	C23	1.522(7)		C21	1 ~	C212	-	C213	115.0(4)	
C23	-	C24	1.518(7)		C212	2-	C213	-	C214	114.7(4)	
C24	-	C25	1.529(7)								
C25	-	C26	1.518(6)	N1 -	C 1	-	C 2	-	C 3	-175	
C26	-	C27	1.511(6)	C 1 -	C 2	-	C 3	-	C 4	-169	
C27		C28	1.506(6)	C 2 -	C 3	-	C 4		C 5	+175	
C28	_	C29	1.520(7)	C3 -	C 4	0	C 5	-	C 6	-173	
C29	-	C210	1.508(7)	C4 -	C 5	-	C 6	~	C 7	+177	
C210	-	C211	1.512(7)	C 5 ~	C 6	-	C 7	-	C 8	-178	
C211	1	C212	1.502(7)	C6 -	C 7	-	C 8	-	C 9	+179	
C212	-	C213	1.490(7)	C7 -	C 8	-	C 9	-	C10	-179	
C213	-	C214	1.504(7)	C8 -	C 9	-	C10	34	C11	+179	
				C 9 -	C10	-	C11	-	C12	-180	
(i)		x, 1/2-y	y, z−1/2	C10 -	C11	-	C12	-	C13	+179	
(ii)		x+1, 1/2	2-y, z-1/2	C11 -	C12	-	C13	-	C14	+177	
(iii)		1-x, y-1	1/2, 1/2-z								
(iv)	15.5	1-x, -y,	, 1-z	N2-	C21	-	C22	-	C23	+172	
(v)		1+x, y,	Z	C21-	C22	-	C23	-	C24	+175	
				C22-	C23	-	C24	-	C25	+173	
			Linux Dr. 1	C23-	C24		C25	7	C26	+178	
				C24-	C25	-	C26	-	C27	+177	
				C25-	C26	-	C27	-	C28	+179	
				C26-	C27	-	C28	-	C29	+179	
				C27-	C28	-	C29	-	C210	+179	
				C28-	C29	-	C210	-	C211	~178	
				C29-	C210	-	C211	5	C212	+178	
				C210-	C211	-	C212	-	C213	-178	
			ALINE TOTAL	C211-	C212	-1	C213	7.	C214	+178	

the matter and the strength

All the carbon atoms are in the trans configuration with slight deviations from 180° increasing for atoms near the ZnCl_4 layer. The packing of the chains is of a new type not included in the work of Segerman (1965). The unit cell of the aliphatic carbons is monoclinic, space group P2₁. Lattice constants are $a_c = 7.9$, $b_c = 10.3$, $c_c = 2.54$ Å and $\beta = 99^{\circ}$.

<u>Acknowledgements:</u> We wish to thank the Swiss National Foundation for Scientific Research (Grant no 2.234-0.79) for supporting this research. We are also grateful to Prof. Tello for supplying the crystals.

References

Blinc, R., Burgar, M.I., Rutar, V., Žekš, B., Kind, B., Arend, H. and Chapuis, G. Phys. Rev. Lett. (1979), <u>43</u>, 1679-1682. Ciajolo, M.R., Corradini, P. and Pavone, V. Acta Cryst.(1977), B33, 553-555.

Cromer, D.T. and Mann, J.B. Acta Cryst. (1968), <u>A24</u>, 321-324. Kind, R., Plesko, S., Arend, H., Blinc, R., Žekš, B., Seliger, J., Ložar, B., Slak, J., Levstik, A., Filipič, C., Žagar, V., Lahajnar, G., Milia, F. and Chapuis, G. J. Chem. Phys. (1979), 71(5), 2118-2130.

Segerman, E. Acta Cryst. (1965), 19, 789-796.

Socias, C., Arriandiaga, M.A., Tello, M.J., Fernandez, J. and Gili, P. phys. stal. sol. (a), <u>57</u>, 405-410.

Stewart, J.M., Kruger, G.L., Ammon, H.L., Dickinson, C., Hall, S.R. (1972). The X-Ray System - Version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Received: 22 December 1980