
When Birds Die:
Making Population Protocols Fault-Tolerant

Carole Delporte-Gallet
Université Paris 7

France

Hugues Fauconnier
Université Paris 7

France

Rachid Guerraoui
EPFL

Switzerland

Eric Ruppert
York University

Canada

At vobis male sit, malae tenebrae
Orci, quae omnia bella devoratis:

tam bellum mihi passerem abstulistis. [6]

Abstract

In the population protocol model introduced by Angluin et al. [2], a collection
of agents, which are modelled by finite state machines, move around unpredictably
and have pairwise interactions. The ability of such systems to compute functions on a
multiset of inputs that are initially distributed across all of the agents has been studied
in the absence of failures. Here, we show that essentially the same set of functions can
be computed in the presence of halting and transient failures, provided preconditions
on the inputs are added so that the failures cannot immediately obscure enough of the
inputs to change the outcome. We do this by giving a general-purpose transformation
that makes any algorithm for the fault-free setting tolerant to failures.

1 Introduction

Consider an ad hoc mobile network in which each agent is a very simple component, such
as a tiny sensor with very severe constraints on memory and power. Such systems have been
envisioned, for example, in Berkeley’s Smart Dust project [10]. An agent can communicate
with other nearby agents through wireless communication. To make use of data collected by
the agents of such a system, it is necessary to aggregate the data in some way [11, 13].

Angluin et al. [2] introduced the notion of a computation by a population protocol to
model this situation. In their model, the computation is carried out by a collection of agents,
each of which receives a piece of the input. These agents move about and information can
be exchanged between two agents whenever they come into contact with each other. The
goal is to ensure that every agent can eventually output the value that is to be computed
(assuming a fairness condition on the sequence of interactions that occur). The agents are
extremely simple devices, and can be represented as finite state machines. The abstraction
also makes absolutely minimal assumptions about the movement of the system’s components.
In particular, the algorithms designed for such systems cannot dictate the movement of the

1

agents. Can interesting computations still be performed in such a model? Angluin et al.
showed the answer is yes, assuming no agents fail. For example, protocols exist to compute
parity, majority and constant-threshold functions, as well as boolean combinations of such
functions.

A motivating example for their model was a flock of birds, in which each bird carries a
monitoring device that can measure the bird’s body temperature. Suppose the devices can
signal other devices within a small distance. They showed that such a sensor network could
be used, for example, to determine whether at least five birds in the flock have an elevated
temperature, which could then be used to raise an alert indicating that there might be an
illness sweeping across the flock. In this paper, we study what happens to the model when
some of those ill birds drop dead: Can interesting computations be done in this population
protocol model in a way that tolerates failures?

We consider two types of failures. A crash failure causes an agent to cease interacting
with other agents. A transient failure is a momentary failure that can arbitrarily corrupt
the state of an agent. The agent continues executing its algorithm correctly with after the
transient failure occurs. Transient failures include, as a special case, sensing failures, which
cause the input to an agent to be incorrect. This is because the input is part of the state of
an agent and can therefore be corrupted by the transient failure. However, transient failures
are more general, since they can affect the entire state of the agent. For example, they can
corrupt any partial data that the agent has collected, as well as its “programme counter”
which keeps track of what part of the algorithm it is executing. We shall assume that both
types of failures can occur in an execution and that we have a known upper bound on the
number of failures of each type that can occur.

Clearly, some functions that can be computed without failures will be impossible to
compute in a model with failures. For example, if we consider the possibility of experiencing
a single halting failure, a population will not be able to compute with certainty a threshold
function that is 1 if at least five of the birds are ill and 0 otherwise. Consider an execution
with exactly five ailing birds, one of which dies (along with its sensor) before the bird
comes into contact with any other birds. The output should be 1, but this run cannot be
distinguished by any live agent from a run where there are four feverish birds and the output
should be 0. However, with at most one failure, we can still distinguish whether the number
of ill birds is greater than five or less than five. We discuss two ways to formalize this. We
can restrict the domain of the function to be computed, by adding a precondition that the
number of ill birds will either be greater than five or less than five. Or we can say that the
protocol will compute the result correctly when the number of sick birds is different from
five, but may output either 0 or 1 in the case where exactly five birds are sick. The former
approach is used in Section 5, and the latter is discussed in Section 6.

We show that, for any function that can be computed by a population protocol in a
failure-free environment, it is possible to design a population protocol that computes the
function in a way that tolerates crash failures and transient failures, provided preconditions
are added or incorrect responses are permitted for inputs that are very close to other inputs
that have a different response, as described above for the example about birds.

As one might expect, we use replication to achieve fault-tolerance. Given a protocol that
computes a function in a failure-free environment, we run several copies of the protocol.
Because of the severe limitation on the memory of each agent, we need a constant fraction

2

of the agents to cooperate to simulate one instance of the original protocol; otherwise there
would not be enough space to store the states of all of the simulated agents. We divide the
agents into g groups of approximately equal size. Each group simulates one instance of the
failure-free protocol. This is done by having each agent in the group simulate approximately
g agents of the original protocol. The value of g is chosen to ensure that the output produced
by the largest number of groups’ simulations is correct.

2 Related Work

The population protocol model was introduced by Angluin, Aspnes, Diamadi, Fischer
and Peralta [2]. They defined the concept of stable computation of a function in this model,
focussing on stable computation of predicates, which are functions whose output is a binary
value. They showed that the predicates computable in this model include all that can be
expressed using Presburger arithmetic and that they are all included within the complexity
class NL, leaving an exact characterization as an open problem.

They also considered variants of the model where interactions are restricted. First, the
interactions can be constrained by considering a particular communication graph, which has
an edge between the nodes representing two agents if those agents are permitted to come
into contact with each other. Second, they considered a randomized version of the model,
where interactions are chosen randomly and uniformly, and the output must be computed
with high probability. In both cases, the power of the system is increased.

Angluin, Aspnes, Chan, Fischer, Jiang and Peralta [1] further studied the model with a
non-complete communication graph. They describe properties of the communication graph
itself that can be computed by the agents in the system. For example, the system can
determine whether the graph contains an odd cycle.

Angluin, Aspnes, Eisenstat and Ruppert [4] considered population protocols where the
interactions between pairs of agents are one-way. Each interaction has a sender and a
receiver, and the sender cannot discover any information about the receiver’s state in such
an interaction. Full or partial characterizations of the predicates that can be stably computed
(with no failures) in several variants of this model are given.

The question of what computations are possible in the population protocol model when
failures can occur was raised by Delporte-Gallet, Fauconnier and Guerraoui [7]. They give
an example of a protocol that can be adapted to tolerate failures. However, the approach
used there is not generally applicable to all population protocols.

The transient failures that we consider in this paper can corrupt the internal states of
agents arbitrarily. We assume that the number of such failures is bounded. Research on
self-stabilizing systems [8] assumes that any number of processes can have corrupted states,
requiring that the system eventually return to a correct configuration. Angluin, Aspnes,
Fischer and Jiang incorporated the notion of self-stabilization into the population protocol
model [5]. They gave some self-stabilizing protocols for classical problems such as leader
election and token passing. The types of problems they studied differ from the problems we
discuss here. Their paper concentrates on stably maintaining some property (e.g. having a
unique leader, having a legal colouring of the communication graph), whereas we focus on
computing functions of inputs initially distributed across the system. This makes it necessary

3

for us to assume a bound on the number of transient failures, so that those inputs are not
lost. Also, we are concerned with creating a general-purpose transformation that converts
an arbitrary algorithm that works in the failure-free setting into a fault-tolerant algorithm.

The way we transform the specification of a problem for the failure-free population pro-
tocol model into a specification for the fault-tolerant model is, in spirit, analogous to the
way such transformations have been done in traditional distributed systems. Consider for
instance the seminal atomic commit problem from distributed databases [9]. In a failure-free
distributed system, one would typically require a transaction to commit if and only if all
servers vote “yes”, i.e., none detected a concurrency conflict. Such a specification is clearly
impossible to implement (even in a synchronous system) if one server can fail: it is indeed
impossible to distinguish an execution where all servers voted “yes” and one initially crashed,
from an execution where this initially crashed server voted “no”. It is thus typical to allow
a transaction to sometimes abort even if all servers vote “yes” (and one of them fails or is
suspected to have failed), or commit a transaction even if a minority of servers vote “no”
(e.g., in a replicated system).

Our approach to describing functions that can be computed in the failure-prone pop-
ulation protocol model is also influenced by the condition-based approach of Mostefaoui,
Rajsbaum and Raynal [12]. They described exactly what sort of precondition must be
placed on the possible inputs to the consensus problem in order for it to become solvable in
an asynchronous system with f halting failures using shared read-write registers.

3 Population Protocols

Our formalization of the population protocol model is based on the work of Angluin et al.
[2]. We present a version that assumes non-deterministic, two-way interactions can take place
between any pair of agents, but also allows halting failures and transient failures. A halting
failure causes an agent to cease functioning and play no further role in the execution. A
transient failure corrupts the state of an agent, but the agent otherwise follows its algorithm
correctly.

Each agent in the system is modelled as a finite state machine, and algorithms must
be uniform: each finite state machine is “programmed” identically and the programming
does not depend on the number of agents in the system. This makes the model strongly
anonymous, since there is not enough space in the state to give each agent a unique identifier.

Let X be a finite input alphabet and Y be a finite output alphabet. Each agent is
provided with an input drawn from X. Since agents are essentially interchangeable, an
input to the system can be thought of as a multiset of elements from X. Let X be a set
of all multisets of elements from X. Let D ⊆ X be the set of all input multisets that can
actually occur. In general, D may be a proper subset of X , since there may be preconditions
on what inputs are permitted. The goal of an algorithm is to compute a function f : D → Y .
Each agent must eventually output the value of this function for the input multiset that was
initially provided to the agents.

We now describe how to specify a population protocol. Let Q be the finite set of states
that each agent may take. A population protocol is defined by an input assignment i : X →
Q, a transition function δ : Q×Q → P(Q×Q)−{∅}, and an output assignment o : Q → Y .

4

(The notation P(S) is used to denote the power set of S.) If two agents in states q1 and
q2 encounter each other, they can change into states q′1 and q′2, where (q′1, q

′
2) ∈ δ(q1, q2).

Without loss of generality, assume the transition function is symmetric: δ(q1, q2) = δ(q2, q1).
The protocol is deterministic if δ(q1, q2) is a singleton set for all q1, q2 ∈ Q.

Let I ∈ D be an input for the system. An execution of the protocol on input I is an
infinite sequence of configurations, C0, C1, C2, . . ., each of which is a multiset of states drawn
from Q. The initial configuration C0 is the multiset {i(x) : x ∈ I}. The configuration Ck

must be obtainable from Ck−1 by one of the following four types of transitions:

Ordinary transition: Ck = Ck−1 − {q1, q2} ∪ {q′1, q′2} where {q1, q2} ⊆ Ck−1 and (q′1, q
′
2) ∈

δ(q1, q2).

Halting failure: Ck = Ck−1 − {q}.

Transient failure: Ck = Ck−1 − {q} ∪ {q′}.

Null step: Ck = Ck−1.

The output of an agent in state q is o(q). We say that the execution stably outputs v ∈ Y
if every agent eventually outputs v and never changes its output thereafter. Formally, this
means there is an i such that for all j > i, o(q) = v for every q ∈ Cj .

If every sequence of interactions is considered to be a possible execution in the model, it
would be possible to have isolated agents that never interact with one another. So the model
must incorporate a fairness guarantee. Simply requiring that every pair of agents eventually
meet is insufficiently strong for some interesting protocols, since the two agents might only
meet at inopportune times, when their states prevent a particular kind of interaction from
happening. So the research on population protocols has assumed a stronger fairness con-
dition. In a fair execution, if a configuration C occurs infinitely often and a configuration
C ′ can be reached from C by an ordinary transition, then C ′ occurs infinitely often. If, for
example, we associate probabilities with different interactions, then an execution will be fair
with probability 1. A protocol stably computes a function f : D → Y if, for every input
I ∈ D, every fair execution on input I stably outputs f(I).

4 The Simulation

In this section, we describe how any population protocol A that stably computes a func-
tion f in a failure-free setting can be adapted to run in a setting where a bounded number of
crash and transient failures can occur. To do this, we construct an algorithm B that divides
agents into groups and simulates, within each group, an execution of the original protocol
A. We shall show in Section 5 that, if we add a precondition on the inputs, this simulation
will correctly compute f . We first define the kind of precondition on the inputs that will be
required.

Recall that X and Y are an input and output alphabet, X denotes the set of all multisets
of elements from X, and D ⊆ X .

5

Definition 1 Let a, b ∈ IN. A function f : X → Y is called (a, b)-robust for D if, for any
input multiset I ∈ D and any input I ′ ∈ X that can be formed from I by removing up to a
elements and then adding up to b elements, f(I) = f(I ′).

Example 2 Let X = Y = {0, 1}. Let f be the majority function: for any multiset S of 0’s
and 1’s, f(S) = 1 if and only if S contains more 1’s than 0’s. Let D be the set of all input
multisets where the number of 0’s differs from the number of 1’s by at least k. Then f is
(a, b)-robust for D for any parameters a and b satisfying a + b < k. This is because, starting
from any input multiset in D, the number of input values that would have to be added and
removed to change the output of f total at least k.

Let f : X → Y be any function that can be stably computed by a population protocol
in the failure-free environment. We shall show that if f is (c + t, t)-robust for D, then f
restricted to inputs from D can also be stably computed in an environment where up to c
crash failures and up to t transient failures may occur.

Let A be a population protocol that stably computes f in the failure-free setting. The
algorithm A is specified by the state set QA, input and output assignment functions iA and
oA, and the transition function δA. Let Qinit = {iA(x) : x ∈ X}. We shall build an algorithm
B which simulates A in a way that tolerates up to c crash failures and t transient failures.
We first describe the simulation. Its correctness is argued in Section 5.

The fault-tolerant algorithm B will divide agents up into g groups (where g is a constant
to be chosen later), and simulate the original algorithm within each group. There will be
roughly n/g agents in each group, where n is the number of agents in the system. (Recall
that agents do not know the value of n.) Each of the agents that comprise a group will
simulate up to 2g distinct agents of the original algorithm A. (For clarity, we shall hereafter
refer to the agents of algorithm B as “agents”, and the simulated agents of algorithm A as
“threads”.) No thread will be simulated by two agents in the same group (except as the
result of a transient failure).

In B, each agent’s state contains seven fields:

• init stores an initial value from Qinit, initialized to iA(x), where x is the input for the
agent. (This field is never changed by the algorithm.)

• joined is a boolean variable that says whether the agent has joined a group yet. Ini-
tially, it is set to false.

• group stores a value from {1, 2, . . . , g}, initially g, which will eventually be the name
of the group this agent joins.

• sum will be used for a division subroutine and can take values in the range {0, . . . , group−
1}, initially 1.

• sim stores a multiset of up to 2g elements from QA representing the states of the
threads that the agent is simulating, initially ∅.

• given[1..g] stores an array of g boolean values, with each entry initially set to false.
This will keep track of which groups contain a thread that has been given a copy of
this agent’s input value.

6

• output[1..g] stores an array of g values from Y , representing the output values from
the simulations carried out by each of the g groups. It can be initialized arbitrarily.

Note that the state set of algorithm B has |Qinit|g(g + 1)
(
2g+|QA|

2g

)
2g|Y |g states, and this

quantity is independent of n, the number of agents in the system, as required by the model.
The first phase of an agent’s actions is devoted to assigning the agent to one of the

g groups. This phase ends when the agent’s joined field is changed to true. The second
phase will be devoted to gathering input values from approximately g other agents. We
shall guarantee that each non-faulty agent’s input value is eventually given to exactly one
thread of exactly one agent in each group. Whenever two agents in the same group meet,
they nondeterministically choose an interaction of two of their threads to simulate. In those
groups that have no faulty agents, the simulation will be a faithful simulation of algorithm
A, and the output of each thread within that group will eventually stabilize to the correct
value. We shall choose g large enough so that agents will be able to recognize (and output)
a value that is being produced by a group of agents that experienced no failures.

In phase 1, we first execute the division-by-g algorithm described by Angluin et al. [2] to
split off, from the rest of the agents, group number g, which will contain approximately n/g
agents. The remaining agents then execute a division-by-(g − 1) algorithm to split off group
number g − 1 (again of size roughly n/g). The remaining agents then divide by g − 2, and
so on. The group field of the state keeps track of which division is currently being worked
on by the agent.

An agent is said to join group i when it sets its joined field to true, if its group field
contains i at that time. Joining a group is an irreversible action for a non-faulty agent: once
the joined variable is set to true, none of the fields joined, group or sum will ever change
again.

To accomplish phase 1, if two agents whose joined, group and sum fields are (false, i, s)
and (false, i, s′) with i > 2 meet, they transition to (false, i − 1, 1) and (false, i, s + s′) if
s+s′ < i and to (false, i, s+s′−i) and (true, i, 0) if s+s′ ≥ i. We shall argue below that this
has the effect of making about 1/i of the agents that set their group field to i eventually join
group i: the sum field accumulates a count of agents who set their group field to i and when
one count reaches i, an agent can join group i. When an agent whose group field is i has
been counted (but does not join group i), it changes its group field to i−1. When two agents
whose joined, group and sum fields are both (false, 2, 1), one transitions to (true, 2, 0) and
the other transitions to (true, 1, 0). This has the effect of splitting the agents whose group
field is set to 2; half of them join group 1 and half join group 2.

When an agent p joins group i, it sets its sim field to ∅ (if p’s given[i] field is true) or
to {init} (if p’s given[i] field is false). In the latter case, p also changes its given[i] field to
true. If, at any time, an agent p1 whose value of given[i] is false meets another agent p2

that has joined group i and does not have a full sim field, p2 adds p1’s init field to its sim
field and p1 sets given[i] to true. Interactions of this type will have the effect of creating, for
each correct agent p (and possible some faulty ones), a thread inside the sim field of exactly
one agent in group i initialized with the initial state that p would have in algorithm A.

Whenever two agents p1 and p2 that have joined the same group meet, the transition
function non-deterministically chooses two elements q and q′ from the union of the two
agents’ sim multisets (both could possibly be from the same agent’s sim multiset) and

7

changes the two states q and q′ to a pair of states given by δA(q, q′). If the union of the two
sim multisets contains fewer than two elements, no state change occurs in either agent.

Whenever an agent p1 meets an agent p2 that has joined some group i and has a non-
empty sim field, p1 sets its output[i] field to oA(q), where q is the first element of p2’s sim
field. The output assignment function for B is defined by taking the element that appears
with the highest multiplicity in the field output.

Our simulation B is non-deterministic, even if the original protocol A is determinis-
tic: when two agents in the same group meet, they non-deterministically choose which two
threads should interact. However, it is not difficult to remove this non-determinism of B
by making use of the non-determinism of the order in which interactions occur, using the
technique described by Angluin et al. [1]. Each agent stores a “choice counter” which dic-
tates which of the finite number of possible outcomes should result from an interaction. The
counters are incremented by a circulating token. However, in our model, the token could be
lost when a failure occurs. So instead, we can increment the choice counter of an agent when
it encounters an agent in another group.

5 Correctness

Consider an infinite fair execution C0, C1, C2, . . . of the simulation B on input multiset
I ∈ D. We first show that eventually about n/g agents join each group. Let

ci = the number of agents that crash with group = i immediately before the crash,

ti = the number of transient failures where group = i immediately before the failure,

t′i = the number of transient failures where group = i immediately after the failure,

xg(j) = n,

xi(j) = the number of ordinary steps in C0, . . . , Cj that caused an agent to set its group

field to i, for i < g,

Wi(j) = {p ∈ Cj : p.group = i and p.joined = false}, and

Ji(j) = {p ∈ Cj : p.group = i and p.joined = true}.

Note that Wi(j) and Ji(j) are multisets. They represent the agents in configuration Cj

that are waiting to finish the division-by-i algorithm and those that have joined group i,
respectively. Consider the sum Si(j) = i|Ji(j)| +

∑
p∈Wi(j)

p.sum. Initially, Si(0) = xi(0). The

only time an interaction between two agents changes this sum is when one agent sets its
group field to i, which increases the value of Si by 1. Thus, an ordinary step changes the
values of Si and xi in the same way. If an agent’s group value is i when it crashes, the crash
decreases the value of the sum by at most i. If an agent’s group value is i just before it
experiences a transient failure, that failure can decrease the sum by at most i. If an agent’s
group value is i just after it experiences a transient failure, that failure can increase the sum
by at most i, since the process’s sum field cannot exceed its group field. Thus, we have

xi(j) − i(ci + ti) ≤ Si(j) ≤ xi(j) + it′i (1)

8

If the interaction that causes the change from Cj to Cj+1 happens because two agents in
Wi(j) meet, one agent is removed from Wi(j) to form the set Wi(j + 1), and never returns
to Wi(j′) for j′ > j (unless by a transient failure). So, eventually (i.e. for sufficiently large
values of j), Wi(j) will contain at most one element, so we shall have 0 ≤

∑
p∈Wi(j)

p.sum ≤ i.

So (1) implies that, eventually,

xi(j) − ici − iti − i ≤ Si(j) − i ≤ Si(j) −
∑

p∈Wi(j)

p.sum = i|Ji(j)| ≤ Si(j) ≤ xi(j) + it′i. (2)

Dividing the bounds in (2) by i yields the following bounds on the size of Ji(j).

xi(j)/i − ci − ti − 1 ≤ |Ji(j)| ≤ xi(j)/i + t′i. (3)

If an agent has set its group field to i (either by a legitimate interaction or by having a
transient failure) before Cj, but did not subsequently change it to i− 1, then either it is still
in Wi(j) or Ji(j), or it has failed. For sufficiently large j, Wi(j) contains at most one agent,
so for i > 1 we shall have

xi−1(j) ≥ xi(j) + t′i − |Ji(j)| − ci − ti − 1. (4)

Combining (3) and (4) yields, for large j,

xi−1(j) ≥ xi(j) + t′i − (xi(j)/i + t′i) − ci − ti − 1 = xi(j)
i − 1

i
− ci − ti − 1. (5)

Solving recurrence (5), using the boundary condition xg(j) = n, gives us (for all i)

xi(j) ≥ ni/g −
g∑

!=i+1

(c! + t! + 1) ≥ ni/g − c − t − g. (6)

Finally, combining (3) and (6) yields

|Ji(j)| ≥
n

g
−2c−2t−g−1 ≥ n + t

2g
(as long as n ≥ 2g(2c+2t+g+1)+t) (7)

This means that there will eventually be at least n+t
2g agents in each group. We call group

i correct if t′i = ti = ci = 0. Note that each agent’s sim field is big enough to simulate 2g
threads, so each correct group will be able to simulate enough threads to handle all n agents,
plus t extra, bogus threads that could be generated by transient failures. (A transient failure
could cause an agent that has already given an initial value to group i to give another initial
value to group i.)

Let simi(j) be the union of all the multisets that are stored in sim fields of states in
Ji(j). Consider the interactions that take place after Cj that set the given[i] field of some
agent to true. Let futurei(j) be the multiset of the values in the init fields of those agents.
These are the values that get added to the sim fields of agents in group i after Cj .

Lemma 3 For each correct group i, futurei(j) will be empty eventually (i.e. for sufficiently
large j).

9

Proof: There will eventually be at least n+t
2g agents that join group i and each can hold

2g values in its sim field. At most n + t values will be added to these fields (in total), so
each agent whose given[i] field is false will eventually either fail or meet an agent in group
i that has enough room to take that agent’s initial value. Eventually every agent’s given[i]
field will become true and stay that way forever, so futurei(j) will eventually become empty
(and remain so forever).

Lemma 4 Let i be a correct group in the execution of B. There is a failure-free execution
D0, D1, . . . of the population protocol A with input set futurei(0) such that, for all j, Dj =
simi(j) ∪ futurei(j).

Proof: The only steps of B’s execution that alter the multiset simi(j) ∪ futurei(j) are
those involving interactions between two agents that have already joined group i and have
at least two elements in total in their sim multisets. For each such step, two elements
q1 and q2 in the sim multisets are changed to q′1 and q′2, where (q′1, q

′
2) ∈ δ(q1, q2). Thus,

the corresponding step in the constructed execution of A is legal. All other steps of the
constructed execution are null steps.

We must still show that the constructed execution is fair. Consider any configuration
D that occurs infinitely often in the constructed execution. There is an infinite increasing
sequence j1, j2, . . . such that D = Dj1 = Dj2 = · · · . Let D′ be a configuration that can
be reached from D by some ordinary transition of A that changes two agents in states q1

and q2 to states q′1 and q′2. We must show that D′ occurs infinitely often in the constructed
execution too.

Consider the sequence of steps Cj1, Cj2, Since there are only a finite number of
possible configurations, some configuration C must occur infinitely often in this sequence.
By Lemma 3 the set futurei(j) must be empty for all occurrences C, because it eventually
becomes empty. So, in C, the union of the sim fields of agents in group i is equal to D, and
therefore includes q1 and q2. Thus, there is an ordinary transition of the simulation B that
changes q1 and q2 in those sim fields of C to q′1 and q′2 to form a new configuration C ′. By
the fairness property of the execution of B, C ′ must occur infinitely often. Note that the
configuration of the constructed execution that corresponds to each of these occurrences of
C ′ is equal to D′. So D′ occurs infinitely often in the constructed execution.

The following corollary follows immediately from the preceding lemma and the fact that
A stably computes f .

Corollary 5 Eventually, for every x in the sim field of any agent that has joined a correct
group i, oA(x) = f(futurei(0)).

Now we show that the set futurei(0) is sufficiently close to the input multiset I for
correct groups.

Lemma 6 For any correct group i, futurei(0) = I ∪I+−I− where I+, I− ∈ X and |I+| ≤ t
and |I−| ≤ c + t.

Proof: Consider the multiset I+ that contains, for each transient failure during the exe-
cution that leaves an agent in a state with the given[i] field equal to false, the init field of

10

the agent immediately after it experiences the transient failure. This set contains at most t
elements. Each of the values in I ∪ I+ can be given to a sim field of an agent in group i∗

at most once, since doing so changes the given[i∗] field of an agent from false to true, and it
remains true until the agent experiences a transient failure. Thus, futurei(0) ⊆ I ∪ I+.

Furthermore, as argued in the proof of Lemma 3, every value in I ∪ I+ will eventually
be transferred to the sim field of some agent in group i, unless the agent holding that
value experiences a failure before the transfer occurs. So, at most c + t of the elements of
I ∪ I+ are not in futurei(0). Let I− be the set of those elements. Then |I−| ≤ c + t, and
futurei(0) = I ∪ I+ − I−.

Now, by choosing g appropriately, we can guarantee that the output produced by each
agent in the simulation is the output produced by the simulated thread of some correct
group, and this will be the correct output value.

Theorem 7 If f : X → Y is stably computable with no failures and f is (c + t, t)-robust for
D ⊆ X , then f : D → Y is stably computable in an environment with up to c crashes and t
transient failures, provided n ≥ 2((|Y | + 2)(c + 2t) + 2)2.

Proof: We use the simulation B described above, taking g = |Y |(c+2t)+1. The assumption
that n ≥ 2((|Y |+ 2)(c + 2t) + 2)2 guarantees that n ≥ 2g(2c + 2t + g + 1) + t for our choice
of g, so the requirement for inequality (7)) is satisfied.

Consider any execution of the simulation. By Corollary 5, there is some time after which
every thread in every correct group i outputs f(futurei(0)). Also, there is a time after
which no agent experiences a failure. After these two times have both passed, every agent
will eventually meet an agent in each correct group i and store f(futurei(0)) in its local
variable output[i]. Let Cj be the configuration of the execution of B when all of this has
happened.

Let r be any agent. We shall show that, after Cj, r stably outputs a correct value.
The most common value in r’s output[1..g] field occurs with multiplicity at least c + 2t + 1.
Therefore, it is output[i∗] for some correct group i∗, since at most c + 2t groups can be
incorrect. Therefore, the value that r outputs will be f(futurei∗(0)) for the correct group
i∗.

Let I ′ = futurei∗(0). By Lemma 6, I ′ = I ∪ I+ − I−, where |I−| ≤ c + t and |I+| ≤ t.
By the robustness property of f , we have f(I) = f(I ′). Thus, agent r stably outputs
f(I ′) = f(I), which is correct.

We have shown that (c + t, t)-robustness is sufficient to compute the function f in an
environment with c crash failures and t transient failures. We now show that a weaker
robustness condition is necessary.

Proposition 8 Suppose that f : D → Y can be stably computed by a population protocol in
an environment with up to c crash failures and t transient failures. Then f can be extended
to the domain X so that f : X → Y is (c, 0)-robust for D.

Proof: Let y0 be any element of Y . Let A be a population protocol that stably computes
f . We extend f to all input multisets I ∈ X as follows: if A produces a stable output in
some fair, failure-free execution EI with input I, let f(I) be that output value. Otherwise,
define f(I) = y0. Note that this is an extension of f since, for I ∈ D, A stably computes f .

11

We now show that the extension of f is (c, 0)-robust. Let I ∈ D and let I ′ = I − I−,
where I− ∈ X and |I−| ≤ c. We must show that f(I ′) = f(I). Consider an execution of A
on input I in which the agents with inputs from I− immediately fail, and then the remaining
agents execute EI′ . By the hypothesis of the proposition, this execution must stably output
f(I). But this execution was used to define f(I ′), so f(I ′) = f(I).

There is a gap between the (c + t, t)-robustness condition which is sufficient to compute
a function in the presence of failures (Theorem 7) and the (c, 0)-robustness condition that is
necessary (Proposition 8). Closing this gap remains an open question. However, for systems
in which there are only crash failures (i.e. t = 0) the condition of (c, 0)-robustness is both
necessary and sufficient.

6 Computing Multivalued Functions

We now generalize the model used for stably computing functions to cover the possibility
that the output is not uniquely determined by the input multiset. As before, let X and Y be
finite input and output alphabets, and let X be the set of all multisets of elements from X.
Let F : X → P(Y)−{∅} be a function, where F (I) represents the set of legal outputs for the
input multiset I ∈ X . A population protocol is defined exactly as in Section 3. However, we
have a weaker definition of stable computation for such multi-valued functions. We say that
a protocol stably computes F if, in every fair execution on input I, there is a time after which
every agent outputs only values in F (I). Notice that the output of an individual agent may
oscillate forever, but it eventually stabilizes in the sense that it eventually becomes a legal
output and remains so forever. Furthermore, different processes may output different values.
This definition of stable computation coincides with the original one in the case where F (I)
is a singleton set for all I.

This formulation of stable computation for multi-valued functions allows us to describe
the performance of our simulation in a different way.

Theorem 9 Let c, t ≥ 0. Suppose F : X → Y is a multivalued function that can be stably
computed in an environment with no failures. Then the function Fc,t : X → P(Y)− {∅} de-
fined by
Fc,t(I) =

⋃

|I−|≤c+t
|I+|≤c

F (I ∪ I+ − I−) is stably computable in an environment with up to c crash

failures and t transient failures, provided n ≥ 2((|Y | + 2)(c + 2t) + 2)2.

Proof: (Sketch) We can run the simulation described in Sections 4 and 5, again taking
g = |Y |(c + 2t) + 1. The proof is very similar to the proof of Theorem 7. Consider any
execution on input I. It follows from Lemma 4 that the threads in each correct group
i eventually stabilize to produce outputs in F (futurei(0)). Consider the portion of the
execution after this has occurred and all failures have occurred, and then every agent has
met some agent in each correct group. Consider any moment after all of this has occurred.
For any agent r, the most common value in r’s output field at that time appears in its
given[i∗] field for some correct group i∗. Let I ′ = futurei∗(0). By Lemma 6, I ′ = I∪I+−I−

where |I+| ≤ t and |I−| ≤ c + t, so F (I ′) ⊆ Fc,t(I). Thus the value that is output by r is in
Fc,t(I), as required.

12

Remark: It follows from this proof that, in an execution of the simulation on input I
where c′ ≤ c crash failures and t′ ≤ t transient failures actually occur, the value produced as
the output will be in Fc′,t′(I). So, for example, if the execution happens to be failure-free,
the value produced will be in F (I).

Example 10 Suppose X = {1} and Y = {0, 1, . . . , 99}. Let F (I) = {|I| mod 100}. Then,
F1,2(I) = {F (I) − 3, F (I) − 2, F (I) − 1, F (I), F (I) + 1, F (I) + 2} (where addition is done
modulo 100). Since F can be stably computed in the failure-free model [2], our simulation
will stably compute F1,2 in an environment that can have up to 1 crash and 2 transient
failures. Thus, it is possible to count the number of agents modulo 100, even when failures
can occur, if we are satisfied with an approximate answer.

7 Concluding Remarks

If the communication graph G, which specifies which pairs of agents can come into contact
with each other, is not complete, our simulation technique can be applied in a straightforward
way to compute any function that can be computed in the complete graph, provided G is
(c+1)-connected so that c crashes cannot disconnect the graph. This can be done by having
the two agents in each interaction non-deterministically choose whether to swap states, just
as in the failure-free model [2].

Angluin, Aspnes and Eisenstat have recently claimed that the only predicates that are
stably computable in the failure-free population protocol model are those defined by semi-
linear sets of inputs [3]. This might make it possible to use a somewhat streamlined version
of our simulation to compute all stably computable binary predicates in a fault-tolerant way.
This is because the known protocols for computing semilinear predicates have a relatively
simple form.

There are a number of directions for future work on fault-tolerant population protocols.
One is to close the gap between the (c+t, t)-robustness condition that is sufficient to compute
a function and the (c, 0)-robustness condition that is necessary. Angluin et al. describe
another type of function computation in the population protocol model, where the output
does not come from a finite alphabet [2]. Instead of producing the output at each agent,
the output is distributed across the system, just as the input is distributed. As an example,
the division-by-g algorithm that we use in our construction starts with n agents and outputs
1 at n/g of them, and 0 at all others. As is shown by our construction, we can at least
approximate the result of the division algorithm in a failure-prone environment. It would
be interesting to characterize the set of functions that can be computed in this sense, in a
fault-tolerant way, if some limited inaccuracy in the outcome is permitted.

References

[1] Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer, Hong
Jiang, and René Peralta. Stably computable properties of network graphs. In
Proc. International Conference on Distributed Computing in Sensor Systems, volume
3560 of LNCS, pages 63–74, 2005.

13

[2] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René
Peralta. Computation in networks of passively mobile finite-state sensors. In Proc.
23rd ACM Symposium on Principles of Distributed Computing, pages 290–299, 2004.
Expanded version to appear in Distributed Computing.

[3] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predi-
cates are semilinear. Manuscript, February 2006.

[4] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. On the
power of anonymous one-way communication. In Proc. 9th International Conference on
Principles of Distributed Systems, 2005.

[5] Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. Self-
stabilizing behavior in networks of nondeterministically interacting sensors. In Proc.
9th International Conference on Principles of Distributed Systems, 2005.

[6] Gaius Valerius Catullus. Carmen 3. In Carmina. “But curse upon you, cursed
shades of Orcus, which devour all pretty things! My pretty sparrow, you have taken
away.” (Transl. F. W. Cornish).

[7] Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui.
What dependability for networks of mobile sensors? In Proc. First Workshop on Hot
Topics in System Dependability, 2005.

[8] Shlomi Dolev. Self-stabilization. MIT Press, 2000.

[9] Vassos Hadzilacos. On the relationship between the atomic commitment and con-
sensus problems. In Proc. Workshop on Fault-Tolerant Distributed Computing, pages
201–208, 1990.

[10] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: Mobile
networking for “smart dust”. In Proc. 5th ACM/IEEE International Conference on
Mobile Computing and Networking, pages 271–278, 1999.

[11] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. TAG: a tiny aggregation service for ad-hoc sensor networks. In Proc. 5th
Symposium on Operating Systems Design and Implementation, pages 131–146, 2002.

[12] Achour Mostefaoui, Sergio Rajsbaum, and Michel Raynal. Conditions on
input vectors for consensus solvability in asynchronous distributed systems. Journal of
the ACM, 50(6), pages 922–954, 2003.

[13] Boaz Patt-Shamir. A note on efficient aggregate queries in sensor networks. In Proc.
23rd ACM Symposium on Principles of Distributed Computing, pages 283–289, 2004.

14

