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Abstract

Mathematical and numerical aspects of viscoelastic flows are investigated here.
Two simplified mathematical models are considered. They are motivated by a splitting

algorithm for solving viscoelastic flows with free surfaces. The first model is a simplified Oldroyd-
B model. Existence on a fixed time interval is proved in several Banach spaces provided the
data are small enough. Short time existence is also proved for arbitrarily large data in Hölder
spaces for the time variable. These results are based on the maximal regularity property of the
Stokes operator and on the analycity behavior of the corresponding semi-group. A finite element
discretization in space is then proposed. Existence of the numerical solution is proved for small
data, as well as a priori error estimates, using an implicit function theorem framework. Then,
the extension of these results to a stochastic simplified Hookean dumbbells model is discussed.
Because of the presence of the Brownian motion, existence in a fixed time interval, provided
the data are small enough, is proved only in some of the Banach spaces considered previously.
The dumbbells’ elongation is split in two parts, one satisfying a standart stochastic differential
equation, the other satisfying a partial differential equation with a stochastic source term. A
finite element discretization in space is also proposed. Existence of the numerical solution is
proved for small data, as well as a priori error estimates.

A numerical algorithm for solving viscoelastic flows with free surfaces is also described. This
algorithm is based on a splitting method in time and two different meshes are used for the space
discretization. Convergence of the numerical model is checked for the pure extensional flow and
the filling of a pipe. Then, numerical results are reported for the stretching of a filament and
for jet buckling.

Keywords: viscoelastic fluid, non-Newtonian fluid, Oldroyd-B, Hookkean dumbbells, finite
elements, free surface, semi-group, Stokes problem, time splitting method.
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Version abrégée

Nous nous intéressons à quelques aspects mathématiques et numériques liés à des écoule-
ments de fluides viscoélastiques.

Dans la première partie de cette thèse, nous traitons quelques problèmes mathématiques
simplifiés issus d’un algorithme numérique proposé pour résoudre numériquement des écoule-
ments de fluides viscoélastiques avec surfaces libres. Le modèle d’Oldroyd-B est le premier
considéré. L’existence dans un intervalle de temps fixé est prouvée dans plusieurs espaces de
Banach en supposant que les données soient suffisamment petites. L’existence pour des données
arbitrairement grandes est aussi prouvée mais cette fois uniquement dans l’espace de fonctions
Hölderiennes en temps et pour un intervalle de temps suffisamment petit. Ces résultats sont
basés sur la propriété de régularité maximale du problème de Stokes et sur le fait qu’il soit
générateur d’un semi-groupe analytique. Une méthode d’éléments finis est ensuite proposée.
L’existence de la solution numérique ainsi que sa convergence est prouvée pour des données
suffisament petites en utilisant le cadre du théorème des fonctions implicites. Ces résultats
sont ensuite étendus à un problème stochastique, le modèle des “dumbbells” (haltères). La
présence du mouvement Brownien nous conduit à considérer des espaces de Banach spécifiques
dans lesquels l’existence est prouvée pour des données suffisamment petites. Pour cela, nous
découplons la partie stochastique du reste du problème afin d’invoquer des résultats classiques
sur les équations stochastiques et de mettre en place un cadre similaire à celui utilisé pour le
problème déterministe. Comme pour le modèle d’Oldroyd-B, une approximation par éléments
finis est proposée. L’existence de la solution numérique ainsi que sa convergence est prouvée
pour des données suffisament petites.

Dans la deuxième partie de la thèse, nous décrivons l’algorithme numérique proposé pour
résoudre l’écoulement de fluides viscoélastiques avec surfaces libres. Cet algorithme est basé
sur une méthode de pas fractionnaires en temps et deux maillages différents sont utilisés pour
l’approximation en espace. Nous vérifions la convergence du modèle numérique dans les cas
d’élongation pure de fluides et de remplissage de tubes. Pour finir, des simulations numériques
du flambage d’un jet viscoélastique et d’étirement d’un filament viscoélastique sont présentées.

Mots clés: fluide viscoélastique, fluide non Newtonien, Oldroyd-B, Hookkean dumbbells,
éléments finis, surface libre, semi-groupe, problème de Stokes, méthode de pas fractionnaires.
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Introduction

Numerical modeling of viscoelastic flows is of great importance for complex engineering
applications involving blood, paints and adhesives. Many manufacturers use viscoelastic (or
more generally non-Newtonian) fluids in order to benefit from their rheological properties; for
instance to thicken soup one can add inelastic polymers, while multi-grade oils have polymer
additives [KDI+05, KAHC05, GOS05, OSG02]. This thesis investigates simplified deter-
ministic and stochastic models for viscoelastic flows. These simplifications are motivated by the
numerical algorithm proposed for simulating viscoelastic flows with complex free surface, the
latter is presented in the second part of this thesis.

Newtonian fluids enjoy the property that the relaxation time - the time for the stress to
return to zero under constant-strain condition - is immediate. In practice such behavior is never
realized and is a mathematical idealization. Indeed, stress-relaxation after the imposition of a
constant-strain condition takes place over some finite non-zero time interval which is the defining
characteristic of viscoelastic fluids. For instance, time relaxation of water is about 10−12 s, that
of a low density polyethylene about 10 s and in excess of 28 hours for a glass, see [OP02]. The
non-dimensional parameter which characterizes this property is the Deborah1 number

De :=
relaxation time × characteristic velocity

characteristic length

of flow process. Viscoelastic fluids may also differ from purely Newtonian fluids by the presence
of normal stress differences which causes, in particular, unusual behavior of the liquid shape.
When a rod is rotated inside a fluid, inertia in Newtonian case would dominate and the fluid
would flow away from the center, whilst the viscoelastic fluid would “climb” along the rod as
shown in Fig. 1. Another example is the so-called fingering instabilities. The flow of a thin layer
of viscoelastic fluid leads to complex instabilities when the top end-plate is moved vertically as
shown in Fig. 1.

In the traditional macroscopic approach for modelling viscoelastic flows, the unknowns are
the velocity, the pressure and the extra-stress (the non-Newtonian component of the stress)
satisfying the mass and momentum equations supplemented with a so-called constitutive or
closure equation. This constitutive equation relating the extra-stress to the velocity can be
either differential or integral, refer to [BCAH87, OP02].

The mass and momentum conservation laws lead to the following partial differential equa-
tions for the velocity u, the pressure p and the extra-stress σ (the non-Newtonian part of the
stress)

ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ · (2ηsε(u) + σ) + ∇p = f,(0.1)

∇ · u = 0.(0.2)

1In report with the prophetess Deborah, who stated “The mountains flowed before the Lord”, Judges 5:5 in
the Old Testament, see [OP02].
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Figure 1. Top: Rod climbing effect or “Weissenberg effect”. A Rod is ro-
tated with its end immersed in a viscoelastic fluid. Bottom: The separation of
twoplates with a thin layer of a viscoelastic liquid between them can lead to com-
plex instabilities. For more details and original pictures see the web site of the
group of Prof. Gareth McKinley at MIT HTTP://web.mit.edu/nnf/research/.
Reprinted with permission.

Here ρ is the density, f a force term, ηs is the solvent viscosity and

ε(u) :=
1

2

(
∇u + (∇u)T

)
the strain rate tensor. Oldroyd-B fluids are those where equations (0.1) and (0.2) are supple-
mented with the following constitutive or closure equation

(0.3) σ + λ
(∂σ

∂t
+ (u · ∇)σ − (∇u)σ − σ(∇u)T

)
− 2ηpε(u) = 0,

where ηp is the polymer viscosity, λ the relaxation time and (∇u)σ denotes the matrix-matrix
product between ∇u and σ. Obviously, when λ = 0, the Oldroyd-B model reduces to the
incompressible Navier-Stokes equations, refer to [vW85, Soh01, Tem84, Glo03].

Although the Oldroyd-B model is too simple to describe complex experiments such as shear
thinning, it already contains some mathematical and numerical difficulties. Indeed, when solving
numerically Oldroyd-B fluids, one is faced by the “high Deborah (or Weissenberg) number
problem”, i.e. the breakdown in convergence of algorithms when the Deborah number increases.
The sources of this problem are due to :

ı) the presence of the quadratic term (∇u)σ + σ(∇u)T which prevents a priori estimates
and therefore existence to be proved for large data;

ıı) the presence of a convective term (u · ∇)σ which needs to use numerical schemes more
suited to transport dominated problems;
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ııı) when using finite element methods, the case ηs = 0 requires either a compatibility con-
dition between the finite element spaces for u and σ or the use of adequate stabilization
procedures such as EVSS.

The Oldroyd-B model is the simplest macroscopic example but several other models have been
introduced such as the Giesekus [Gie82] and Phan-Thien Tanner [PTT77] models.

Concerning the mathematical analysis of system (0.1)-(0.3), the existence of slow steady
viscoelastic flow has been proved in [Ren88, AS03]. For the time-dependent case, existence
of solutions locally in time and, for small data, globally in time has been proved in [GS90] in
Hilbert spaces. Extensions to Banach spaces and a review can be found in [FCGO02]. Finally,
existence for any data has been proved in [LM00] for a corotational Oldroyd model only.

For a description of numerical procedures used for solving viscoelastic flows in the engi-
neering community, refer to [Baa98, OP02]. Convergence of finite element methods for the
linear three fields Stokes problem have been studied in [FP89, San93, FGP00, BPS01]. Con-
vergence of continuous and discontinuous finite element methods for steady state viscoelastic
fluids have been presented in [BS92, San94, NS95, FZ03], provided that the solution of the
continuous problem is smooth and small enough. Extensions to time-dependent problems have
been proposed in [BW95, EH04, EM03, ME01].

The Oldroyd-B model can be derived by a kinetic theory [BCAH87, Ött96] from the
mesoscopic Hookean dumbbells model. The stochastic dumbbells model is defined as a dilute
solution of a liquid polymer, i.e. a Newtonian solvent with non interacting polymer chains. The
polymer chains are modelled by dumbbells, two beads connected with elastic springs, see Fig. 2.
In this case, the Newton law for the beads leads to the following stochastic differential equation

u(x, t)

q(x, t)

polymer chains

dumbbells

Figure 2. The mesoscopic dumbbells model for a dilute solution of liquid polymer.

for the dimensionless spring elongation q

(0.4) dq =

(
−(u · ∇)q) + (∇u)q − 1

2λ
F(q)

)
dt +

1√
λ

dB,

where λ is the relaxation time, F is the force due to the elastic spring and B is a vector of
independent Wiener processes modelling the thermal agitation and collisions with the solvent
molecules. The transport term (u · ∇)q in (0.4) reflects that the trajectories of the center of
mass of the dumbbells are those of the liquid particles. The term (∇u)q takes into account the
drag force due to the beads. The extra-stress σ is then obtained by

(0.5) σ =
ηp

λ
(IE(q ⊗ F(q)) − I),
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with ηp being the polymer viscosity. Equations (0.1) and (0.2) coupled with (0.4) and (0.5)
yield the dumbbells model. To the major difficulties already present in the determinist model,
those resulting from the stochastic model must be added:

ıv) the vector field F may be non-linear;
v) the presence of the quadratic term (∇u)q prevents a priori estimates and therefore

existence to be proved for large data;
vı) the presence of the convective term (u · ∇)q which requires an adequate mathematical

analysis [LBL04] and the use of numerical schemes suited to transport dominated
problems;

vıı) the Wiener process in (0.4) which requires a specific mathematical treatment.

The case F(q) = q, namely Hookean dumbbells leads, using formal stochastic calculus, to the
Oldroyd-B model (0.3). The FENE dumbbells model (see [BCAH87, Ött96] for a detailed
description) is a more realistic model corresponding to F(q) = q

1−q2/b
, where b > 0 depends

on the number of monomer units of a polymer chain. In that case, there is no equivalent
constitutive relation for the extra-stress, but closure approximations (such as FENE-P, see
[BCAH87, Ött96]) have been derived. These approximations can have a significant impact
on rheological predictions (see [AZ03, BHH98, Keu97]). Recently, thanks to increasing
computational resources, the equations (0.1), (0.2),(0.4) and (0.5) have been solved numerically
to obtain more realistic results [BHH97, BP01, BHÖ97, Keu97, LÖP97, LÖ93]. For a
review of numerical methods used for kinetic models see [OP02, Keu04].

Only a few mathematical papers pertaining to the kinetic theory have been published. For
one dimensional FENE shear flows, a complete mathematical and numerical analysis can be
found in [JLLB02, JL03, JLLB04, Lel04]. Well posedness of the dumbbell model in three
dimensions has been proved for nonlinear elastic dumbbells in [ELZ04].

The kinetic theory can also be formulated by introducing the probability density f(x, q, t)
of the spring elongation which must satisfy a Fokker-Planck equation

∂

∂t
f(x, q, t) + (u · ∇)f(x, q, t) = −∇q ·

[(
(∇u)q − 1

2λ
F(q)

)
f(x, q, t)

]
+

1

2λ
Δqf(x, q, t).

Refer to [Fan89a, Fan89b, CL03] for numerical experiments and [BSS05, Ren91] for a
mathematical analysis. This deterministic approach seems to be inappropriate when consid-
ering more complex kinetic models involving chains [Keu04], although recent advances are
encouraging [vPS04].

Several experiments, such as jet swell, jet buckling, mould filling and impacting drops in-
volve free surfaces with complex topological changes. Therefore, Lagrangian or ALE (Arbitrary
Lagrangian Eulerian) methods can not be used in this context. An alternative is to use Eulerian
methods and to solve an additional advection equation, namely

∂ϕ

∂t
+ u · ∇ϕ = 0.

In the level-set [Set96, CHMO96, SS03] or pseudo-concentration [Tho86] approach, the
function ϕ is smooth and the free surface is defined to be the zero level-set. In the VOF (Volume
of Fluid) [HN81] or the volume tracking method [RK98, SZ99] approach, the function ϕ
denotes the volume fraction of liquid and is a step function having a value of one in the liquid
and zero in the surrounding vacuum.

Level-set and VOF methods have produced an enormous amount of literature, both methods
having their advantages and disadvantages. Roughly speaking, VOF-like methods suffer from
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the lack of regularity of the volume fraction of liquid on the interface. For instance, post-
processing algorithms such as SLIC or PLIC have to be used in order to reduce numerical
diffusion, see [SZ99] for a review. Moreover, special care is needed when computing geometrical
properties of the interface (such as normal and curvature) which are relevant when surface
tension effects have to be accounted for, see [SZ99, RR02]. Since the level-set method involves
a continuous function, better accuracy should be expected. However, mass conservation is
difficult to obtain so special procedures must be added, see [vdPSVW05, Par04, Smo01].

Although the VOF model was initially solved using finite volumes, finite element imple-
mentations have recently been proposed in three space dimensions [PC98, MPR03]. In
[MPR99, MPR03, CPR05, Cab05], the VOF formulation was solved using a first order
implicit splitting algorithm and two different grids, see Fig. 3. In the prediction step, the
advection equations

∂ϕ

∂t
+ u · ∇ϕ = 0,

∂u

∂t
+ (u · ∇)u = 0,

∂σ

∂t
+ (u · ∇) σ = 0,

were solved on a structured grid of small cubic cells. In the correction step, the equations

ρ
∂u

∂t
−∇ · (2ηsε(u) + σ) + ∇p = f,(0.6)

∇ · u = 0,(0.7)

σ + λ
(∂σ

∂t
− (∇u)σ − σ(∇u)T

)
− 2ηpε(u) = 0,(0.8)

were solved on an unstructured finite element tetrahedral mesh. Refer to [Glo03, Mar90] for
a general description of splitting methods and to [Glo03] for their applications to the Navier-
Stokes equations. The reasons for using two different grids are the following: Firstly, the
advection step is much easier to implement and requires less CPU time on a structured grid
rather than on a general unstructured finite element mesh. Secondly, the size of the structured
cells should be small compared to the size of the unstructured finite element mesh (typically
three to five times smaller), so that numerical diffusion of the volume fraction of liquid is as
small as possible. Thirdly, the use of unstructured finite elements during the diffusion step
of the algorithm allows computational domains with complex shapes to be considered. This
approach has been successfully applied to Newtonian flows with complex free surfaces, see
[MPR99, MPR03, CPR05, Cab05]. The goal is to extend it to non-Newtonian (viscoelastic)
simulations.

Recently, numerical simulation of viscoelastic flows with free surfaces have received much
attention, see [TMC+02, YM98, SL97, RH99, BRLH02, LOQ02]. In a number of pa-
pers, the filament stretching rheometer was considered, this experiment being well suited to
Lagrangian computations in two [YM98, SL97] and three dimensions [RH99, BRLH02].
Two dimensional computations of viscoelastic flows using the VOF method have already been
presented. For instance in [TMC+02, LR00], the capabilities of the VOF method has been
demonstrated for a number of problems such as jet swell, jet buckling and impacting drops.
Moreover, two dimensional computations using the VOF method and CONNFFESSIT like
models have been presented in [GLP03]. It should be mentioned that the level set method
has also been successfully used for viscoelastic fluids with free surfaces in [GBO04] using the
hybrid particle level set method of [EFFM02].
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1

1

0

1

0

0

0

0

Figure 3. Two grids are used for the computations. In order to reduce numeri-
cal diffusion and to simplify the implementation, the volume fraction of liquid is
computed on a structured grid of small cells. The velocity, pressure and extra-
stress are computed on an unstructured finite element mesh with larger size. The
symbol 1 (resp. 0) denotes a cell completely filled (resp. empty). The partially
filled cells are shaded.

The theoretical study of simplified problems will require concepts and results which will
be provided in the first chapter. Functional spaces, semi-group results and maximal regularity
property are introduced. Then, existence and uniqueness on the perturbed abstract Cauchy
problem:

∂u

∂t
= −Au − k ∗ Au + f, u(0) = u0,

are stated, where k ∗ Au denotes the convolution in time of the kernel k(t) = e−t/λ with Au.
In this thesis, only the case when A is the Stokes operator will be considered, consequently the
first part ends with deeper investigations about the Stokes operator.

The second part (chapters 2 and 3) is devoted to the mathematical and numerical analysis
of simplified models. In chapter 2, the simplified time-dependent Oldroyd-B problem (0.7)-(0.8)
is considered. The implicit function theorem can be used to prove an existence result, whenever
the data are small enough, in accordance with the results of [FCGO02]. The regularity of the
solution is sufficient to prove convergence of a finite element discretization in space by extending
the techniques presented in [PR01] in a time-dependent framework. It should be noted that the
analysis remains valid for more realistic fluids such as Giesekus or Phan-Thien-Tanner. In the
third chapter, these ideas are extended to the stochastic description (0.2), (0.1), (0.4) and (0.5).
The points v) and vıı) will be investigated and, as in the deterministic case, assume ηs > 0,
remove the convective terms and consider F(q) = q, namely the simplified Hookean dumbbells
model.

Finally, in the last chapter, the numerical algorithm proposed for solving viscoelastic flows
with complex free surfaces is described. Convergence of the numerical model is checked for the
pure extensional flow and the filling of a pipe. Then, numerical results are reported for the
stretching of a filament and for jet buckling.



CHAPTER 1

Preliminary materials

In chapter 2 and 3, existence and uniqueness of solutions to simplified Oldroyd-B and
Hookean dumbbells problems will be based on properties of the initial value problem:

u̇ = −Aru + f, u(0) = 0,

where Ar is the Stokes operator defined in the last part of this chapter. This preliminary
chapter is devoted to the introduction of some definitions and results used throughout this
thesis. Function spaces framework and the semi-group theory will be detailed in the first two
sections. Then results on the abstract Cauchy problem are provided and extended when the
perturbation −k ∗ Aru is added on the right hand side, where k ∗ Aru denotes the convolution
in time of the kernel k(t) = e−t/λ with Aru. Finally, this chapter ends with the description of
the Stokes operator and some of its properties.

1.1. Function spaces

Let (M, Σ, μ) be a measurable space and let (E, ‖.‖E) be a Banach space. The spaces
Lr(M, Σ, μ; E) (in short Lr(M ; E)), 1 ≤ r < ∞ are the spaces of (equivalence classes of) all
Bochner-measurable functions f : M → E such that ‖f(.)‖r

E is integrable, see [Yos80, section
V.5]. These spaces are Banach spaces when normed by

‖f‖Lr(M ;E) :=

(∫
M

‖f(x)‖r
E dμ(x)

)1/r

.

When μ(M) < ∞, the spaces of (equivalence classes of) functions f ∈ Lr(M, Σ, μ; E) such that∫
M

f(x) dμ(x) = 0

are denoted by Lr
0(M, Σ, μ; E). When r = ∞, the space of (equivalence classes of) functions

L∞(M, Σ, μ; E) (in short L∞(M ; E)) denotes the Banach space of all Bochner-measurable func-
tions f : M → E such that

inf {C ≥ 0; ‖f(.)‖E ≤ C almost everywhere in M} < ∞
and is a Banach space with the norm

‖f‖L∞(M ;E) := inf {C ≥ 0; ‖f(.)‖E ≤ C almost everywhere in M} .

From now on let D be an open set of R
d, d ≥ 1 with the Lebesgue measure. The Sobolev spaces

Wm,r(D; E), m a non-negative integer and 1 ≤ r < ∞, are the spaces of functions f ∈ Lr(D; E)
such that all the distributional derivatives of f of order up to m belong to Lr(D; E).

Other classes of functions will be useful when considering a Brownian motion. Let C0(D; E)
be the class of uniformly continuous functions belonging to L∞(D; E). The spaces C0(D; E) is
a Banach space endowed with the norm defined for f ∈ C0(D; E) by

‖f‖C0(D;E) := sup
x∈D

‖f‖E .

7



8 1. PRELIMINARY MATERIALS

The Hölder continuous function spaces Cμ(D; E), 0 < μ < 1 are the spaces of all functions
belonging to C0(D; E) such that

sup
x,y∈D

x �=y

‖f(x) − f(y)‖E

|x − y |μ < ∞.

The spaces Cμ(D; E) endowed with the norm

‖f‖Cμ(D;E) := ‖f‖C0(D;E) + sup
x,y∈D

x �=y

‖f(x) − f(y)‖E

|x − y |μ ,

are Banach spaces. Higher order spaces can also be considered in this context. Let 0 < μ < 1 and
m be a non negative integer. The spaces Cm+μ(D; E) are all m times continuously differentiable

functions such that all the derivatives up to order m, namely f (k) with k = 0, . . . , m, are
bounded and such that f (m) ∈ Cμ(D; E). The spaces Cm+μ(D; E) provided with the norms

‖f‖Cm+μ(D;E) :=
m∑

k=0

‖f (k)‖C0(D;E) + sup
x,y∈D

x �=y

‖f (m)(x) − f (m)(y)‖E

|x − y |μ ,

are Banach spaces. The spaces Cm+μ(D; E) are not separable. So, instead, consider the little
Hölder spaces

hm+μ(D; E) :=
{
f ∈ Cm+μ(D; E); lim

δ→0
sup

x,y∈D
|x−y |<δ

‖f (m)(x) − f (m)(y)‖E

|x − y |μ = 0
}
,

provided with the norm of Cm+μ(D; E). The spaces hμ(D; E) are the closures of
Cθ(D; E) in Cμ(D; E) for θ > μ. Moreover, assuming E is a separable Banach space, hμ(D; E)
with 0 < μ < 1 are separable Banach spaces. When considering D = (0, T ), 0 < T < ∞, the
restriction of functions of hμ([0, T ];E) vanishing at the origin of the interval [0, T ] is denoted
by hμ

0 ([0, T ];E).
Assume now that D has boundary ∂D of class C2. An important property of the spaces

W 1,r(D; R), is the continuous embbedings [Ada70, chapter V]:

W 1,r(D; R) ⊂> Cμ(D; R) for r > d, 0 < μ ≤ 1 − r/d if d > 1,

W 1,r(D; R) ⊂> C0(D; R) for r ≥ 1 if d = 1.

In particular, W 1,r(D; R) with r > d is a Banach algebra (again see [Ada70, chapter V]).
Moreover, using the same arguments as in [Ada70] (d = 1), it holds for 0 < T < ∞

W 1,r(0, T ; E) ⊂> C0([0, T ];E) ∀r ≥ 1.

The following spaces will be considered in this thesis. Let D ⊂ R
d, d ≥ 2 be a bounded

domain considered with the Lebesgue measure, [0, T ] be a time interval also considered with
the Lebesgue measure and (Ω,F ,P) be a probability space. For simplicity, the notation will
be abridged as follows whenever there is no possible confusion. For 1 < r, q < ∞ and 0 <
μ < 1 the space Lr denotes Lr(D; R) or Lr(D; Rd). Also, Lq(Lr) stands for Lq(0, T ; Lr(D; R))
or Lq(0, T ; Lr(D; Rd)) and hμ(Lr) stands for hμ([0, T ];Lr(D; R)) or hμ([0, T ];Lr(D; Rd)). For
1 < r < ∞, 0 < μ < 1 and 1 < γ < ∞, Lγ(hμ(Lr)) stands for Lγ(Ω; hμ([0, T ];Lr(D; R))) or
Lγ(Ω; hμ([0, T ];Lr(D; Rd))). The same notation applies for higher order spaces such as W 1,r,
h1+μ(W 1,r) and Lγ(h1+μ(W 1,r)).
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1.2. Semi-group theory

This section contains basics definitions and classical results for the semi-group theory. Ref-
erences will be constantly made to [Yos80, HP74, Lun95, BB67, CHA+87, DL88]. Let
(E, ‖.‖E) be a Banach space (restricting considerations to that case, see [Yos80] for a more
general approach).

Start with the definition of a (C0) semi-group.

Definition 1.1. If {Tt; t ≥ 0} ⊂ L(E) satisfy the conditions

TtTs = Tt+s (for t, s ≥ 0),

T0 = I,

lim
t→t0

‖Ttx − Tt0x‖E = 0 for each t0 ≥ 0 and each x ∈ E,

then {Tt} is called a semi-group of class (C0).

Given a (C0) semi-group, one can define its infinitesimal generator.

Definition 1.2. The infinitesimal generator A : DA ⊂ E → E of Tt is defined by

DA :=

{
x ∈ E; lim

t→0+
t−1(Tt − I)x ∈ E

}
and Ax := lim

t→0+
t−1(Tt − I)x, ∀x ∈ DA.

The well known Hille-Yosida Theorem provides a necessary and sufficient condition for an
operator A with dense domain to be the (infinitesimal) generator of a (C0) semi-group. In order
to state this theorem, notion of the resolvent of an operator is needed. Let Aλ be defined by
Aλ := λI − A. The resolvent set ρ(A) is defined by the set of all λ ∈ C such that A−1

λ exists

with domain DA−1

λ
dense in E and such that A−1

λ is bounded. The inverse operator A−1
λ will be

denoted R(λ; A) and is called the resolvent of A. Lemma is the following:

Lemma 1.3. (Hille-Yosida) A necessary and sufficient condition for a closed linear operator
A with dense domain DA and range in E to be the generator of a semi-group {Tt; 0 ≤ t < ∞}
of class (C0) is that there exist real numbers C and w such that for every real λ > w, λ belongs
to ρ(A) and

‖R(λ; A)r‖L(E) ≤ C(λ − w)−r (r = 1, 2, . . . ).

In this case ‖Tt‖L(E) ≤ Cewt for t ≥ 0.

A important particular subset of (C0) semi-groups are analytic (or holomorphic) ones. They
are characterized by the fact they can, as functions of parameter t, be continued holomorphically
into a sector of the complex plane containing the positive t−axis. From now on and until the
end of this section, assume E is a complex Banach space.

Lemma 1.4. If {Tt; 0 ≥ t < ∞} is of class (C0) in L(E) (E a complex Banach space) such
that for each t > 0, the range of Tt in E belongs to DA and if there is a constant N > 0 with
t‖ATt‖L(E) ≤ N (0 < t ≤ 1), then this semi-group has a holomorphic extension {Tζ ; ζ ∈ Δ},
where

Δ := {ζ ∈ C ;�(ζ) > 0, |arg ζ | < 1/(eN)} .

Remark 1.5. Other sufficient conditions for a (C0) semi-group to be continued holomorphi-
cally are provided in [Yos80].

A class of operator being the generator of analytic semi-groups will be now determined.
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Definition 1.6. A : DA ⊂ E → E is said to be sectorial if there are constants w ∈ R,
θ ∈]π/2, π[, C > 0 such that⎧⎪⎨

⎪⎩
ρ(A) ⊃ Sθ,w := {λ ∈ C : λ �= w, |arg(λ − w) | < θ} ,

‖R(λ, A)‖L(E) ≤
C

|λ − w | ∀λ ∈ Sθ,w.

In the case of a sectorial operator, it is possible to define for every t > 0 a linear bounded
operator etA in E, by the mean of the Dunford integral

(1.1) etA :=
1

2πi

∫
w+γr,η

etλR(λ, A)dλ t > 0, e0A := I,

where r > 0, η ∈]π/2, 0[ are properly chosen, and γr,η is the curve

{λ ∈ C : |arg λ | = η, |λ | ≥ r} ∪ {λ ∈ C : |arg λ | ≤ η, |λ | = r},

oriented counterclockwise, for more precisions see [Yos80, Lun95, DHP03].

Definition 1.7. Let A : DA ⊂ E → E be a sectorial operator. The family {etA : t ≥ 0}
defined by (1.1) is said to be the analytic semi-group generated by A in E.

In [Lun95], the validity of the previous definition is ensured. More precisely, it is proved
that the definition of etA does not depends on r, η and the family semi-group {etA : t ≥ 0}
satisfies the hypothesis of Proposition 1.4.

Remark 1.8. Reciprocally, the infinitesimal generator of an analytic semi-group is sectorial,
see [ABHN01, Proposition 3.7.4 and Corollary 3.7.12].

From now on and until the end of this section, assume A is a sectorial operator. Intermediate
spaces between E and DA will be useful when considering initial value problems as in sections
1.3 and 1.4. General definitions of those spaces will not be provided but will be restricted to
those needed in this thesis. Denote E1−1/q,q := (E,DA)1−1/q,q a real interpolation space which

can be defined as

E1−1/q,q :=

{
v ∈ E;

∫ ∞

0
‖AetAv‖q

E < ∞
}

,

with 1 < q < ∞. The space E1−1/q,q is a Banach space with norm

‖v‖E1−1/q,q
:= ‖v‖E +

(∫ ∞

0
‖AetAv‖q

E

)1/q

.

Moreover, the spaces Eμ,∞ can be defined as

Eμ,∞ :=

{
v ∈ E; sup

t>0
‖t1−μAetAv‖E < ∞

}
,

with 0 < μ < 1 and is a Banach space endowed with the norm

‖v‖Eμ,∞ := ‖v‖E + sup
t>0

‖t1−μAetAv‖E .

Refer to [DB84, Sin85, DPS87] for more details on intermediate spaces.
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1.3. The abstract Cauchy problem

Let (E, ‖.‖) be a complex or real Banach space. The aim of this section is to recall some
existing results concerning the abstract Cauchy problem value problem in E

(1.2) u̇(t) = Au(t) + f(t), t > 0; u(0) = u0,

where A : DA ⊂ E → E is a linear, closed, densely defined operator, where f : [0, T ] → E is
a given source term and where u0 ∈ E. Then, in next section, these results will be extended
when a perturbation of lower order in time is added to (1.2). Constant reference to the works
of Da Prato and Sinestrari [Sin85, DPS87], Butzer and Berens [BB67] and Lunardi [Lun95]
will be made.

The notion of integral solution of (1.2) suggested by its formal integration is now introduced.

Definition 1.9. Let u0 ∈ E and let f ∈ L1(0, T ; E). A function u ∈ C0([0, T ];E) is said to
be an integral solution of the Cauchy problem (1.2) if∫ t

0
u(s)ds ∈ DA, ∀t ∈ [0, T ]

and if

(1.3) u(t) = u0 + A

∫ t

0
u(s)ds +

∫ t

0
f(s)ds, t ∈ [0, T ].

Remark 1.10. Let u be an integral solution of (1.2) with f ∈ C0([0, T ];E). Assume u ∈
C1([0, T ];E) or u ∈ C0([0, T ];DA) then u ∈ C1([0, T ];E) ∩ C0([0, T ];DA) and satisfies (1.2).

Lemma 1.11. Let (E, ‖.‖) be a Banach space. Let A : DA ⊂ E → E be a linear, closed,
densely defined operator, the generator of a (C0) semi-group on E. Let f ∈ L1(0, T ; E) and
u0 ∈ E. Then there exists an unique integral solution u of (1.2) and there exist two constants
C ≥ 1, w ∈ R independent of u, f , u0 such that

‖u(t)‖E ≤ Cewt‖u0‖E + C

∫ t

0
ew(t−s)‖f(s)‖Eds, t ∈ [0, T ].

Lemma 1.12. Let (E, ‖.‖E) be a Banach space. Let A : DA ⊂ E → E be a linear, closed,
densely defined operator, the generator of a (C0) semi-group on E. Let f ∈ W 1,1(0, T ; E) and
u0 ∈ DA, then the unique integral solution u of (1.2) satisfies u ∈ C1([0, T ];E) ∩ C([0, T ];DA).
Moreover, there exists two constants C ≥ 1 and w ∈ R independent of u, f , u0 such that

‖u̇(t)‖E + ‖Au(t)‖E ≤ Cewt‖Au0 + f(0)‖E + C

∫ t

0
ew(t−s)‖ḟ(s)‖Eds.

Lemma 1.13. Let (E, ‖.‖) be a Banach space. Let A : DA ⊂ E → E be a linear, closed,
densely defined operator, the generator of an analytic semi-group etA on E. Let f = 0 and u0 ∈
E. Let 1 < q < ∞. Then the integral solution u of (1.2) satisfies u ∈ W 1,q(0, T ; E)∩Lq(0, T ;DA)
if and only if u0 ∈ E1−1/q,q := (E,DA)1− 1

q
,q. Moreover u ∈ C0([0, T ];E1−1/q,q) and there exists

a constant C independent of u, u0 such that

‖u̇‖Lq(0,T ;E) + ‖Au‖Lq(0,T ;E) + ‖u‖L∞(0,T ;E1−1/q,q) ≤ C‖u0‖E1−1/q,q
.

When f �= 0, the previous Lemma can not be generalized in Sobolev spaces, a maximal
regularity result has to be assumed.

Definition 1.14. Let 1 < q < ∞. The operator A possesses the maximal Lq-regularity
property (MRp) if for any u0 = 0 and any f ∈ Lq(0, T ; E), the unique integral solution u of
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(1.2) is in W 1,q(0, T ; E) ∩ Lq(0, T ;DA) and there exists a constant C independent of u, f such
that

‖u̇‖Lq(0,T ;E) + ‖Au‖Lq(0,T ;E) ≤ C‖f‖Lq(0,T ;E).

Remark 1.15. Let 1 < q0 < ∞. If A possesses the maximal Lq0-regularity property, then
βA + ωI possesses the maximal Lq-regularity property for 1 < q < ∞, for β > 0 and for w ∈ R

(see [Sin85, DPS87]).

Lemma 1.16. Let (E, ‖.‖E) be a Banach space. Let A : DA ⊂ E → E be a linear, closed,
densely defined operator, the generator of an analytic semi-group etA on E. Assume A satisfies
MRp, let 1 < q < ∞, f ∈ Lq(0, T ; E) and u0 ∈ E1−1/q,q := (E,DA)1− 1

q
,q. Then the solution u

of (1.2) satisfies u ∈ W 1,q(0, T ; E) ∩ Lq(0, T ;DA) and

u(t) = etAu0 +

∫ t

0
e(t−s)Af(s)ds, t ∈ [0, T ].

Moreover, there exists a constant C independent of u, f , u0 such that

‖u̇‖Lq(0,T ;E) + ‖Au‖Lq(0,T ;E) ≤ C
(
‖u0‖E1−1/q,q

+ ‖f‖Lq(0,T ;E)

)
.

Corollary 1.17. Let (E, ‖.‖E) be a Banach space. Let A : DA ⊂ E → E be a linear,
closed, densely defined operator, the generator of an analytic semi-group etA on E. Suppose A
satisfies MRp, let 1 < q < ∞. Let f ∈ W 1,q(0, T ; E) and u0 ∈ E. Assume that the compatibility
conditions u0 ∈ DA and Au0 + f(0) ∈ E1−1/q,q := (E,DA)1− 1

q
,q hold. Then the solution u of

(1.2) satisfies u̇ ∈ W 1,q(0, T ; E) ∩ Lq(0, T ;DA) and

u(t) = etAu0 +

∫ t

0
e(t−s)Af(s)ds, t ∈ [0, T ].

Moreover, there exists a constant C independent of u, f , u0 such that

‖ü‖Lq(0,T ;E) + ‖Au̇‖Lq(0,T ;E) ≤ C
(
‖Au0 + f(0)‖E1−1/q,q

+ ‖ḟ‖Lq(0,T ;E)

)
.

The maximal regularity property holds in Hölder spaces and Lemma 1.16 can be stated in
this context.

Lemma 1.18. Let (E, ‖.‖) be a Banach space. Let A : DA ⊂ E → E be a linear, closed,
densely defined operator, the generator of an analytic semi-group etA on E. Let 0 < μ < 1 and let
f ∈ Cμ([0, T ];E). Assume that the compatibility conditions u0 ∈ DA and Au0 + f(0) ∈ Eμ,∞ :=
(E,DA)μ,∞ hold. Then there exists a unique solution u of problem (1.2) in C1+μ([0, T ];E) ∩
Cμ([0, T ];DA) and u satisfies

u(t) = etAu0 +

∫ t

0
e(t−s)Af(s)ds, t ∈ [0, T ].

Moreover there exists a constant C independent of u, f , u0 such that

‖u̇‖Cμ([0,T ];E) + ‖Au‖Cμ([0,T ];E) ≤ C
(
‖f − f(0)‖Cμ([0,T ];E) + ‖Au0 + f(0)‖Eμ,∞

)
.

The same result is also true in little Hölder space hμ(0, T ; E) with a slight modification for
the initial conditions.

Lemma 1.19. Let (E, ‖.‖E) be a Banach space. Let A : DA ⊂ E → E be a linear, closed,
densely defined operator, the generator of an analytic semi-group etA on E. Let 0 < μ < 1
and let f ∈ hμ(0, T ; E). Assume the compatibility conditions u0 ∈ DA and Au0 + f(0) ∈
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DA
Eμ,∞ where Eμ,∞ := (E,DA)μ,∞. Then there exists a unique solution u of problem (1.2) in

h1+μ([0, T ];E) ∩ hμ([0, T ];DA) and u satisfies

u(t) = etAu0 +

∫ t

0
e(t−s)Af(s)ds, t ∈ [0, T ].

Moreover there exists a constant C independent of u, f , u0 such that

‖u̇‖hμ([0,T ];E) + ‖Au‖hμ([0,T ];E) ≤ C
(
‖f − f(0)‖hμ([0,T ];E) + ‖Au0 + f(0)‖Eμ,∞

)
.

1.4. A perturbed abstract Cauchy problem

In this section, it is proved that the results presented in the previous section also hold when
a convolution k ∗Au is added to (1.2). Such results can be found in [Prü93] in a more general
framework. For the convenience of the reader, simpler proofs are provided for the special case
considered.

The convolution product ∗ between f, g ∈ L1(0, T ) is defined by

(f ∗ g)(t) =

∫ t

0
f(t − s)g(s)ds.

Remark 1.20. From [ABHN01, Proposition 1.3.2]: if f ∈ Lq(0, T ; E), g ∈ L1(0, T ) then
f ∗ g ∈ Lq(0, T ; E) and

‖f ∗ g‖Lq(0,T ;E) ≤ ‖g‖L1(0,T )‖f‖Lq(0,T ;E).

Let us start with a technical Lemma.

Lemma 1.21. Given β �= 0, m ≥ 1 and k ∈ Wm,1(0, T ), there exists an unique b ∈
Wm+1,1(0, T ) such that

βb + k ∗ b = 1.

Proof. We recall a result given in Prüss [Prü93, Theorem 1.4 p.46]: for p ≥ 1, there exists
an unique r : Wm,p(0, T ) → Wm,p(0, T ) such that for a ∈ Wm,p(0, T )

r(a) + a ∗ r(a) = a.

Then, taking a = β−1k in the equation above, the unique solution S(b0) ∈ Wm,1(0, T ) such that
S(b0) + β−1k ∗ S(b0) = 1 is given by

S(b0) = 1 − r(β−1k) ∗ 1.

Thus
b(t) = β−1S(b0) = β−1 − β−1r(β−1k) ∗ 1

and
ḃ(t) = −β−1r(β−1k) in L1(0, T ).

Since r(β−1k) ∈ Wm,1(0, T ), it follows b ∈ Wm+1,1(0, T ). �

Lemma 1.22. Let (E, ‖.‖E) be a Banach space. Let A : DA ⊂ E → E be a linear, closed,
densely defined operator, the generator of an analytic semi-group on E. Let 1 < q < ∞,
β > 0, γ ∈ R and a ∈ L1(0, T ). Assume A satisfies MRp and let f ∈ Lq(0, T ; E), u0 ∈ Eq :=
(E,DAr)1− 1

q
,q, then there exists a unique u ∈ W 1,q(0, T ; E) ∩ Lq(0, T ;DAr) satisfying

u̇ = βAu + γu + a ∗ u + f, u(0) = u0.

Moreover, there exists a constant C independent of u, f , u0 such that

(1.4) ‖u̇‖Lq(0,T ;E) + ‖Au‖Lq(0,T ;E) ≤ C
(
‖f‖Lq(0,T ;E) + ‖u0‖Eq

)
.
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Proof. Let B := βA+γ, since A satisfies the MRp using Remark 1.15 it follows B satisfies
the MRp and there exists a constant C independent of u, f , u0 such that

(1.5) ‖Au‖Lq(E) + ‖u‖Lq(E) ≤ C
(
‖Bu‖Lq(E) + ‖u‖Lq(E)

)
,

for u ∈ DA. Therefore, it remains to prove for given f ∈ Lq(E) and u0 ∈ E1−1/q,q there exists

an unique z ∈ W 1,q(E) ∩ Lq(DA) such that

(1.6) z = etBu0 +

∫ t

0
e(t−s)Bf(s)ds +

∫ t

0
e(t−s)Ba ∗ z(s)ds.

Lemma 1.13 ensures z0 := etBu0 +
∫ t
0 e(t−s)Bf(s)ds ∈ W 1,q(E)∩Lq(DA). Then rewrite (1.6) as

a fixed point problem. Given z0 ∈ Z := Lq(E) and let F : Z → Z defined for z ∈ Z by

F (z) := v,

where, v ∈ Z satisfies
v̇ = Bv + a ∗ z, v(0) = 0.

Notice F is well defined using Remark 1.20 and Lemma 1.13. Then (1.6) becomes

z = z0 + F (z).

It will be shown that there exists n > 0 such that

(1.7) ‖Fn‖L(Z) < 1.

Lemma 1.13 again ensures that there exists a constant C independent of u, f , u0 such that

‖v‖Lq(E) ≤ C‖a ∗ u‖Lq(E) ≤ C‖a‖L1(0,T )‖u‖Lq(E).

Denoting by c(n) := c ∗ . . . ∗ c︸ ︷︷ ︸
n times

for c ∈ L1(0, T ), it follows

(1.8) ‖Fn‖L(Z) ≤ Cn‖a(n)‖L1(0,T ).

Since
‖c ∗ c‖L1(0,T ) ≤ ‖c‖L∞(0,T ) ∗ ‖c‖L∞(0,T ) = ‖c‖2

L∞(0,T )1 ∗ 1 = ‖c‖2
L∞(0,T )T,

for c ∈ L∞(0, T ) it follows

‖c(n)‖L1(0,T ) ≤ ‖c‖n
L∞(0,T )

Tn−1

(n − 1)!
, ∀c ∈ L∞(0, T ).

Using the above inequality in (1.8), it follows

‖Fn‖L(Z) ≤
Tn−1

(n − 1)!
Cn‖a‖n

L∞(0,T )

which tends to 0 when n goes to infinity. Thus (1.7) is proved and a fixed point theorem (see
[Car67, Theorem 4.4.1]) ensures the existence of an unique z ∈ Z satisfying (1.6) and there
exists a constant C independent of u, f , u0 such that

(1.9) ‖z‖Lq(E) ≤ C‖z0‖Lq(E).

The fact that z ∈ W 1,q(E) ∩ Lq(E) is a direct consequence of (1.6) since z0 and a ∗ z ∈
W 1,q(E) ∩ Lq(E). It remains to prove the estimation (1.4). Going back to (1.6) and using
Lemma 1.13 again, there exists a constant C independent of u, f , u0 such that

(1.10) ‖ż‖Lq(E) + ‖Bu‖Lq(E) ≤ C
(
‖u0‖E1−1/q,q

+ ‖f‖Lq(E) + ‖a ∗ u‖Lq(E)

)
.

Using (1.9) we obtain

‖a ∗ z‖Lq(E) ≤ ‖a‖L1(0,T )‖z‖Lq(E) ≤ C‖a‖L1(0,T )‖z0‖Lq(E),
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which coupled with (1.5) and (1.10) proves (1.18). �

Corollary 1.23. Let (E, ‖.‖E) be a Banach space. Let A : DA ⊂ E → E be a linear,
closed, densely defined operator, the generator of an analytic semi-group on E. Let 1 < q < ∞,
k ∈ W 1,1(0, T ) and β > 0. Assume A satisfies MRp and let f ∈ Lq(0, T ; E), u0 ∈ Eq :=
(E,DAr)1− 1

q
,q, then there exists a unique u ∈ W 1,q(0, T ; E) ∩ Lq(0, T ;DAr) satisfying

(1.11) u̇ = βAu + k ∗ Au + f, u(0) = u0.

Moreover, there exists a constant C independent of u, f , u0 such that

(1.12) ‖u̇‖Lq(0,T ;E) + ‖Au‖Lq(0,T ;E) ≤ C
(
‖f‖Lq(0,T ;E) + ‖u0‖E

)
.

Proof. Since k ∈ W 1,1(0, T ), Lemma 1.21 ensure the existence of a b ∈ W 2,1(0, T ) such
that

(1.13) βb + k ∗ b = 1.

Moreover b(0) = β−1. Convolving the equation for u in (1.11) and using the equation above,
we have

b ∗ u̇ = 1 ∗ Au + b ∗ f.

Differentiating with respect to time the equation above, using b(0) = β−1, we obtain

(1.14) β−1u̇ + ḃ ∗ u̇ = Au + β−1f + ḃ ∗ f.

Noticing that

ḃ ∗ u̇ + ḃu0 =
d

dt

(
ḃ ∗ u

)
= ḃ(0)u + b̈ ∗ u,

the equation (1.14) becomes

u̇ = βAu − βḃ(0)u + f + βḃ ∗ f + βḃu0 − βb̈ ∗ u.

Differentiating equation (1.13) and since ḃ ∈ C0([0, T ]), k ∈ W 1,1(0, T ) we find ḃ(0) = −β−2k(0).
Finally, the system (1.11) reduces to

u̇ = βAu + f + βḃ ∗ f + βḃu0 − βb̈ ∗ u + β−1k(0)u, u(0) = u0.

The Lemma 1.22 completes the proof. �

The previous Corollary also holds in little Hölder spaces.

Lemma 1.24. Let (E, ‖.‖E) be a Banach space. Let A : DA ⊂ E → E be a linear, closed,
densely defined operator, the generator of an analytic semi-group on E. Let 0 < μ < 1. Let

k ∈ W
1, 1

1−μ (0, T ), f ∈ hμ([0, T ];E) and u0 ∈ DA satisfying Au0 + f(0) ∈ DA
(E,DA)μ,∞, then

there exists a unique u ∈ h1+μ([0, T ];E) ∩ hμ([0, T ];DA) satisfying

(1.15) u̇ = βAu + k ∗ Au + f, u(0) = u0.

Moreover, there exists a constant C independent of u, f , u0 such that

(1.16) ‖u̇‖hμ([0,T ];E) + ‖Au‖hμ([0,T ];E) ≤ C
(
‖f − f(0)‖hμ([0,T ];E) + ‖Au0 + f(0)‖Eμ,∞

)
.

Proof. The proof uses the same arguments for the proof for Corollary 1.23. It has to be
slightly modified in the two following senses. Remark 1.20, has to be replaced by the affirmation:

let 0 < μ < 1, for g ∈ L
1

1−μ (0, T ), for f ∈ hμ([0, T ];E) there exists a constant C independent of
fand g such that

(1.17) ‖f ∗ g‖hμ(E) ≤ C‖g‖
L

1
1−μ (0,T )

‖f‖hμ(E).
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In the proof for Lemma 1.22, relation (1.8) does not holds in hμ(E) but the same conclusion
follows by using a fixed point theorem in hμ(E) and (1.17). �

Lemma 1.25. Let (E, ‖.‖E) be a Banach space. Let A : DA ⊂ E → E be a linear, closed,
densely defined operator, the generator of an analytic semi-group on E. Let 1 < q < ∞,
β > 0 and k ∈ W 1,q(0, T ). Assume A satisfies MRp and let f ∈ W 1,q(0, T ; E), u0 ∈ DAr

such that βAu0 + f(0) ∈ Eq := (E,DAr)1− 1

q
,q, then there exists a unique u ∈ W 2,q(0, T ; E) ∩

W 1,q(0, T ;DAr) satisfying

u̇ = βAu + k ∗ Au + f, u(0) = u0.

Moreover, there exists a constant C independent of u, f , u0 such that

(1.18) ‖ü‖Lq(0,T ;E) + ‖Au̇‖Lq(0,T ;E) ≤ C
(
‖ḟ‖Lq(0,T ;E) + ‖Au0‖Lq(0,T ;E) + ‖Au0 + f(0)‖Eq

)
.

Proof. Let u be the unique solution in W 1,q(0, T ; E) ∩ Lq(0, T ;DAr) satisfying

u̇ = βAu + k ∗ Au + f, u(0) = u0.

Define z ∈ W 1,q(0, T ; E) ∩ Lq(0, T ;DAr) such that

(1.19) ż = βAz + kAu0 + k ∗ Az + ḟ , z(0) = βAu0 + f(0).

Corollary 1.23 ensures z is well defined since ḟ ∈ Lq(0, T ; E) and since βAu0 + f(0) ∈ Eq.
Moreover there exists a constant C independent of u, f , u0 such that

(1.20) ‖ż‖Lq(0,T ;E) + ‖Az‖Lq(0,T ;E) ≤ C
(
‖Au0 + f(0)‖Eq + ‖ḟ‖Lq(0,T ;E) + ‖kAu0‖Lq(0,T ;E)

)
.

Let v ∈ W 2,q(0, T ; E) ∩ W 1,q(0, T ;DAr) defined by

(1.21) v(t) := u0 +

∫ t

0
z(s)ds.

It will be shown that v = u. Recalling that since A is closed, it holds∫ t

0
Ay(s)ds = A

∫ t

0
y(s)ds, ∀y ∈ L1(0, t′;DAr), ∀t′ ∈ [0, t],

(see [ABHN01, Proposition 1.1.7]) from (1.19) it follows

z(t) = βAu0 + f(0) + βA

∫ t

0
z(s)ds + f(t) − f(0) + 1 ∗ kAu0 + k ∗ A

∫ T

0
z(s)ds.

Then

v̇ = βA(v − u0) + βAu0 + f(t) + (1 ∗ k)Au0 + k ∗ A(v − u0), v0 = u0

is obtained using the definition of v (1.21). Thus the uniqueness of the solution ensured by
Corollary 1.23 proves v = u or z = u̇. The estimate (1.18) is a direct consequence of (1.20). �

1.5. The Stokes operator

Let D be a bounded, connected open set of R
d, d ≥ 2 with boundary ∂D of class C2, and

let T > 0. We introduce the Helmholtz-Weyl projector [FM77, Gal94, GSS05] defined by

Pr : Lr(D; Rd) → Hr 1 < r < ∞,

where Hr is the completion of the divergence free C∞
0 (D) vector fields with respect to the Lr

norm. The space Hr can be characterized as follows (again see [Gal94])

Hr :=
{
v ∈ Lr(D; Rd) ; ∇ · v = 0, v · n = 0 on ∂D, hold weakly

}
.
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Since D is of class C2, there exists a constant C such that for f ∈ Lr

‖Prf‖Lr ≤ C‖f‖Lr .

Define Ar := −PrΔ : DAr → Hr the Stokes operator, where

DAr :=
{
v ∈ W 2,r(D; Rd) ∩ W 1,r

0 (D; Rd) | ∇ · v = 0
}

.

It is well known (see [Gig81] for instance) that, for D of class C2, the operator Ar equipped
with the usual norm of Lr(D; Rd) is closed and densely defined in Hr. Moreover, the graph
norm of Ar is equivalent to the W 2,r norm.

Since D is of class C2, the operator −Ar is the generator of an analytic semi-group [Gig81]
and satisfies the maximal regularity property, see [Sol68, Theorem 15, section 17] for the Lr(Lr)
estimate and Remark 1.15 for the Lq(Lr) estimate.

Remark 1.26. It will be needed (see sections 2.2 and 2.3 and sections 3.2 and 3.3) that
the operator −Ar still satisfies the maximal regularity property when considering a polygonal
domain. We did not find such result in the literature, therefore this assumption will be made.
It should be noted that the corresponding property is true in the stationary case for some r > 2
depending on the angles of the polygon, see [PR01].

In what follows, the intermediate spaces between Hr and DAr defined in section 1.2, will
only be considered with the Stokes operator. So, the notations

E1−1/q,q := (Hr,DAr)1−1/q,q and Eμ,∞ :=

{
v ∈ Hr; sup

t>0
‖t1−μAre

−tArv‖Lr(D) < ∞
}

,

will be used. The following Lemma (personal communication of Prof. Philippe Clément) will
be useful thereafter.

Lemma 1.27. Let 2 ≤ d < r < ∞ and 2 ≤ q the following embbedings hold

E1−1/q,q ⊂> W 1,r
0 ∩Hr ⊂> H1

0 ∩H2.





CHAPTER 2

Mathematical and numerical analysis of the Oldroyd-B model

In this chapter, a time-dependent model corresponding to an Oldroyd-B or convected Jeffreys
fluid in a finite domain is considered, the convective terms being disregarded. The reason for
considering this model without the convective terms and in a non-moving domain is motivated
by the second step (0.6)-(0.8) of the splitting algorithm presented in the introduction. Existence
in a finite time interval is proved in Banach spaces provided the data are small enough, using the
implicit function theorem and a maximum regularity property for a three fields Stokes problem.
On the other hand, short time existence for arbitrarily large data is proved in Hölder spaces
for the time variable using the analyticity behavior of the semi-group generated by the Stokes
operator. A finite element discretization in space is then proposed. Existence of the numerical
solution is proved for small data, as well as a priori error estimates, using again an implicit
function theorem.

2.1. The simplified Oldroyd-B problem and its finite element approximation in

space

Let D be a bounded, connected open set of R
d, d ≥ 2 with boundary ∂D of class C2, and let

T > 0. Consider the following problem. Given initial conditions u0 : D → R
d, σ0 : D → R

d×d
sym,

a force term f , constant solvent and polymer viscosities ηs > 0, ηp > 0, a constant relaxation

time λ > 0, find the velocity u : D × (0, T ) → R
d, pressure p : D × (0, T ) → R and extra-stress

σ : D × (0, T ) → R
d×d
sym such that

ρ
∂u

∂t
− 2ηs ∇ · ε(u) + ∇p −∇ · σ = f in D × (0, T ),(2.1)

∇ · u = 0 in D × (0, T ),(2.2)

1

2ηp
σ +

λ

2ηp

(∂σ

∂t
− (∇u)σ − σ(∇u)T

)
− ε(u) = 0 in D × (0, T ),(2.3)

u(·, 0) = u0 in D,(2.4)

σ(·, 0) = σ0 in D,(2.5)

u = 0 on ∂D × (0, T ).(2.6)

The implicit function theorem will be used to prove that (2.1)-(2.6) admits a unique solution

(2.7) u ∈ W 1,q(Lr) ∩ Lq(W 2,r ∩ H1
0 ), p ∈ Lq(W 1,r ∩ L2

0), σ ∈ W 1,q(W 1,r),

or

(2.8) u ∈ h1+μ(Lr) ∩ hμ(W 2,r ∩ H1
0 ), p ∈ hμ(W 1,r ∩ L2

0), σ ∈ h1+μ(W 1,r),

with 1 < q < ∞, d < r < ∞ and 0 < μ < 1 for any data f , u0, σ0 small enough in appropriate
spaces. Moreover, assuming more regularity on the data, it will also be proved that

(2.9) u ∈ W 2,q(Lr) ∩ W 1,q(W 2,r ∩ H1
0 ), p ∈ W 1,q(W 1,r ∩ L2

0), σ ∈ W 2,q(W 1,r),

19
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or

(2.10) u ∈ h2+μ(Lr) ∩ h1+μ(W 2,r ∩ H1
0 ), p ∈ h1+μ(W 1,r ∩ L2

0), σ ∈ h2+μ(W 1,r),

for any data f , u0, σ0 again small enough in appropriate spaces. The regularity (2.7) is sufficient
to prove convergence of a finite element discretization in space, see section 2.3. On the other
hand, the regularity (2.9) will be needed to prove convergence of a space and time discretiza-
tion. Finally, the regularities (2.8) and (2.10) are related to considerations of chapter 3 when
considering a Brownian motion.

Alternatively, local existence in time is proved for arbitrarily large data, using an abstract
theorem for fully nonlinear parabolic equations, namely Theorem 8.1.1 of [Lun95]. More pre-
cisely, proof will be provided that there exists 0 < T∗ ≤ T such that (2.1)-(2.6) admits a
solution

u ∈ C1([0, T∗], L
r)∩C0([0, T∗], W

2,r∩H1
0 ), p ∈ C0([0, T∗];W

1,r∩L2
0), σ ∈ C1([0, T∗], W

1,r),

with d < r < ∞ and for any data f , u0 and σ0 in appropriate spaces.
The finite element approximation in space is now introduced. For any h > 0, let Th be

a decomposition of D into triangles K with diameter hK less than h, regular in the sense of
[CL91]. Consider Vh, Mh and Qh the finite element spaces for the velocity, extra-stress and
pressure, respectively defined by :

Vh := {vh ∈ C0(D; Rd); vh |K∈ (P1)
d,∀K ∈ Th} ∩ H1

0 (D; Rd),

Mh := {τh ∈ C0(D; Rd×d
sym); τh |K∈ (P1)

d×d
sym,∀K ∈ Th},

Qh := {qh ∈ C0(D; R); qh |K∈ P1,∀K ∈ Th} ∩ L2
0(D; R).

Denote ih the L2(D) projection onto Vh, Mh or Qh and consider the following stabilized finite
element discretization in space of (2.1)-(2.6). Given f , u0, σ0 find

(uh, σh, ph) : t → (uh(t), σh(t), ph(t)) ∈ Vh × Mh × Qh

such that uh(0) = ihu0, σh(0) = ihσ0 and such that the following weak formulation holds in
(0, T ) :

(2.11) ρ
(∂uh

∂t
, vh

)
+ 2ηs

(
ε(uh), ε(vh)

)
−
(
ph,∇ · vh

)
+
(
σh, ε(vh)

)
−
(
f, vh

)
+
(
∇ · uh, qh

)
+
∑

K∈Th

αh2
K

2ηp

(
∇ph,∇qh

)
K

+
1

2ηp

(
σh, τh

)
+

λ

2ηp

(∂σh

∂t
−(∇uh)σh−σh(∇uh)T , τh

)
−
(
ε(uh), τh

)
= 0,

for all (vh, τh, qh) ∈ Vh × Mh × Qh. Here α > 0 is a dimensionless stabilization parameter and
(·, ·) (respectively (·, ·)K) denotes the L2(D) (resp. L2(K)) scalar product for scalars, vectors
and tensors.

The above nonlinear finite element scheme has already being studied in the stationary case
[PR01]. Indeed, using the convergence result of [BPS01] for the linear three fields Stokes
problem and an implicit function theorem taken from [BRR81, BRR81, CR97], existence and
convergence could be proved for small λ, the difficulty being again due to the fact that no a priori
estimates can be obtained because of the presence of the quadratic terms (∇uh)σh +σh(∇uh)T .

Proceeding in an analogous manner for the time dependent case, existence and convergence
of a solution to (2.11) will be proven for a given λ but for small data f , u0, σ0. It should be
noted that the case ηs = 0 is not considered, therefore some of the stabilization terms present
in [BPS01, PR01] are not included in the finite element formulation (2.11).
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2.2. Existence of a solution to the simplified Oldroyd-B problem

This section starts with the definition of a solution. Using the Stokes operator Ar and the
notations introduced in section 1.5, (u, σ) is said to be a solution of (2.1)-(2.6) if

u ∈ W 1,q(Hr) ∩ Lq(DAr), σ ∈ W 1,q(W 1,r),

with 1 < q < ∞, d < r < ∞ and satisfies

ρ
∂u

∂t
+ ηsAru − Pr∇ · σ = Prf,(2.12)

1

2ηp
σ +

λ

2ηp

(∂σ

∂t
− (∇u)σ − σ(∇u)T

)
− ε(u) = 0,(2.13)

u(·, 0) = u0,(2.14)

σ(·, 0) = σ0.(2.15)

Assume that the source term f ∈ Lq(Lr), the initial data u0 ∈ E1−1/q,q and σ0 ∈ W 1,r (see
chapter 1 for the definition of E1−1/q,q).

Remark 2.1. For 1 < q < ∞, d < r < ∞, we have

W 1,q(Hr) ∩ Lq(DAr) ⊂ L2(W 1,r
0 ),

(personal communication with Prof. Philippe Clément). Thus a solution of (2.12)-(2.15) satisfies

‖u(T )‖L2 + ‖∇u‖L2(L2) < ∞.

Uniqueness of a solution to problem (2.12)-(2.15) can be obtained proceeding as in [FCGO02],
i.e. by proving an a priori estimate for the difference of two solutions when q ≥ 2.

Lemma 2.2. Let d ≥ 2, let D ⊂ R
d be a bounded, connected open set with boundary of class

C2, let T > 0 and assume 2 ≤ q < ∞, d < r < ∞. Then, for any f ∈ Lq(Lr), u0 ∈ E1−1/q,q,

σ0 ∈ W 1,r, there exists at most one solution (u, σ) of problem (2.12)-(2.15).

Proof. Start by noticing that for 2 ≤ q < ∞, d < r < ∞, v ∈ Lq(W 2,r) and τ ∈ W 1,q(W 1,r)
the nonlinearity (∇v)τ + τ(∇v)T ∈ Lq(W 1,r). Indeed, W 1,r is a Banach algebra for d < r (see
section 1.1) and there exists C > 0 independent of v and τ such that

‖(∇v)τ + τ(∇v)T ‖W 1,r ≤ C‖τ‖W 1,r‖v‖W 1,r .

Moreover, since W 1,q(E) ⊂> C0(E) for all Banach space E (see section 1.1), it holds

‖(∇v)τ‖q
Lq(W 1,r) =

∫ T

0
‖(∇v)τ‖q

W 1,r ≤ C

∫ T

0
‖∇v‖q

W 1,r‖τ‖q
W 1,r

≤ C‖τ‖q
L∞(W 1,r)

∫ T

0
‖∇v‖q

W 1,r

≤ C̃‖τ‖q
W 1,q(W 1,r)‖v‖

q
Lq(W 2,r),

where C̃ is independent of v and τ . Define the mapping S by

S : Lq(W 2,r) × W 1,q(W 1,r) −→Lq(W 1,r)

(v, τ) �−→S(v, τ) :=
λ

2ηp

(
(∇v)τ + τ(∇v)T

)
.

Now let (ui, σi) ∈ W 1,q(Hr) ∩ Lq(DAr) × W 1,q(W 1,r) i = 1, 2, be two solutions of problem
(2.12)-(2.15) and let u := u1 − u2, σ := σ1 − σ2. Using the well known properties of the
Helmholtz-Weyl projector (see section 1.5), there exists a unique pressure pi ∈ Lq(W 1,r ∩ L2

0),
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i = 1, 2, corresponding to each pair (ui, σi) such that (ui, σi, pi) satisfies (2.1)-(2.6). When
2 ≤ q < ∞, take the weak formulation to obtain

(2.16) ρ

∫ t

0

(
∂ui

∂t
, u

)
+

λ

2ηp

∫ t

0

(
∂σi

∂t
, σ

)
+ ηs

∫ t

0
(∇ui,∇u)

+

∫ t

0
(σi, ε(u)) +

1

2ηp

∫ t

0
(σi, σ) −

∫ t

0
(ε(ui), σ) =

∫ t

0
(S(ui, σi), σ) ,

for i = 1, 2. Hereabove the fact has been used that, since ∇ · ui = 0, then

2∇ · ε(ui) = Δui.

All the terms in the previous equation are well defined because of the regularity of ui and σi

and since u(0) = σ(0) = 0 we obtain

ρ

∫ t

0

(
∂ui

∂t
, u

)
+

λ

2ηp

∫ t

0

(
∂σi

∂t
, σ

)
=

ρ

2
‖u(t)‖2

L2 +
λ

4ηp
‖σ(t)‖2

L2 ,

for i = 1, 2 and t ∈ (0, T ). Subtracting the two equalities (2.16), it follows that

(2.17)

(
ρ

2
‖u(t)‖2

L2 +
λ

4ηp
‖σ(t)‖2

L2

)
+ ηs‖∇u‖2

L2(L2) +
1

2ηp
‖σ‖2

L2(L2)

=

∫ t

0
(S(u, σ1), σ) +

∫ t

0
(S(u2, σ), σ) .

Then, using Cauchy-Schwarz and Young inequalities, it follows that for t ∈ (0, T )∫ t

0
(S(u, σ1), σ) ≤ 2λ

2ηp

∫ t

0
‖σ1‖L∞‖∇u‖L2‖σ‖L2 ≤ λ2

2ηsη2
p

∫ t

0
‖σ1‖2

L∞‖σ‖2
L2 +

ηs

2

∫ t

0
‖∇u‖2

L2

and ∫ t

0
(S(u2, σ), σ) ≤ λ

2ηp

∫ t

0
‖∇u2‖L∞‖σ‖2

L2 .

Hence, with (2.17) and the continuous injection W 1,r ⊂> C0 it follows that

ρ

2
‖u(t)‖2

L2 +
λ

4ηp
‖σ(t)‖2

L2 ≤ C

∫ t

0

(
‖u2‖W 2,r + ‖σ1‖2

W 1,r

)
‖σ‖2

L2 ,

for t ∈ (0, T ). Here C is a constant independent of u1, u2, σ1 and σ2. Since u(0) = 0 and
σ(0) = 0, Gronwall’s Lemma is used to obtain for t ∈ (0, T )

ρ‖u(t)‖2
L2 +

λ

2ηp
‖σ(t)‖2

L2 = 0,

so that u ∈ W 1,q(Hr) ∩ Lq(DAr) and σ ∈ W 1,q(W 1,r) vanish. �

The main results of this section are in the Theorems 2.3 and 2.5.

Theorem 2.3. Let d ≥ 2, let D ⊂ R
d be a bounded, connected open set with boundary of

class C2, let T > 0 and assume d < r < ∞, 1 < q < ∞, 0 < μ < 1. Then, there exists δ0 > 0
such that the following holds.
i) If f ∈ Lq(Lr), u0 ∈ E1−1/q,q, σ0 ∈ W 1,r satisfy

‖Prf‖Lq(Lr) + ‖u0‖E1−1/q,q
+ ‖σ0‖W 1,r ≤ δ0,

then there exists a solution of (2.12)-(2.15).
ii) If f ∈ W 1,q(Lr), u0 ∈ DAr , σ0 ∈ W 1,r satisfy the compatibility condition

−ηsAru0 + Prf(0) + Pr∇ · σ0 ∈ E1−1/q,q
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and are such that

‖Prf‖W 1,q(Lr) + ‖u0‖W 2,r + ‖σ0‖W 1,r + ‖ − ηsAru0 + Prf(0) + Pr∇ · σ0‖E1−1/q,q
≤ δ0,

then there exists a solution of (2.12)-(2.15) with

u ∈ W 2,q(Hr) ∩ W 1,q(DAr), σ ∈ W 2,q(W 1,r).

iii) If f ∈ hμ(Lr), u0 ∈ DAr , σ0 ∈ W 1,r satisf the compatibility condition

−ηsAru0 + Prf(0) + Pr∇ · σ0 ∈ DAr

Eμ,∞

and are such that

‖Pr(f − f(0))‖hμ(Lr) + ‖u0‖W 2,r + ‖σ0‖W 1,r + ‖ − ηsAru0 + Prf(0) + Pr∇ · σ0‖DAr
Eμ,∞ ≤ δ0,

then there exists a solution of (2.12)-(2.15) with

u ∈ h1+μ(Hr) ∩ hμ(DAr), σ ∈ h1+μ(W 1,r).

iv) If f ∈ h1+μ(Lr), u0 ∈ DAr , σ0 ∈ W 1,r satisfy the compatibility conditions

−ηsAru0 + Prf(0) + Pr∇ · σ0 ∈ D(Ar),

−ηsAr(−ηsAru0 + Prf(0) + Pr∇ · σ0) +
∂f

∂t
(0) ∈ DAr

Eμ,∞ ,

and are such that

‖Pr(f − f(0))‖hμ(Lr) + ‖Pr(
∂f

∂t
− ∂f

∂t
(0))‖hμ(Lr) + ‖ − ηsAru0 + Prf(0) + Pr∇ · σ0‖W 2,r

+ ‖u0‖W 2,r + ‖σ0‖W 1,r + ‖ − ηsAr(−ηsAru0 + Prf(0) + Pr∇ · σ0) +
∂f

∂t
(0)‖

DAr
Eμ,∞ ≤ δ0,

then there exists a solution of (2.12)-(2.15) with

u ∈ h2+μ(Hr) ∩ h1+μ(DAr), σ ∈ h2+μ(W 1,r).

Moreover, in all cases, the mappings

(Prf, u0, σ0) �→
(
u(Prf, u0, σ0), σ(Prf, u0, σ0)

)
are analytic in their respective spaces.

Using the well known properties of the Helmholtz-Weyl projector (again see section 1.5),
the following result is obtained.

Corollary 2.4. Under the assumptions of the above Theorem, for each (u, σ) solution of
(2.12)-(2.15) there exists a unique p satisfying

i) p ∈ Lq(W 1,r ∩ L2
0),

ii) p ∈ W 1,q(W 1,r ∩ L2
0),

iii) p ∈ hμ(W 1,r ∩ L2
0),

iv) p ∈ h1+μ(W 1,r ∩ L2
0),

such that (u, σ, p) is a solution of problem (2.1)-(2.6). Moreover, the mappings

(f, u0, σ0) �→
(
u(f, u0, σ0), σ(f, u0, σ0), p(f, u0, σ0)

)
are analytic in their respective spaces.
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Local existence in time can be proved for arbitrarily large data, using an abstract theorem
for fully nonlinear parabolic equations, namely Theorem 8.1.1 of [Lun95].

Theorem 2.5. Let d ≥ 2, let D ⊂ R
d be a bounded, connected open set with a boundary of

class C2 and assume d < r < ∞, 0 < μ < 1, T > 0. If

f ∈ Cμ(Lr), u0 ∈ DAr , σ0 ∈ W 1,r,

then there exists T∗ ∈ (0, T ] such that problem (2.12)-(2.15) possesses a solution

u ∈ C1([0, T∗],Hr) ∩ C0([0, T∗],DAr), σ ∈ C1([0, T∗], W
1,r).

As for Corollary 2.4 the following result can be deduced.

Corollary 2.6. Under the assumptions of the above Theorem, for each (u, σ) solution of
(2.12)-(2.15) there exists a unique p satisfying

p ∈ C1([0, T∗], W
1,r ∩ L2

0)

such that (u, σ, p) is a solution of problem (2.1)-(2.6).

Remark 2.7. Parts iii) and iv) of Theorem 2.3 still hold when replacing little Hölder spaces

by the classical Hölder spaces. Indeed, the only difference is that the trace space is not DAr

Eμ,∞

anymore but Eμ,∞.

Remark 2.8. The trace spaces E1−1/q,q or DAr

Eμ,∞ are abstract spaces but they both

contain DAr . For instance in part i), if u0 ∈ W 2,r ∩W 1,r
0 then u0 ∈ E1−1/q,q. Also, the condition

“‖Prf‖Lq(Lr) small” is satisfied whenever ‖f‖Lq(Lr) is small.

Remark 2.9. Assuming that the operator −Ar satisfies the maximal regularity property
when D is a convex polygon, see Remark 1.26, then Theorem 2.3 still holds.

2.2.1. Proof of Theorem 2.3. The proof is detailed for part ii) only, which contains the
major mathematical difficulties. Then a brief explaination of how the same arguments can be
used to prove parts i), iii) and iv) will be provided.

In order to prove part ii) of Theorem 2.3, the mapping F : Y × X → Z will be introduced,
where

Y :=
{
(Prf, u0, σ0), such that (f, u0, σ0) ∈ W 1,q(Lr) ×DAr × W 1,r

and − ηsAru0 + Prf(0) + Pr∇ · σ0 ∈ E1−1/q,q

}
,

X := W 2,q(Hr) ∩ W 1,q(DAr) × W 2,q(W 1,r),

Z := W 1,q(W 1,r) × Y.

The mapping F is defined for y = (Prf, u0, σ0) ∈ Y and x = (u, σ) ∈ X by

F (y, x) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

λ

2ηp

∂σ

∂t
+

1

2ηp
σ − ε(u) − S(u, σ)

ρ
∂u

∂t
+ ηsAru − Pr∇ · σ − Prf

u (., 0) − u0

σ (., 0) − σ0

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

with

(2.18) S(u, σ) :=
λ

2ηp

(
(∇u)σ + σ(∇u)T

)
.
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Then problem (2.12)-(2.15) can be reformulated as follows. Given y ∈ Y , find x ∈ X such that

(2.19) F (y, x) = 0 in Z.

The aim is to use the implicit function theorem, hence noticing that F (0, 0) = 0, it will be
proved that

• the spaces X, Y and Z equipped with appropriate norms are Banach spaces,
• F is a well defined, real analytic mapping,
• the Fréchet derivative DxF (0, 0) is an isomorphism from X to Z.

This will establish existence for part ii) of Theorem 2.3. Uniqueness follows from Lemma 2.2
for 2 ≤ q < ∞.

The space X is equipped with the norm ‖ · ‖X defined for x := (u, σ) ∈ X by

‖x‖X = ‖u, σ‖X := ‖u‖W 2,q(Lr) + ‖u‖W 1,q(W 2,r) + ‖σ‖W 2,q(W 1,r).

Clearly, (X, ‖.‖X) becomes a Banach space. The space Y is equipped with the norm ‖ · ‖Y

defined for y := (Prf, u0, σ0) ∈ Y by

‖y‖Y = ‖Prf, u0, σ0‖Y

:= ‖Prf‖W 1,q(Lr) + ‖u0‖W 2,r + ‖σ0‖W 1,r + ‖ − ηsAru0 + Prf(0) + Pr∇ · σ0‖E1−1/q,q
.

As a consequence of the continuity of the linear mapping

(Prf, u0, σ0) �−→ −ηsAru0 + Prf(0) + Pr∇ · σ0

from W 1,q(Hr)×DAr×W 1,r (equipped with the product norm) to Lr and due to the completeness
of E1−1/q,q, the space (Y, ‖.‖Y ) is a closed subspace of W 1,q(Hr)×DAr ×W 1,r and thus a Banach
space. The space Z is equipped with the product norm and becomes a Banach space .

In order to prove that F is well defined and analytic it is needed to prove that S : X →
W 1,q(W 1,r) is well defined and analytic. For this purpose, will use the following Lemma.

Lemma 2.10. For every pair x1 := (u1, σ1), x2 := (u2, σ2) ∈ X,

b(x1, x2) := ∇u1σ2 + σ1(∇u2)
T ∈ W 1,q(W 1,r).

Moreover, the corresponding bilinear mapping b : X × X → W 1,q(W 1,r) is continuous, that is,
there exists a constant C such that for all x1, x2 ∈ X it follows that

(2.20) ‖b(x1, x2)‖W 1,q(W 1,r) ≤ C‖x1‖X‖x2‖X .

Proof. Let x1 := (u1, σ1), x2 := (u2, σ2) ∈ X. Since r > d, W 1,r(D) ⊂> C0(D) so that
W 1,r(D) is a Banach algebra (see section 1.1) and there exists a constant C depending only on
D such that

‖b(x1, x2)‖W 1,r ≤ C‖u1‖W 2,r‖σ2‖W 1,r .

Then

‖b(x1, x2)‖q
Lq(W 1,r) =

∫ T

0
‖b(x1, x2)‖q

W 1,r

≤ C

∫ T

0
‖u1‖q

W 2,r‖σ2‖q
W 1,r

≤ C‖u1‖q
L∞(W 2,r)

∫ T

0
‖σ2‖q

W 1,r .

Since q > 1, W 1,q(0, T ) ⊂> C0([0, T ]) and also that W 1,q(E) ⊂> C0(E) for any Banach space
E, thus

‖b(x1, x2)‖q
Lq(W 1,r) ≤ C‖u1‖q

W 1,q(W 2,r)‖σ2‖q
Lq(W 1,r),
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which proves that

(2.21) ‖b(x1, x2)‖Lq(W 1,r) ≤ C‖u1, σ1‖X‖u2, σ2‖X .

Similarly, there exists a constant C depending only on D, λ and ηp such that

‖∂b

∂t
(x1, x2)‖q

Lq(W 1,r) =

∫ T

0
‖∂b

∂t
(x1, x2)‖q

W 1,r

≤ C

∫ T

0

(
‖∂u1

∂t
‖q

W 2,r‖σ2‖q
W 1,r + ‖u1‖q

W 2,r‖
∂σ2

∂t
‖q

W 1,r

)

≤ C

(
‖σ2‖q

L∞(W 1,r)

∫ T

0
‖∂u1

∂t
‖q

W 2,r + ‖u1‖q
L∞(W 2,r)

∫ T

0
‖∂σ2

∂t
‖q

W 1,r

)

≤ C

(
‖σ2‖q

W 1,q(W 1,r)

∫ T

0
‖∂u1

∂t
‖q

W 2,r + ‖u1‖q
W 1,q(W 2,r)

∫ T

0
‖∂σ2

∂t
‖q

W 1,r

)
,

which proves that

(2.22) ‖∂b

∂t
(x1, x2)‖Lq(W 1,r) ≤ C‖u1, σ1‖X‖u2, σ2‖X .

The estimates (2.21) and (2.22) prove that b(x1, x2) ∈ W 1,q(W 1,r) and (2.20). �

Remark 2.11. In fact it also has been proved that W 1,q(0, T ; W 1,r(D; R)) is a Banach
algebra for 1 < q < ∞ and d < r < ∞.

Remark 2.12. For x ∈ X, we have S(x) =
λ

2ηp
b(x, x), where S : X → W 1,q(W 1,r) is

introduced in (2.18). Thus, in virtue of Proposition 5.4.1 in [Car67], S is well defined and
analytic.

Corollary 2.13. The mapping F : Y ×X → Z is well defined and analytic. Moreover, for
x := (v, τ) ∈ X its Fréchet derivative DxF (0, 0)x is given by

DxF (0, 0)x =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ

2ηp

∂τ

∂t
+

1

2ηp
τ − ε(v)

ρ
∂v

∂t
+ ηsArv − Pr∇ · τ

v (., 0)
τ (., 0)

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Proof. In order to study the property of the mapping F : Y ×X → Z rewrite it as follows

(2.23) F (y, x) = L1y + L2x +

⎛
⎜⎜⎜⎜⎝

λ

2ηp
b(x, x)

0
0
0

⎞
⎟⎟⎟⎟⎠ ,

where L1 : Y → Z, L2 : X → Z are bounded linear operator defined for y := (Prf, u0, σ0) ∈ Y
and x := (u, σ) ∈ X by

L1y :=

(
0
−y

)
, L2x :=

⎛
⎜⎜⎜⎜⎜⎜⎝

λ

2ηp

∂σ

∂t
+

1

2ηp
σ − ε(u)

ρ
∂u

∂t
+ ηsAru − Pr∇ · σ

u (., 0)
σ (., 0)

⎞
⎟⎟⎟⎟⎟⎟⎠
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and b : X×X → W 1,q(W 1,r) is defined in Lemma 2.10. Clearly, the first two terms in (2.23) are
analytic. The last term is also analytic in virtue of Proposition 5.4.1 in [Car67], which proves
that F is analytic. Moreover DxF (0, 0) = L2 which completes the proof. �

In order to use the implicit function theorem, it remains to check that DxF (0, 0) is an
isomorphism from X to Z. Therefore, checking for g ∈ W 1,q(W 1,r) and (h, v0, τ0) ∈ Y there
exists a unique (v, τ) ∈ X such that

(2.24)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ

2ηp

∂τ

∂t
+

1

2ηp
τ − ε(v) = g,

ρ
∂v

∂t
+ ηsArv − Pr∇ · τ = h,

v (., 0) = v0,

τ (., 0) = τ0.

Lemma 2.14. Let d ≥ 2, let D ⊂ R
d be a bounded,connected open set with boundary of class

C2, let T > 0 and assume d < r < ∞, 1 < q < ∞. Given g ∈ W 1,q(W 1,r) and (h, v0, τ0) ∈ Y ,
there exists a unique (v, τ) ∈ X solution of (2.24). Moreover, there exists a constant C such
that for g ∈ W 1,q(W 1,r) and (h, v0, τ0) ∈ Y

(2.25) ‖v, τ‖X ≤ C
(
‖g‖W 1,q(W 1,r) + ‖h, v0, τ0‖Y

)
.

Proof. Solving the first equation of (2.24) the extra-stress is

(2.26) τ = kτ0 +
2ηp

λ
k ∗ (ε(v) + g) ,

with k ∈ C∞([0, T ]) defined by k(t) := e−
t
λ and the convolution operator ∗ by

(f ∗ g)(t) :=

∫ t

0
f(t − s)g(s) ds ∀t ∈ [0, T ],∀f, g ∈ L1(0, T ).

Introducing (2.26) in the second equation of (2.24), yields

(2.27)

⎧⎨
⎩ ρ

∂v

∂t
+ ηsArv +

ηp

λ
k ∗ Arv = h̃,

v(., 0) = v0.

where h̃ := h + Pr∇ · (kτ0) +
2ηp

λ Pr∇ · (k ∗ g) ∈ W 1,q(Hr). Since D is of class C2, −Ar satisfies

the maximal regularity property (see section 1.3). Moreover, DAr = Lr(D) and since v0 ∈ DAr ,

−Arv0 + h̃(0) ∈ E1−1/q,q, Corollary 1.23 and Lemma 1.25 prove the existence and uniqueness

of the solution v ∈ W 2,q(Hr) ∩ W 1,q(DAr). The estimates of Corollary 1.23, Lemma 1.25 and
Remark 1.20 ensure the existence of a constant C such that for (h, v0, τ0) ∈ Y , g ∈ W 1,q(W 1,r)

‖v‖W 2,q(Lr) + ‖v‖W 1,q(DAr ) ≤ C
(
‖h, v0, τ0‖Y + ‖g‖W 1,q(W 1,r)

)
.

Because of the regularity of D, the graph norm ‖.‖DAr
is equivalent to the whole norm ‖.‖W 2,r ,

thus there exists a constant C such that

(2.28) ‖v‖W 2,q(Lr) + ‖v‖W 1,q(W 2,r) ≤ C
(
‖h, v0, τ0‖Y + ‖g‖W 1,q(W 1,r)

)
.

Going back to the extra-stress, equation (2.26), since g + ε(v) ∈ W 1,q(W 1,r), Remark 1.20
ensures that k ∗ (g + ε(v)) ∈ W 2,q(W 1,r) and there exists a constant C such that

‖k ∗ (g + ε(v))‖W 2,q(W 1,r) ≤ C
(
‖g‖W 1,q(W 1,r) + ‖v‖W 1,q(W 2,r)

)
.
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It remains to use (2.26) to obtain the existence and uniqueness of τ ∈ W 2,q(W 1,r). Moreover
there exists a constant C such that

(2.29) ‖τ‖W 2,q(W 1,r) ≤ C
(
‖h, v0, τ0‖Y + ‖g‖W 1,q(W 1,r)

)
.

Collecting the estimations (2.28) and (2.29) we obtain (2.25). �

Proof. (of Theorem 2.3, part ii)) The implicit function theorem is applied to (2.19).
From Corollary 2.13, F is well defined and analytic, F (0, 0) = 0. Moreover, from Lemma
2.14 DxF (0, 0) is an isomorphism from X to Z. Therefore, the implicit function theorem (see
[BT03, Theorem 4.5.4 chapter 4 p. 56]) can be applied. Thus there exists δ0 > 0 and ϕ : Y → X
analytic such that for y := (Prf, u0, σ0) ∈ Y with ‖y‖Y < δ0, we have F (y, ϕ(y)) = 0. �

A brief explanation follows of how the same arguments can be used to prove parts i), iii)
and iv) of Theorem 2.3.

The proof of part i) is very similar to the one presented hereabove. Indeed, it suffices to use
the spaces

Y :=
{
(Prf, u0, σ0), such that (f, u0, σ0) ∈ Lq(Lr) × E1−1/q,q × W 1,r},

X := W 1,q(Hr) ∩ Lq(DAr) × W 1,q(W 1,r),

Z := Lq(W 1,r) × Y

and to use Corollary 1.23 in order to prove the existence and uniqueness of the function v
solution of (2.27). Concerning part iii), the spaces

Y :=
{
(Prf, u0, σ0), such that (f, u0, σ0) ∈ hμ(Lr) ×DAr × W 1,r

and − ηsAru0 + Prf(0) + Pr∇ · σ0 ∈ DAr

Eμ,∞
}
,

X := h1+μ(Hr) ∩ hμ(DAr) × h1+μ(W 1,r),

Z := hμ(W 1,r) × Y

will be used. Moreover, in order to prove the existence and uniqueness of the function v solution
of (2.27), Lemma 1.24 will be used. Finally, the link between parts i) and ii) is the same as
between parts iii) and iv). So the arguments presented in part ii) for little Hölder spaces can
be extended in order to obtain more regularity in time.

Remark 2.15. Part i) of Theorem 2.3 is compatible with Theorem 9.2 of [FCGO02],
in which the convective terms have been taken into account. Moreover, if 2/q + d/r < 1,
it follows that Lq(DAr) ∩ W 1,q(Hr) ⊂> C0(C1) and thus ∇u ∈ C0([0, T ] × D) which implies
(u · ∇)u ∈ Lq(Lr). Therefore, Theorem 2.3 part i) still holds when the convective term (u · ∇)u
is added to the momentum equation (2.1) or (2.12). However, since (u · ∇)σ �∈ W 1,q(W 1,r), the
convective term (u · ∇)σ can not be added to (2.13) in the present analysis.

Remark 2.16. Since

‖(u · ∇)u‖W 1,q(Lr) ≤ C
(
‖u‖W 1,q(DAr ) + ‖u‖W 2,q(Hr)

)
,

then Theorem 2.3 part ii) still holds if the convective term (u ·∇)u is added to (2.12). However,
since (u · ∇)σ �∈ W 2,q(W 1,r), the convective term (u · ∇)σ can not be added to (2.13) in the
present analysis.
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2.2.2. Proof of Theorem 2.5. This result is obtained using the fully nonlinear theory
for parabolic problems which can be found in [Lun95]. More precisely, Theorem 8.1.1 page 290
will be used for problem (2.12)-(2.15) that can be rewritten as follows

ẋ(t) = G(t, x(t)), t > 0, x(0) = x0,

where x := (u, σ), x0 := (u0, σ0) and G : [0, T ] ×DAr × W 1,r → Hr × W 1,r is defined by

G(t, x) :=

⎛
⎜⎝ −ηs

ρ
Ar G1

G2 − 1

λ
Id

⎞
⎟⎠x +

⎛
⎝ 1

ρ
Prf(t)

Ŝ(x)

⎞
⎠ .

Hereabove, G1 ∈ L(W 1,r;Hr) and G2 ∈ L(DAr , W
1,r) are defined by

G1σ :=
1

ρ
Pr∇ · σ, G2u :=

2ηp

λ
ε(u)

whilst Ŝ : DAr × W 1,r → W 1,r is defined by

Ŝ(u, σ) := (∇u)σ + σ(∇u)T .

Lemma 2.17. The application Ŝ : DAr×W 1,r → W 1,r is well defined and analytic. Moreover,
G : [0, T ] ×DAr × W 1,r → Hr × W 1,r is continuous with respect to (t, x).

Proof. The same arguments as provided in Lemma 2.10 and Remark 2.12 in the previous
subsection can be used to ensure Ŝ : DAr × W 1,r → W 1,r is well defined and analytic. The
continuity of G needs to be proved. In order to simplify the notations, the linear part of G is
introduced, namely L ∈ L(DAr × W 1,r,Hr × W 1,r) defined by

L :=

⎛
⎜⎝ −ηs

ρ
Ar G1

G2 − 1

λ
Id

⎞
⎟⎠ .

Fix (t, x) ∈ (0, T ) × DAr × W 1,r and let {tn}n≥0 ⊂ (0, T ), {xn}n≥0 ⊂ DAr × W 1,r such that
tn → t and xn → x when t goes to infinity. Therefore,

‖G(t, x) − G(tn, xn)‖Lr×W 1,r

≤ ‖L(x − xn)‖Lr×W 1,r + ‖1

ρ
(Prf(t) − Prf(tn))‖Lr + ‖Ŝ(x) − Ŝ(xn)‖W 1,r .

Thus, since f ∈ Cμ(Lr) and Ŝ is continuous from DAr × W 1,r to W 1,r, it follows

‖G(t, x) − G(tn, xn)‖Lr×W 1,r

≤ ‖L‖L(DAr×W 1,r,Hr×W 1,r)‖x−xn‖W 2,r×W 1,r+C
(
‖Prf‖Cμ(Lr) |t − tn |μ + ‖x − xn‖W 2,r×W 1,r

)
.

Hence
‖G(t, x) − G(tn, xn)‖Lr×W 1,r → 0 when n → ∞.

�

The crucial point in order to prove Theorem 2.5 is

(2.30)

{
for t ∈ [0, T ] and x ∈ DAr × W 1,r the Fréchet derivative DxG(t, x)
is the generator of an analytic semi-group.

The above property will be a consequence of a result by S. B. Angenent [Ang90].

Lemma 2.18. For t ∈ [0, T ] and x ∈ DAr × W 1,r the Fréchet derivative DxG(t, x) is the
generator of an analytic semi-group.
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Proof. Let x := (u, σ) ∈ DAr × W 1,r. In order to characterize the Fréchet derivative
DxG(t, x), t ∈ [0, T ], define the operators Su ∈ L(W 1,r, W 1,r) and Sσ ∈ L(DAr , W

1,r) by

Suτ := (∇u)τ + τ∇u, ∀τ ∈ W 1,r

and

Sσv := (∇v)σ + σ∇v, ∀v ∈ DAr .

Lemma 2.10 ensures Sσ ∈ L(DAr , W
1,r) and Su ∈ L(W 1,r, W 1,r). Using these notations, we

obtain for t ∈ [0, T ] and x ∈ DAr × W 1,r

(2.31) DxG(t, x) =

⎛
⎜⎝ −ηs

ρ
Ar G1

G2 + Sσ − 1

λ
Id + Su

⎞
⎟⎠ ,

and since G1 ∈ L(W 1,r,Hr), G2 ∈ L(DAr , W
1,r), then

DxG(t, x) ∈ L(DAr ⊗ W 1,r,Hr ⊗ W 1,r).

Finally, since −Ar : DAr → Hr is the generator of an analytic semi-group (see chapter 1),
Lemma 2.6 p. 98 (part (a)) of [Ang90] concludes the proof. �

Theorem 2.5 can now be proven.

Proof. (of Theorem 2.5) Apply Theorem 8.1.1 p. 290 of [Lun95] with u := x0 := (u0, σ0),

t0 = 0, t = 0 and O = DAr × W 1,r. Since DAr × W 1,r = Hr × W 1,r, for x0 ∈ DAr × W 1,r we

have G(0, x0) ∈ DAr × W 1,r. Thus it remains to check

ı) property (2.30) is satisfied,
ıı) for t ∈ [0, T ] and x ∈ DAr×W 1,r, the graph norm of the operator DxG(t, x) is equivalent

to the norm ‖.‖W 2,r×W 1,r ,
ııı) (t, x) �→ G(t, x) is continuous with respect to (t, x), and it is Fréchet differentiable with

respect to x,
ıv) for x := (u, σ) ∈ DAr × W 1,r there are R = R(x), L = L(x), K = K(x) > 0 verifying

‖DxG(t, x) − DxG(t, z)‖L(DAr×W 1,r,Hr×W 1,r) ≤ L‖x − z‖W 2,r×W 1,r ,

‖G(t, x) − G(s, x)‖Lr×W 1,r + ‖DxG(t, x) − DxG(s, x)‖L(DAr×W 1,r,Hr×W 1,r) ≤ K |t − s |μ ,

for t, s ∈ [0, T ], x, z ∈ B(x, R) ⊂ DAr × W 1,r.

Relation ı) is satisfied by using Lemma 2.18. Property ıı) is satisfied since W 1,r ⊂> C0 (see
section 1.1). The application G is continuous by Lemma 2.17. The Fréchet derivative is given
by (2.31) and is well defined. Finally, iv) may be proved as follow. Let x := (u, σ), z := (v, τ)
and z̃ := (w, ξ) all belonging to DAr ×W 1,r, again using the continuous embedding W 1,r ⊂> C0

it follows that

‖DxG(t, x)z̃ − DxG(t, z)z̃‖Lr×W 1,r = ‖DxŜ(x)z̃ − DxŜ(z)z̃‖Lr×W 1,r

= ‖∇(u − v)ξ + ξ(∇(u − v))T + ∇w(σ − τ) + (σ − τ)(∇w)T ‖W 1,r

≤ C‖z̃‖W 2,r×W 1,r‖x − z‖W 2,r×W 1,r ,

where C is independent of u and σ. Moreover, for t, s ∈ [0, T ] and x ∈ DAr × W 1,r

DxG(t, x) = DxG(s, x).

Hence, since f ∈ Cμ(Lr), we have for t, s ∈ [0, T ] and x ∈ DAr × W 1,r

‖G(t, x) − G(s, x)‖Lr×W 1,r = ‖1

ρ
(Prf(t) − Prf(s))‖Lr ≤ C |t − s |μ ,
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where C is independent of t, s and x. Relations ı) − ıv) ensure the existence of 0 < T∗ < T
such that there exists a solution

x ∈ C0([0, T∗],DAr × W 1,r) ∩ C1([0, T∗],Hr × W 1,r)

of (2.12)-(2.15). �

2.2.3. Other deterministic models. The existence results presented in this section still
hold when considering more realistic constitutive equations for the extra-stress tensor σ. This is
the case of the simplified Giesekus [Gie82] and Phan-Thien Tanner [PTT77] models, respec-
tively defined by

σ + λ

(
∂σ

∂t
− (∇u)σ − σ(∇u)T

)
+ α

λ

ηp
σσ = 2ηpε(u),

σ + λ

(
∂σ

∂t
− (∇u)σ − σ(∇u)T

)
+ ε

λ

ηp
tr(σ)σ = 2ηpε(u),

where α and ε are given positive parameters.

2.3. Existence of the finite element approximation and a priori error estimates

In this section it will be assumed that D is a convex polygon, that

2 ≤ q < ∞, 2 = d < r < ∞
and that the results presented in the previous section still hold when D is a convex polygon (see
Remark 2.9). Let

Y := Lq(Lr) × E1−1/q,q × W 1,r,

X := W 1,q(Lr) ∩ Lq(W 2,r) × W 1,q(W 1,r),

be the data and solution spaces, respectively. According to Theorem 2.3 part i), Corollary 2.4
and Remark 2.9, it follows that if y := (f, u0, σ0) ∈ Y is sufficiently small, then there exists a
unique solution (u(y), σ(y), p(y)) of (2.1)-(2.6), the mapping

y �→
(
u(y), σ(y), p(y)

)
being analytic (therefore continuous).

In order to prove that the solution of the nonlinear finite element discretization (2.11) exists
and converges to that of (2.1)-(2.6), Xh ⊂ X is introduced and defined by

Xh := L2(Vh) × L∞(Mh)

equipped with the norm || · ||Xh
defined for xh = (uh, σh) ∈ Xh by

‖xh‖2
Xh

:= 2ηs

∫ T

0
‖ε(uh(t))‖2

L2(D)dt +
λ

4ηp
sup

t∈[0,T ]
‖σh(t)‖2

L2(D).

Then, rewrite the solution of (2.11) as the following fixed point problem. Given y := (f, u0, σ0) ∈
Y , find xh := (uh, σh) ∈ Xh such that

(2.32) xh = Th

(
y, S(xh)

)
,

where S is still defined as in (2.18) but has been extended to the larger space

S : L2(H1) × L∞(L2) → L2(L2).
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The operator Th is the semi-discrete time-dependent three fields Stokes problem defined by

Th : Y × L2(L2) → Xh

(f, u0, σ0, g) → Th(f, u0, σ0, g) := (ũh, σ̃h)

where for t ∈ (0, T )

(ũh, σ̃h, p̃h) : t �−→ (ũh(t), σ̃h(t), p̃h(t)) ∈ Vh × Mh × Qh

satisfies ũh(0) = ihu0, σ̃h(0) = ihσ0 and

(2.33) ρ
(∂ũh

∂t
, vh

)
+ 2ηs

(
ε(ũh), ε(vh)

)
−
(
p̃h,∇ · vh

)
+
(
σ̃h, ε(vh)

)
−
(
f, vh

)
+
(
∇·ũh, qh

)
+
∑

K∈Th

αh2
K

2ηp

(
∇p̃h,∇qh

)
K

+
1

2ηp

(
σ̃h, τh

)
+

λ

2ηp

(∂σ̃h

∂t
, τh

)
−
(
ε(ũh), τh

)
−
(
g, τh

)
= 0

for all (vh, τh, qh) ∈ Vh × Mh × Qh, a.e in (0, T ).
Note that, given y := (f, u0, σ0) ∈ Y sufficiently small, the solution

x(y) := (u(y), σ(y)) ∈ X of the continuous Oldroyd-B problem (2.1)-(2.6) also satisfies a fixed
point problem, namely

(2.34) x(y) = T

(
y, S(x(y))

)
.

Here the operator T is the time-dependent three fields Stokes problem defined by

T : Y × Lq(W 1,r) → X

(f, u0, σ0, g) → T(f, u0, σ0, g) := (ũ, σ̃),

where (ũ, σ̃, p̃) satisfy

ρ
∂ũ

∂t
− 2ηs ∇ · ε(ũ) + ∇p̃ −∇ · σ̃ = f in D × (0, T ),(2.35)

∇ · ũ = 0 in D × (0, T ),(2.36)

1

2ηp
σ̃ +

λ

2ηp

∂σ̃

∂t
− ε(ũ) = g in D × (0, T ),(2.37)

ũ(·, 0) = u0 in D,(2.38)

σ̃(·, 0) = σ0 in D,(2.39)

ũ = 0 on ∂D × (0, T ).(2.40)

The following stability and convergence result holds.

Lemma 2.19. The operator Th is well defined and uniformly bounded with respect to h :
there exists C1 > 0 such that for all h > 0 and for all (f, u0, σ0, g) ∈ Y × L2(L2) it holds

(2.41) ||Th(f, u0, σ0, g)||Xh
≤ C1

(
||f, u0, σ0||Y + ||g||L2(L2)

)
.

Moreover, there exists C2 > 0 such that for all h > 0 and for all (f, u0, σ0, g) ∈ Y ×Lq(W 1,r) it
holds

(2.42) ||(T − Th)(f, u0, σ0, g)||Xh
≤ C2h

(
||f, u0, σ0||Y + ||g||Lq(W 1,r)

)
.
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Proof. A priori, (2.33) has to be understood in a weak sense with respect to the time
variable: find (ũh, σ̃h, q̃h) ∈ Xh such that

− ρ

∫ T

0

(
ũh,

∂vh

∂t

)
+ ρ
(
u0, vh(0)

)
+ 2ηs

∫ T

0

(
ε(ũh), ε(vh)

)
−
∫ T

0

(
p̃h,∇ · vh

)
+

∫ T

0

(
σ̃h, ε(vh)

)
−
∫ T

0

(
f, vh

)
+

∫ T

0

(
∇ · ũh, qh

)
+
∑

K∈Th

αh2
K

2ηp

∫ T

0

(
∇p̃h,∇qh

)
K

+
1

2ηp

∫ T

0

(
σ̃h, τh

)
− λ

2ηp

∫ T

0

(
σ̃h,

∂τh

∂t

)
+

λ

2ηp

(
σ0, τh(0)

)
−
(
ε(ũh), τh

)
− λ

2ηp

∫ T

0

(
g, τh

)
= 0,

for all vh ∈ H1(Vh) such that vh(T ) = 0, for all τh ∈ H1(Mh) such that τh(T ) = 0 and for all
qh ∈ L2(Qh). Problem (2.33) has a unique solution (ũh, σ̃h, p̃h) ∈ Xh. Indeed, when writing
(ũh, p̃h, σ̃h) with respect to a finite basis of Vh × Qh × Mh, problem (2.33) can be expressed
as a linear differential system. The degrees of freedom corresponding to the pressure can be
eliminated. By a classical result of ODE, the resulting differential system has a unique solution,
each components being in H1(0, T ).

In order to prove (2.41), choose vh = ũh(t), τh = σ̃h(t), qh = p̃h(t) in (2.33), integrate from
t = 0 to s with 0 ≤ s ≤ T and obtains

ρ

2
‖ũh(s)‖2

L2(D) +
λ

4ηp
‖σ̃h(s)‖2

L2(D) + 2ηs

∫ s

0
‖ε(ũh)‖2

L2(D)

+
∑

K∈Th

αh2
K

2ηp

∫ s

0
‖∇p̃h‖2

L2(K) +
1

2ηp

∫ s

0
‖σ̃h‖2

L2(D)

=
ρ

2
‖ũh(0)‖2

L2(D) +
λ

4ηp
‖σ̃h(0)‖2

L2(D) +

∫ s

0
(f, ũh) +

∫ s

0
(g, σ̃h) .

Using Young and Poincaré inequalities, there exists a constant C such that

ρ

2
‖ũh(s)‖2

L2(D) +
λ

4ηp
‖σ̃h(s)‖2

L2(D) + ηs

∫ s

0
‖ε(ũh)‖2

L2(D)

+
∑

K∈Th

αh2
K

2ηp

∫ s

0
‖∇p̃h‖2

L2(K) +
λ

2ηp

∫ s

0
‖σ̃h‖2

L2(D)

≤ ρ

2
‖ũh(0)‖2

L2(D) +
λ

4ηp
‖σ̃h(0)‖2

L2(D) + C

(∫ s

0
‖f‖2

L2(D) +

∫ s

0
‖g‖2

L2(D)

)
.

It suffices to note that Lemma 1.27 implies

‖ũh(0)‖L2(D) = ‖ihu0‖L2(D) ≤ ‖u0‖L2(D) ≤ C‖u0‖E1−1/q,q
,

‖σ̃h(0)‖L2(D) = ‖ihσ0‖L2(D) ≤ ‖σ0‖L2(D) ≤ C‖σ0‖W 1,r ,

to obtain (2.41).
The convergence result (2.42) is now proved. Let

eu := ũ − ũh = Πu + Cu, Πu := ũ − ihũ, Cu := ihũ − ũh,

eσ := σ̃ − σ̃h = Πσ + Cσ, Πσ := σ̃ − ihσ̃, Cσ := ihσ̃ − σ̃h,

ep := p̃ − p̃h = Πp + Cp, Πp := p̃ − ihp̃, Cp := ihp̃ − p̃h,

where (ũh, p̃h, σ̃h) solve (2.33) and (ũ, p̃, σ̃) solve (2.35)-(2.40). The triangle inequality leads to

‖eu, eσ‖Xh
≤ ‖Πu, Πσ‖Xh

+ ‖Cu, Cσ‖Xh
.



34 2. MATHEMATICAL AND NUMERICAL ANALYSIS OF THE OLDROYD-B MODEL

Using classical interpolation results, we have

‖Πu, Πσ‖Xh
≤ Ch‖u, σ‖X .

The norm ‖Cu, Cσ‖Xh
is now estimated. The solution of (2.35)-(2.40) satisfies

ρ
(∂ũ

∂t
, vh

)
+ 2ηs

(
ε(ũ), ε(vh)

)
−
(
p̃,∇ · vh

)
+
(
σ̃, ε(vh)

)
−
(
f, vh

)
+
(
∇ · ũ, qh

)
+

1

2ηp

(
σ̃, τh

)
+

λ

2ηp

(∂σ̃

∂t
, τh

)
−
(
ε(ũ), τh

)
−
(
g, τh

)
= 0

for all (vh, τh, qh) ∈ Vh × Mh × Qh. Subtracting (2.33) from the above equation, it follows that

(2.43) ρ
(∂eu

∂t
, vh

)
+ 2ηs

(
ε(eu), ε(vh)

)
−
(
ep,∇ · vh

)
+
(
eσ, ε(vh)

)
+
(
∇ · eu, qh

)
+
∑

K∈Th

αh2
K

2ηp

(
∇ep −∇p̃,∇qh

)
K

+
1

2ηp

(
eσ, τh

)
+

λ

2ηp

(∂eσ

∂t
, τh

)
−
(
ε(eu), τh

)
= 0,

for all (vh, τh, qh) ∈ Vh × Mh × Qh. On the other hand, from the definition of Cu, Cσ and Cp,
we have

(2.44) ρ
(∂Cu

∂t
, Cu

)
+ 2ηs

(
ε(Cu), ε(Cu)

)
−
(
Cp,∇ · Cu

)
+
(
Cσ, ε(Cu)

)
+
(
∇ · Cu, Cp

)
+
∑

K∈Th

αh2
K

2ηp

(
∇Cp,∇Cp

)
K

+
1

2ηp

(
Cσ, Cσ

)
+

λ

2ηp

(∂Cσ

∂t
, Cσ

)
−
(
ε(Cu), Cσ

)

= ρ
(∂(eu − Πu)

∂t
, Cu

)
+ 2ηs

(
ε(eu − Πu), ε(Cu)

)
−
(
ep − Πp,∇ · Cu

)
+
(
eσ − Πσ, ε(Cu)

)
+
(
∇ · (eu − Πu), Cp

)
+
∑

K∈Th

αh2
K

2ηp

(
∇(ep − Πp),∇Cp

)
K

+
1

2ηp

(
(eσ − Πσ), Cσ

)
+

λ

2ηp

(∂(eσ − Πσ)

∂t
, Cσ

)
−
(
ε(eu − Πu), Cσ

)
.

From the definition of ih (the L2 projection onto the finite element spaces), it is clear that(∂Πu

∂t
, Cu

)
= 0,

(
Πσ, Cσ

)
= 0,

(∂Πσ

∂t
, Cσ

)
= 0,

so that, using (2.43), (2.44) yields
(2.45)

ρ
(∂Cu

∂t
, Cu

)
+ 2ηs

(
ε(Cu), ε(Cu)

)
+
∑

K∈Th

αh2
K

2ηp

(
∇Cp,∇Cp

)
K

+
1

2ηp

(
Cσ, Cσ

)
+

λ

2ηp

(∂Cσ

∂t
, Cσ

)
= 2ηs

(
ε(Πu), ε(Cu)

)
+
(
Πp,∇ · Cu

)
−
(
Πσ, ε(Cu)

)
−
(
∇ · (Πu), Cp

)
−
∑

K∈Th

αh2
K

2ηp

(
∇Πp,∇Cp

)
K

+
(
ε(Πu), Cσ

)
+
∑

K∈Th

αh2
K

2ηp

(
∇p̃,∇Cp

)
K

= I1 + · · · + I7.
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It now remains to bound the terms I1, ..., I7 in the above equality. Cauchy-Schwarz and Young’s
inequalities lead to

I1 = 2ηs

(
ε(Πu), ε(Cu)

)
≤ 2ηs||ε(Πu)||L2(D)||ε(Cu)||L2(D)

≤ 3ηs||ε(Πu)||2L2(D) +
ηs

3
||ε(Cu)||2L2(D).

Similarly,

I2 =
(
Πp,∇ · Cu

)
≤ 3

4ηs
||Πp||2L2(D) +

ηs

3
||∇ · Cu||2L2(D)

≤ 3

4ηs
||Πp||2L2(D) +

ηs

3
||ε(Cu)||2L2(D),

and

I3 = −
(
Πσ, ε(Cu)

)
≤ 3

4ηs
||Πσ||2L2(D) +

ηs

2
||ε(Cu)||2L2(D).

An integration by parts yields, since Πu = 0 on ∂D,

I4 =
(
∇ · (Πu), Cp

)
= −

(
Πu,∇Cp

)
= −

∑
K∈Th

(
Πu,∇Cp

)
K

≤
∑

K∈Th

αh2
K

12ηp
||∇Cp||2L2(K) +

∑
K∈Th

3ηp

αh2
K

||Πu||2L2(K).

Again, Cauchy-Schwarz and Young’s inequalities yield

I5 = −
∑

K∈Th

αh2
K

2ηp

(
∇Πp,∇Cp

)
K

≤
∑

K∈Th

αh2
K

12ηp
||∇Cp||2L2(K) +

3αh2

4ηp
||∇Πp||2L2(D),

and

I6 =
(
ε(Πu), Cσ

)
≤ ηp||ε(Πu)||2L2(D) +

1

4ηp
||Cσ||2L2(D).

Finally, we obtain

I8 =
∑

K∈Th

αh2
K

2ηp

(
∇p̃,∇Cp

)
K

≤
∑

K∈Th

αh2
K

12ηp
||∇Cp||2L2(K) +

3αh2

4ηp
‖∇p̃‖2

L2(D) .

The above estimates of I1, ..., I7 in (2.45) yield

ρ
(∂Cu

∂t
, Cu

)
+

1

2
2ηs

(
ε(Cu), ε(Cu)

)
+

1

2

∑
K∈Th

αh2
K

2ηp

(
∇Cp,∇Cp

)
K

+
1

4ηp

(
Cσ, Cσ

)
+

λ

2ηp

(∂Cσ

∂t
, Cσ

)

≤ C
(
||ε(Πu)||2L2(D) + ||Πp||2L2(D) + ||Πσ||2L2(D)

+
∑

K∈Th

1

h2
K

‖Πu‖2
L2(K) + h2||∇Πp||2L2(D) + h2||∇p̃||2L2(D)

)
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where C depends only on ρ, ηs, ηp and α. Time integration for 0 ≤ s ≤ T yields

ρ

2
‖Cu(s)‖2

L2(D) + ηs

∫ s

0
‖ε(Cu)‖2

L2(D) +
λ

4ηp
‖Cσ(s)‖2

L2(D)

≤ ρ

2
‖Cu(0)‖2

L2(D) +
λ

4ηp
‖Cσ(0)‖2

L2(D)

+ C

∫ s

0

(
||ε(Πu)||2L2(D) + ||Πp||2L2(D) + ||Πσ||2L2(D)

+
∑

K∈Th

1

h2
K

‖Πu‖2
L2(K) + h2||∇Πp||2L2(D) + h2||∇p̃||2L2(D).

Using standard interpolation results, we obtain

‖Cu, Cσ‖2
Xh

≤ Ch2
(
‖ũ, σ̃‖2

X + ‖p̃‖2
Lq(W 1,r) + ‖∇u0‖2

L2(D) + ‖∇σ0‖2
L2(D)

)
,

where C does not depend on h, f , u0, σ0 and g. Then, using Lemma 1.27, we have

‖∇u0‖2
L2(D) ≤ C‖u0‖2

E1−1/q,q
,

where C does not depend on h, f , u0, σ0 and g. Moreover, using the fact that the mapping

(f, u0, σ0, g) �→ (ũ, σ̃, p̃)

is continuous from Y × Lq(W 1,r) to Lq(W 2,r) × Lq(W 1,r) × Lq(W 1,r), one obtains

||Cu, Cσ||Xh
≤ Ch

(
||f, u0, σ0||Y + ||g||Lq(W 1,r)

)
,

which concludes the proof. �

The goal is now to prove that (2.32) has a unique solution converging to that of (2.34).
For this purpose, use, as in [PR01], an abstract framework and write (2.32) as the following
problem : given y := (f, u0, σ0) ∈ Y , find xh := (uh, σh) ∈ Xh such that

(2.46) Fh(y, xh) = 0,

where Fh : Y × Xh → Xh is defined by

(2.47) Fh(y, xh) := xh − Th

(
y, S(xh)

)
.

In order to prove existence and convergence of a solution to (2.46), use Theorem 2.1 of [CR97].
The mapping Fh : Y × Xh → Xh is C1. Moreover, it is necessary to prove that the scheme is
consistent, that DxFh has bounded inverse at ihx - recall that ih is the L2(D) projection onto
the finite element space, x is the solution of (2.34) - and that DxFh is locally Lipschitz at ihx.

Lemma 2.20. Let δ0 be as in Theorem 2.3 part i) and assume Remark 2.9. Let y :=
(f, u0, σ0) ∈ Y with ‖y‖Y ≤ δ0 and let x(y) = (u(y), σ(y)) ∈ X be the solution of (2.34). Then,
there exists a constant C1 such that for y ∈ Y with ‖y‖Y ≤ δ0, for 0 < h ≤ 1, it holds

(2.48) ‖Fh(y, ihx(y))‖Xh
≤ C1h

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
.

Moreover, there exists a constant C2 such that for y ∈ Y with ‖y‖Y ≤ δ0, for 0 < h ≤ 1, for
z ∈ Xh it holds

(2.49) ‖DxFh(y, ihx(y)) − DxFh(y, z)‖L(Xh) ≤
C2

h
‖ihx(y) − z‖Xh

.
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Proof. Using (2.34) and (2.47), it follows that

Fh(y, ihx) = ihx − x − Th(y, S(ihx)) + T(y, S(x))

= ihx − x + Th(0, S(x) − S(ihx)) + (T − Th)(y, S(x)),

so that,

1

3
‖Fh(y, ihx)‖2

Xh
≤ ‖ihx − x‖2

Xh
+ ‖Th(0, S(x) − S(ihx))‖2

Xh
+ ‖(T − Th)(y, S(x))‖2

Xh
.

Using standard interpolation results for the first term of the right hand side, Lemma 2.19 for
the second and third terms, it follows that

(2.50) ‖Fh(y, ihx)‖2
Xh

≤ C
(
h2‖x‖2

X + ‖S(x) − S(ihx)‖2
L2(L2) + h2‖y‖2

Y + h2‖S(x)‖2
Lq(W 1,r)

)
,

C being independent of h and y. Proceeding as in Lemma 2.2, it follows that

(2.51) ‖S(x)‖2
Lq(W 1,r) ≤ C‖x‖4

X ,

C being independent of h and y. On the other hand, we also have

2ηp

λ

(
S(x) − S(ihx)

)
= ∇u σ + σ(∇u)T − (∇ihu)ihσ − ihσ (∇ihu)T

= ∇(u − ihu)σ + (∇ihu)(σ − ihσ) + σ (∇(u − ihu))T + (σ − ihσ)(∇ihu)T ,

so that, using a Cauchy-Schwarz inequality

‖S(x) − S(ihx)‖2
L2(L2) ≤ C‖x − ihx‖2

Xh

(
‖σ‖2

L∞(L∞) + ‖∇ihu‖2
L2(L∞)

)
,

C being independent of h and y. Standard interpolation results lead to

‖∇ihu‖L∞ ≤ ‖∇u‖L∞ + ‖∇(ihu − u)‖L∞ ≤ C‖u‖W 2,r ,

C being independent of h and y. Thus, using again standard interpolation results, we have

(2.52) ‖S(x) − S(ihx)‖2
L2(L2) ≤ Ch2‖x‖4

X ,

C being independent of h and y. Finally, (2.51) and (2.52) in (2.50) yields (2.48).
Relation (2.49) is now proved. Let z := (v, τ) ∈ Xh, let z̃ := (ṽ, τ̃) ∈ Xh, we have(

DxFh(y, ihx) − DxFh(y, z)
)
z̃ = −Th

(
0, (DS(ihx) − DS(z))z̃

)
.

Using Lemma 2.19 we obtain

(2.53) ‖ (DxFh(y, ihx) − DxFh(y, z)) z̃‖Xh
≤ C‖(DS(ihx) − DS(z))z̃‖L2(L2),

C being independent of h and y. It follows that

2ηp

λ

(
DS(ihx) − DS(z)

)
z̃ = (∇(ihu − v))τ̃ + τ̃(∇(ihu − v))T

+ ∇ṽ(ihσ − τ) + (ihσ − τ)(∇ṽ)T .

Then, using Cauchy-Schwarz inequality, there exists a constant C independent of h and y such
that

‖(DS(ihx)−DS(z))z̃‖L2(L2) ≤ C
(
‖∇(ihu−v)‖L2(L∞)‖τ̃‖L∞(L2) +‖∇ṽ‖L2(L∞)‖ihσ−τ‖L∞(L2)

)
.

A classical inverse inequality yields

‖(DS(ihx)−DS(z))z̃‖L2(L2) ≤
C

h

(
‖∇(ihu− v)‖L2(L2)‖τ̃‖L∞(L2) + ‖∇ṽ‖L2(L2)‖ihσ− τ‖L∞(L2)

)
,
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so that we finally obtain

‖(DS(ihx) − DS(z))z̃‖L2(L2) ≤
C

h
‖ihx − z‖Xh

‖z̃‖Xh
.

This last inequality in (2.53) yields (2.49). �

Before proving existence of a solution to (2.46) it is necessary to check that DxFh(y, ihx) is
invertible.

Lemma 2.21. Let δ0 be as in Theorem 2.3 part i) and assume Remark 2.9. Let y :=
(f, u0, σ0) ∈ Y with ‖y‖Y ≤ δ0 and let x(y) := (u(y), σ(y)) ∈ X be the solution of (2.34). Then,
there exists 0 < δ1 ≤ δ0 such that for y ∈ Y with ‖y‖Y ≤ δ1, for 0 < h ≤ 1, it holds

‖DxFh(y, ihx(y))−1‖L(Xh) ≤ 2.

Proof. By definition of Fh, we have

DxFh(y, ihx) = I − Th(0, DS(ihx)),

so that it follows that

DxFh(y, ihx) = I − Gh with Gh := Th(0, DS(ihx)).

Proving that ‖Gh‖L(Xh) ≤ 1/2 for y sufficiently small will ensure that DxFh(y, ihx) is invertible
and

‖DxFh(y, ihx)−1‖L(Xh) ≤ 2.

Let z := (v, τ) ∈ Xh. Using Lemma 2.19 we have

‖Gh(z)‖Xh
≤ C1‖DS(ihx)z‖L2(L2),

C1 being independent of y and h. Using the same arguments as in the proof of Lemma 2.20, we
obtain

2ηp

λ
‖DS(ihx)z‖L2(L2) = ‖(∇ihu)τ + τ(∇ihu)T + (∇v)ihσ + ihσ(∇v)T ‖L2(L2)

≤ 2
(
‖∇ihu‖L2(L∞)‖τ‖L∞(L2) + ‖∇ihσ‖L∞(L∞)‖∇v‖L2(L2)

)
≤ C2

(
‖u‖L2(W 2,r)‖τ‖L∞(L2) + ‖∇v‖L2(L2)‖σ‖W 1,q(W 1,r)

)
,

C2 being independent of y and h. Hence,

‖Gh(z)‖Xh
≤ C3‖x‖X‖z‖Xh

,

where C3 is independent of y and h. From Corollary 2.4, the mapping y → x(y) is continuous,
thus if ||y||Y is sufficiently small it follows that ‖x‖X ≤ 1/(2C3) so that

‖Gh(z)‖Xh
≤ 1

2
‖z‖Xh

.

�

The existence of a solution to the finite element scheme (2.11) and convergence to the
solution of (2.1)-(2.6) can now be proved.

Theorem 2.22. Let δ0 be as in Theorem 2.3 part i) and assume Remark 2.9. Let y :=
(f, u0, σ0) ∈ Y with ‖y‖Y ≤ δ0 and let x(y) := (u(y), σ(y)) ∈ X be the solution of (2.34). Then,
there exists 0 < δ2 ≤ δ0 and ζ > 0 such that for y ∈ Y with ‖y‖Y ≤ δ2, for 0 < h ≤ 1,
there exists a unique xh(y) := (uh(y), σh(y)) in the ball of Xh centered at ihx(y) with radius ζh,
satisfying

Fh(y, xh(y)) = 0.
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Moreover, the mapping y �→ xh(y) is continuous and there exists C > 0 independent of h and y
such that the following a priori error estimate holds

(2.54) ‖x(y) − xh(y)‖Xh
≤ Ch.

Remark 2.23. The above Theorem still holds when the stabilization term in (2.11) is
replaced by ∑

K∈Th

αh2
K

2ηp

(
−∇ · (2ηsε(uh) + σh) + ∇ph − f,∇qh

)
K

,

provided 0 < α ≤ CI . Here CI is the largest constant satisfying the following inverse estimate

CI

∑
K∈Th

h2
K‖∇ · τh‖2

L2(K) ≤ ‖τh‖2
L2(D) ∀τh ∈ Mh.

Remark 2.24. Theorem 2.22 also holds when y := (f, u0, σ0) ∈ Y is sufficiently small, with
Y corresponding to Theorem 2.3 part iii) thus defined by

Y = {(f, u0, σ0) ∈ hμ(Lr) ×DAr × W 1,r such that − ηsAru0 + Prf(0) + Pr∇ · σ0 ∈ E1−1/q,q}.
In order to prove the above Theorem, the following abstract result will be used.

Lemma 2.25 (Theorem 2.1 in [CR97]). Let Y and Z be two real Banach spaces with norms
‖.‖Y and ‖.‖Z respectively. Let G : Y → Z be a C1 mapping and v ∈ Y be such that DG(v) ∈
L(Y ; Z) is an isomorphism. We introduce the notations

ε = ‖G(v)‖Z ,

γ = ‖DG(v)−1‖L(Y ;Z),

L(α) = sup
x∈B(v,α)

‖DG(v) − DG(x)‖L(Y ;Z),

with B(v, α) = {y ∈ Y ; ‖v − y‖Y ≤ α}, and we are interested in finding u ∈ Y such that

(2.55) G(u) = 0.

We assume that 2γL(2γε) ≤ 1. Then Problem (2.55) has a unique solution u in the ball B(v, 2γε)
and, for x ∈ B(v, 2γε), we have

‖x − u‖Y ≤ 2γ‖G(x)‖Z .

Proof of Theorem 2.22. Apply Lemma 2.25 with Y := Xh, Z := Xh, G := Fh and
v := ihx(y). According to Lemma 2.20 there exists a constant C1 independent of y and h such
that

ε = ‖Fh(y, ihx(y))‖Xh
≤ C1h

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
.

According to Lemma 2.21, for ‖y‖Y sufficiently small

γ = ‖DxFh(y, ihx(y))‖L(Xh) ≤ 2.

According to Lemma 2.20, there is a constant C2 independent of y and h such that

L(β) = sup
z∈B(ihx(y),β)

‖DFh(ihx(y)) − DFh(z)‖L(Xh) ≤
C2

h
β.

Hence, we have

2γL(2γε) ≤ 2.2
C2

h

(
2.2C1h

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

))

= 16C1C2

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
.
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Using the continuity of the mapping y �→ x(y), there exists 0 < δ2 ≤ δ0 such that for y ∈ Y
with ‖y‖Y ≤ δ2, then

‖y‖Y + ‖x(y)‖X + ‖x(y)‖2
X ≤ 1

32C1C2

so that 2γL(2γε) ≤ 1/2 < 1 and Lemma 2.25 applies. There exists a unique xh(y) in the ball
B(ihx(y), 2γε) such that

Fh(y, xh(y)) = 0

and we obtain

‖ihx(y) − xh(y)‖Xh
≤ 4C1h

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
≤ 4C1h

32C1C2
=

1

8C2
h.

It suffices to use the triangle inequality

‖x(y) − xh(y)‖Xh
≤ ‖x(y) − ihx(y)‖Xh

+ ‖ihx(y) − xh(y)‖Xh
,

and standard interpolation results to obtain (2.54). The fact that the mapping y �→ xh(y) is
continuous is as a direct consequence of the implicit function theorem used to prove Lemma
2.25. �



CHAPTER 3

Mathematical and numerical analysis of the Hookean dumbbells

model

The ideas of the previous chapter are now extended to a stochastic model. Limitations on
the regularity of the Brownian motion involve the use of particular function spaces. As in the
previous chapter, the convective terms are disregarded and the focus will be on a non-moving
domain. Existence on a fixed time interval is proved provided the data are small enough, using
the implicit function theorem and a maximum regularity property of type hμ for a three fields
Stokes problem. A finite element discretization in space is then proposed. Existence of the
numerical solution is proved for small data, as well as a priori error estimates.

3.1. The simplified Hookean dumbbells model and its finite elements

approximation in space

As in the previous chapter, D denotes a bounded, connected open set of R
d, d = 2 or 3 with

boundary ∂D of class C2, and let T > 0. Let (Ω,F ,P) be a complete filtered probability space.
The filtration Ft upon which the Brownian process B is defined is completed with respect to P
and is assumed to be right continuous on [0, T ] . Assume also that the space Ω is rich enough
to accommodate a random vector q0 : Ω → R

d such that

(3.1)

{
q0 is independent of B and (q0)i is independent of (q0)j , 1 ≤ i �= j ≤ d,

and IE(q0) = 0, IE(q0 ⊗ q0) = I.

In fact, q0 is an initial condition for the dumbbells elongation q which corresponds to the
equilibrium state since the conditions IE(q0) = 0 and IE(q0 ⊗ q0) = I lead to a vanishing initial
extra-stress. These conditions could be relaxed to yield constant initial stresses with respect to
the space variable x ∈ D. Refer to [RY94] for all notions related to stochastic processes.

Consider the following problem. Given initial conditions u0 : D → R
d, q0 : Ω → R

d

satisfying (3.1), a force term f : D × [0, T ] → R
d, constant solvent and polymer viscosities

ηs > 0, ηp > 0, a constant relaxation time λ > 0, find the velocity u : D × [0, T ] → R
d, the

pressure p : D × [0, T ] → R and the dumbbells elongation vector q : D × [0, T ] × Ω → R
d such

that

dq −
(

(∇u)q − 1

2λ
q

)
dt − 1√

λ
dB = 0 in D × (0, T ) × Ω,(3.2)

ρ
∂u

∂t
−∇ ·

(
2ηsε(u) +

ηp

λ
(IE(q ⊗ q) − I)

)
+ ∇p = f in D × (0, T ),(3.3)

∇ · u = 0 in D × (0, T ),(3.4)

u (., 0) = u0 in D,(3.5)

q(., 0, .) = q0 in D × Ω,(3.6)

u = 0 on ∂D × (0, T ).(3.7)

41
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Remark 3.1. Equations (3.2) and (3.6) are notations for

q(x, t, ω) − q0(t, ω) −
∫ t

0

(
(∇u(x, s))q(x, s, ω) − 1

2λ
q(x, s, ω)

)
ds − 1√

λ
B(t, ω) = 0,

where (x, t, ω) ∈ D × [0, T ] × Ω.

System (3.2)-(3.7) formally contains the simplified Oldroyd-B problem studied in the previ-

ous chapter. Indeed, using Îto’s formula, one obtains the variance V defined by

V := IE(q ⊗ q)

satisfies the deterministic equation

(3.8)
∂V

∂t
=

(
∇u − I

2λ

)
V + V

(
∇u − I

2λ

)T

+
1

λ
I in D × [0, T ],

see Problem 6.1 p.355 in [KS91]. Thus setting

(3.9) σ :=
ηp

λ
(V − I) ,

equation (3.8) corresponds to the constitutive equation of the simplified Oldroyd-B model with-
out convective terms

(3.10) σ + λ

(
∂σ

∂t
− (∇u)σ − σ(∇u)T

)
= 2ηpε(u), σ(0) = 0.

In Remark 3.14 the link between the solution of the Oldroyd-B problem seen in the previous
chapter and that of system (3.2)-(3.7) will be made precise from the mathematical viewpoint.

One of the difficulties of problem (3.2)-(3.7) is to deal with stochastic processes with value

in Banach spaces. Indeed in classical textbooks, Îto formula (see [RY94, Theorem 3.3, chapter
IV]), relation (3.8) as well as classical existence and uniqueness results for linear stochastic
differential equation (Theorem 2.1, chapter IX, in [RY94]) are not presented in this context.
Hence, we split the dumbbells elongation into two components

(3.11) q = qS + qD,

where qS : Ω × [0, T ] → R
d is the solution at equilibrium (that is to say when u = 0) and

obviously qD : Ω × [0, T ] × D → R
d is the discrepancy with respect to the equilibrium. The

stochastic process qS is an Ornstein-Uhlenbeck process (see [RY94]) satisfying

(3.12) dqS = − 1

2λ
qSdt +

1√
λ

dB, qS(0) = q0,

while the equation satisfied by qD

(3.13)
∂qD

∂t
= ∇u (qD + qS) − 1

2λ
qD, qD(0) = 0,

is a differential equation with a stochastic forcing term (∇u)qS .
In the previous chapter, it was proved that the extra-stress σ solution of the simplified

Oldroyd-B problem (2.1)-(2.6) was in spaces W 1,q(0, T ; W 1,r(D; Rd×d
sym)) or in spaces

h1+μ([0, T ];W 1,r(D; Rd×d
sym)). Since, according to [RY94] (Theorem 2.2 p. 26, Corollary 2.6 p 28

and Theorem 2.7 p. 29), a Brownian motion can not be expected in a more regular space than

Lγ(Ω; Cμ′
([0, T ])), μ′ < 1

2 and 2 ≤ γ < ∞, the use of Sobolev spaces in time is not appropriate.
Moreover, the reason for using little Hölder spaces is that in a stochastic context, it is more
convenient to deal with separable spaces and the spaces hk([0, T ];E) provided with the norm of
Cμ([0, T ];E) are separable Banach spaces if E is separable.
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Remark 3.2. In order to avoid confusion, one must recall that for 2 ≤ γ < ∞, 0 < μ < 1/2
and d < r < ∞, Lγ(hμ(W 1,r)) stands for

Lγ(Ω; hμ([0, T ];W 1,r(D; Rd))),

where D and [0, T ] are provided with the Lebesgue measure and Ω with the probability measure
P.

The implicit function theorem will be used to prove that (3.2)-(3.7) admits a unique solution

(3.14) u ∈ h1+μ(Lr) ∩ hμ(W 2,r ∩ H1
0 ), q ∈ Lγ(hμ(W 1,r)), p ∈ hμ(W 1,r ∩ L2

0),

with 2 ≤ γ < ∞, 0 < μ < 1/2 and d < r < ∞ whenever the data f , u0 are small enough in
appropriate spaces. It will be shown that hμ([0, T ];W 1,r(D)) ⊂ C([0, T ] × D), which implies,
in particular, that a process q ∈ Lγ(hμ(W 1,r)) has a continuous sample path for almost each
realization.

The finite element approximation in space for D a convex polygon in R
2 is now introduced.

For any h > 0, let Th be a decomposition of D into triangles K with diameter hK less than h,
regular in the sense of [CL91]. Let Vh, Rh and Qh be the finite element spaces for the velocity,
dumbbells elongation and pressure, respectively defined by :

Vh := {vh ∈ C0(Ω; Rd); vh |K∈ (P1)
d ∀K ∈ Th} ∩ H1

0 (Ω; Rd),

Rh := {rh ∈ C0(Ω; Rd); rh |K∈ (P1)
d ∀K ∈ Th},

Qh := {sh ∈ C0(Ω; R); sh |K∈ P1 ∀K ∈ Th} ∩ L2
0(Ω; R).

Denote ih the L2(D) projection onto Vh, Rh or Qh and consider the following stabilized finite
element discretization in space of (3.2)-(3.7). Given f , u0, q0 find

(t, ω) ∈ [0, T ] × Ω �→ (uh(t), qh(ω, t), ph(t)) ∈ Vh × Rh × Qh

such that uh(0) = ihu0, qh(0) = q0 and such that the following weak formulation holds in
(0, T ) × Ω :

(3.15) ρ
(∂uh

∂t
, vh

)
+ 2ηs

(
ε(uh), ε(vh)

)
−
(
ph,∇ · vh

)
+

ηp

λ

(
IE(qh ⊗ qh) − I, ε(vh)

)
−
(
f, vh

)
+
(
∇ · uh, sh

)
+
∑

K∈Th

αh2
K

2ηp
(∇ph,∇sh)K + (qh(t), rh) − (1, rh)q0

+

(∫ t

0

(
1

2λ
qh(k) − (∇uh(k))qh(k)

)
dk, rh

)
− 1√

λ
(1, rh)B = 0,

for all (vh, rh, sh) ∈ Vh × Rh × Qh. Here α > 0 is a dimensionless stabilization parameter and
(·, ·) (respectively (·, ·)K) denotes the L2(D) (resp. L2(K)) scalar product for scalars, vectors
and tensors.

The above nonlinear finite element scheme is closely linked to the Oldroyd-B scheme studied
in the previous chapter. Using an implicit function theorem taken from [CR97], existence and
convergence will be proved for small data f and u0, again the difficulty being due to the fact
that no a priori estimates are available due to the nonlinear term (∇uh)qh. The proof will be
as in the continuous problem. More precisely, it will be proven that the linearized problem in
the neighborhood of the equilibrium state uh = 0, qh = qS is well posed.

It should be noted that the case ηs = 0 is not considered, therefore some of the stabilization
terms present in [BP01] are not included in the finite element formulation (3.15).
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3.2. Existence of the simplified Hookean dumbbells model

This section starts with the definition of a solution. Using the Stokes operator Ar and the
notations introduced in section 1.5, (u, q) is said to be a solution of (3.2)-(3.7) if

u ∈ h1+μ(Hr) ∩ hμ(DAr), q ∈ Lγ(hμ(W 1,r)),

q adapted to (Ft) (refer to [RY94, Definition 4.2, chapter I]), with 0 < μ < 1/2, d < r < ∞,
2 ≤ γ < ∞ and satisfies

dq −
(
∇uq − 1

2λ
q

)
dt − 1√

λ
dB = 0 in D × (0, T ) × Ω,(3.16)

ρ
∂u

∂t
+ ηsAru − ηp

λ
Pr∇ · (IE(q ⊗ q) − I) = Prf in D × (0, T ),(3.17)

u (., 0) = u0 in D,(3.18)

q (., 0) = q0 in Ω.(3.19)

The main result of this paper can now be stated.

Theorem 3.3. Let d ≥ 2, let D ⊂ R
d be a bounded, connected open set with boundary of

class C2 and let T > 0. Assume 0 < μ < 1
2 , 2 ≤ γ < ∞ and d < r < ∞. Let (Ω,F ,P) a

complete filtered probability space with Ft right continuous for t ∈ [0, T ] and upon which the
Brownian process B ∈ Lγ(hμ) and the initial condition q0 ∈ Lγ are defined. Moreover assume
that q0 satisfies (3.1). Then there exists δ0 > 0 such that for every f ∈ hμ(Lr), u0 ∈ DAr

satisfying

−ηsAru0 + Prf(0) ∈ DAr

Eμ,∞
,

and

‖Prf − Prf(0)‖hμ(Lr) + ‖u0‖W 2,r + ‖ − ηsAr + Prf(0)‖
DAr

Eμ,∞ ≤ δ0,

there exists exactly one solution of (3.16)-(3.19) (q is unique up to indistinguishability, see
[RY94, Definition 1.7, chapter I]). Moreover, the mapping

(Prf, u0) �→ (u(f, u0), q(f, u0))

is analytic.

Using the well known properties of the Helmholtz-Weyl projector (see section 1.5), the
following result is obtained.

Corollary 3.4. Under the assumptions of the above theorem, there exists a unique solution
(u, q, p) of (3.2)-(3.7) with the regularity (3.14).

The vector field qS : Ω × [0, T ] → R
d solution of (3.12) is now more precisely defined.

Given q0 ∈ Lγ(Ω) satisfying (3.1), qS ∈ Lγ(Ω; hμ([0, T ]; Rd)) is the unique solution (up to
indistinguishability and ensured by Theorem 2.1, chapter IX, in [RY94]) of (3.12). Moreover,
(using equation (6.8) section 5.6 of [KS91]) a relation for the covariance of qS is obtained:

(3.20) IE(qS(s) ⊗ qS(t)) = e−
|t−s |
2λ I, ∀s, t ∈ [0, T ].

Even though qS does not depend on x ∈ D, when needed, qS will be considered as an element
of Lγ(hμ(W 1,r)).

Using (3.11) and (3.13) problem (3.16)-(3.19) can be rewritten as, find

u ∈ h1+μ(Hr) ∩ hμ(DAr), qD ∈ Lγ(h1+μ(W 1,r) ∩ hμ
0 (W 1,r)),
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with 2 ≤ γ < ∞, 0 < μ < 1/2, d < r < ∞, such that

∂qD

∂t
+

1

2λ
qD − Sd(u, qD) = (∇u)qS in D × (0, T ) × Ω,(3.21)

ρ
∂u

∂t
+ ηsAru

− ηp

λ
Pr∇ ·

(
IE(qD ⊗ qS + qS ⊗ qD) + Sc(u, qD)

)
= Prf in D × (0, T ),(3.22)

u (., 0) = u0 in D,(3.23)

with

Sd(u, qD) := (∇u)qD,(3.24)

Sc(u, qD) := IE(qD ⊗ qD).(3.25)

It will be shown Sd and Sc are well defined in appropriate spaces.
In order to prove Theorem 3.3, the mapping F : Y × X → Z is introduced, where

Y :=
{
(Prf, u0), such that (f, u0) ∈ hμ(Lr) ×DAr and − ηsAru0 + Prf(0) ∈ DAr

Eμ,∞
}
,

W :=
{
w ∈ Lγ(hμ(W 1,r));w adapted to (Ft)t∈[0,T ]

}
, Z := W × Y,

X :=
{
(u, q) ∈ h1+μ(Hr) ∩ hμ(DAr) × Lγ(h1+μ(W 1,r) ∩ hμ

0 (W 1,r)); q adapted to (Ft)t∈[0,T ]

}
,

and for y := (Prf, u0) ∈ Y and x := (u, qD) ∈ X

(3.26) F (y, x) :=

⎛
⎜⎜⎜⎜⎝

∂qD

∂t
+

1

2λ
qD − Sd(u, qD) − (∇u)qS

ρ
∂u

∂t
+ ηsAru − ηp

λ Pr∇ ·
(
IE(qD ⊗ qS + qS ⊗ qD) + Sc(u, qD)

)
− Prf

u (., 0) − u0

⎞
⎟⎟⎟⎟⎠ ,

with qS ∈ Lγ(hμ(W 1,r)) defined by (3.12). Then problem (3.21)-(3.23) can be reformulated as:
given q0 ∈ Lγ(Ω) satisfying (3.1), qS ∈ Lγ(hμ(W 1,r)) defined by (3.12) and y = (Prf, u0) ∈ Y ,
find x = (u, qD) ∈ X such that

(3.27) F (y, x) = 0 in Z.

The aim is to use the implicit function theorem by proving

• the spaces X, Y, W and Z equipped with appropriate norms are Banach spaces,
• F is a well defined, real analytic mapping,
• F (0, 0) = 0 and the Fréchet derivative DxF (0, 0) is an isomorphism from X to Z.

This establishes the existence part in the conclusion of Theorem 3.3. The uniqueness part is
treated separately.

The space X is equipped with the norm ‖ · ‖X defined for x := (u, qD) ∈ X by

‖x‖X = ‖u, qD‖X := ‖u‖h1+μ(Lr) + ‖u‖hμ(W 2,r) + ‖qD‖Lγ(h1+μ(W 1,r)).

Since X is a closed subspace of h1+μ(Hr)∩hμ(DAr)×Lγ(hμ(W 1,r)), it becomes a Banach space.
The space Y is equipped with the norm ‖ · ‖Y defined for y := (Prf, u0) ∈ Y by

‖y‖Y = ‖Prf, u0‖Y

:= ‖Prf − Prf(0)‖hμ(Lr) + ‖u0‖W 2,r + ‖ − ηsAru0 + Prf(0)‖
DAr

Eμ,∞ .

As a consequence of the continuity of the linear mapping

(Prf, u0) �−→ −ηsAru0 + Prf(0)
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from hμ(Hr)×DAr (equipped with the product norm) to Hr and of the completeness of DAr

Eμ,∞
,

the space (Y, ‖.‖Y ) is a closed subspace of hμ(Hr) × DAr × W 1,r and thus a Banach space.
Similarly, using [Mun53, Corollary 31.5.1 and Theorem 32.1] and since the filtration (Ft)t∈[0,T ]

is complete, W is a Banach space equipped with the induced norm of Lγ(hμ(W 1,r)). The space
Z is equipped with the product norm and becomes a Banach space .

The following Lemma ensures the space hμ(W 1,r) is a Banach algebra and as a Corollary,
it will be deduced that the function F : Y × X → Z is well defined and analytic.

Lemma 3.5. For 0 < μ < 1 and r > d, the space hμ(W 1,r) ⊂ C0([0, T ] × D) is a Banach
algebra. Moreover, there exists a constant C such that for all u, v ∈ hμ(W 1,r) the following
inequality holds

‖uv‖hμ(W 1,r) ≤ C‖u‖hμ(W 1,r)‖v‖hμ(W 1,r),

where (uv)(x, t) := u(x, t)v(x, t) for (x, t) ∈ D × [0, T ].

Proof. Let u, v ∈ hμ(W 1,r). Let 0 ≤ s < t ≤ T , using the triangle inequality it follows,

‖u(t)v(t) − u(s)v(s)‖W 1,r ≤ ‖u(t)(v(t) − v(s))‖W 1,r + ‖(u(t) − u(s))v(s)‖W 1,r .

For all Banach space E we have hμ(E) ⊂> C0(E). Moreover, since W 1,r is a Banach algebra
for r > d (see section 1.1), we obtain
(3.28)
‖u(t)v(t) − u(s)v(s)‖W 1,r ≤ C(‖u‖hμ(W 1,r)‖v(t) − v(s)‖W 1,r + ‖u(t) − u(s)‖W 1,r‖v‖hμ(W 1,r)),

where C1 is a constant independent of u and v. Thus, we find

‖u(t)v(t)−u(s)v(s)‖W 1,r ≤ C2(‖u‖hμ(W 1,r)‖v‖hμ(W 1,r) |t − s |μ+‖u‖hμ(W 1,r) |t − s |μ ‖v‖hμ(W 1,r)),

where C2 is a constant independent of u and v. Hence, u · v ∈ C0(W 1,r) and

‖uv‖hμ(W 1,r) := sup
t∈(0,T )

‖u(t)v(t)‖W 1,r+ sup
t,s∈(0,T )

t �=s

‖u(t)v(t) − u(s)v(s)‖W 1,r

|t − s |μ ≤ C‖u‖hμ(W 1,r)‖v‖hμ(W 1,r).

Moreover, from (3.28) we also deduce

lim
δ→0

sup
|t−s |<δ

‖u(t)v(t) − u(s)v(s)‖W 1,r

|t − s |μ = 0,

which ensures u · v ∈ hμ(W 1,r) and ends the proof of the Lemma. �

The same arguments can be used to prove

Corollary 3.6. Let u, v ∈ h1+μ(W 1,r), 0 < μ < 1, d < r < ∞, then the product u · v
belongs to h1+μ(W 1,r) and there exists a constant C such that

‖uv‖h1+μ(W 1,r) ≤ C‖u‖h1+μ(W 1,r)‖v‖h1+μ(W 1,r).

Corollary 3.7. Let x1 := (u1, q1), x2 := (u2, q2) ∈ X, then

bd(x1, x2) := (∇u1)q2 ∈ W,

bc(x1, x2) := Pr∇ · IE(q1 ⊗ q2) ∈ hμ(Hr).

Moreover, the corresponding bilinear mappings bd : X × X → W and bc : X × X → hμ(Hr) are
continuous, i.e. there exist two constants C1, C2 such that for x1, x2 ∈ X it holds

‖bd(x1, x2)‖W ≤ C1‖x1‖X‖x2‖X ,

‖bc(x1, x2)‖hμ(Hr) ≤ C2‖x1‖X‖x2‖X .
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Proof. Let (u1, q1), (u2, q2) ∈ X. Using Lemma 3.5 it follows for almost all ω ∈ Ω

(∇u1)q2(ω) ∈ hμ(W 1,r)

and

‖(∇u1)q2(ω)‖hμ(W 1,r) ≤ C‖u1‖hμ(W 1,r)‖q2(ω)‖hμ(W 1,r),

where C is a constant independent of (u1, q1) and (u2, q2). Hence,

‖bd((u
1, q1), (u2, q2))‖W ≤ C‖(u1, q1)‖X‖(u2, q2)‖X .

This ensures bd((u
1, q1), (u2, q2)) ∈ Lγ(hμ(W 1,r)). Similarly, using Lemma 3.5 it follows that

for almost all w ∈ Ω

q1(ω) ⊗ q2(ω) ∈ hμ(W 1,r)

and there exists a constant C independent of (u1, q1) and (u2, q2) such that for almost all ω ∈ Ω

‖q1(ω) ⊗ q2(ω)‖hμ(W 1,r) ≤ C‖q1(ω)‖hμ(W 1,r)‖q2(ω)‖hμ(W 1,r).

Using Bochner’s Theorem [Yos80, chapter V], ω ∈ Ω �→ q1(ω) ⊗ q2(ω) ∈ hμ(W 1,r) is Bochner
integrable and bc((u

1, q1), (u2, q2)) ∈ hμ(Hr). Moreover, the Cauchy-Schwarz inequality implies

‖bc((u
1, q1), (u2, q2))‖hμ(Lr) ≤ C‖u1, q1‖X‖u2, q2‖X .

�

Remark 3.8. The mappings Sd : X → W and Sc : X → hμ(W 1,r) can be characterized for
x ∈ X by Sd(x) = bd(x, x) and Sc(x) = bc(x, x). Thus, in virtue of Proposition 5.4.1 in [Car67],
the mappings Sd and Sc are well defined and even analytic in their respective spaces.

Remark 3.9. Using similar arguments, we also have for (u, qD) ∈ X∫ .

0
(∇u(s))qD(s)ds ∈ Lγ(h1+μ(W 1,r) ∩ hμ

0 (W 1,r)).

Lemma 3.10. The mapping F : Y × X → Z is well defined and analytic. Moreover, for all
x := (u, qD) ∈ X its Fréchet derivative in (0, 0), DxF (0, 0) is given by

DxF (0, 0)x =

⎛
⎜⎜⎜⎜⎝

∂qD

∂t
+

1

2λ
qD − (∇u)qS

ρ
∂u

∂t
+ ηsAru − ηp

λ Pr∇ · IE(qD ⊗ qS + qS ⊗ qD)

u (0)

⎞
⎟⎟⎟⎟⎠ ,

where qS ∈ Lγ(hμ(W 1,r)) is defined by (3.12).

Proof. In order to study the property of the mapping F : Y × X → Z we rewrite it as
follows

(3.29) F (y, x) = L1y + L2x −

⎛
⎝ Sd(x)

0
0

⎞
⎠−

⎛
⎝ 0

ηp

λ Pr∇ · Sc(x)
0

⎞
⎠ ,

where L1 : Y → Z, L2 : X → Z are bounded linear operator defined for y := (Prf, u0) ∈ Y and
x := (u, qD) ∈ X by

L1y :=

⎛
⎝ 0

−Prf
u0

⎞
⎠ , L2x :=

⎛
⎜⎜⎜⎜⎝

∂qD

∂t
+

1

2λ
qD − (∇u)qS

ρ
∂u

∂t
+ ηsAru − ηp

λ Pr∇ · IE
(
qD ⊗ qS + qS ⊗ qD

)
u (0)

⎞
⎟⎟⎟⎟⎠
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and Sd : X → W , Sc : X → hμ(Hr) are well defined and analytic (see Remark 3.8). Clearly,
the first two terms in (3.29) are also analytic. Thus, F : Y × X → Z is analytic.

Moreover for x ∈ X

DxF (0, 0)x = L2x,

which completes the proof. �

In order to use the implicit function theorem, it remains to check that DxF (0, 0) is an
isomorphism from X to Z. Therefore, it is necessary to check that, for w ∈ W and (f, u0) ∈ Y
there exists a unique (u, qD) ∈ X such that

(3.30)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂qD

∂t
+

1

2λ
qD − (∇u)qS = w,

ρ
∂u

∂t
+ ηsAru − ηp

λ
Pr∇ · IE(qD ⊗ qS + qS ⊗ qD) = f,

u (0) = u0.

Lemma 3.11. Given w ∈ W , (f, u0) ∈ Y , there exists a unique (u, qD) ∈ X solution of
(3.30).

Proof. Solving the first equation of the above system, it follows for t ∈ [0, T ]

(3.31) qD(t) =

∫ t

0
e−

t−s
2λ (∇u(s)qS(s) + w(s)) ds, a.e in Ω.

The aim is to use equation (3.31) in the third equation of (3.30) in order to obtain a relation
for u. For t ∈ [0, T ] we have

IE(qD(t) ⊗ qS(t)) =

∫ t

0
e−

t−s
2λ

(
IE(∇u(s)qS(s) ⊗ qS(t)) + IE(w(s) ⊗ qS(s))

)
ds.

Using (3.20) we obtain for the first term on the right hand side of the above equation∫ t

0
e−

t−s
2λ IE(∇u(s)qS(s) ⊗ qS(t))ds =

∫ t

0
e−

t−s
λ ∇u(s)ds.

Using the same arguments for the term IE(qS(t) ⊗ qD(t)), we obtain

(3.32) IE
(
qD(t) ⊗ qS(t) + qS(t) ⊗ qD(t)

)
=

∫ t

0
e−

t−s
λ (∇u(s) + (∇u(s))T )ds

+

∫ t

0
e−

t−s
2λ IE(w(s) ⊗ qS(t) + qS(t) ⊗ w(s))ds.

Going back to (3.30) it follows that u satisfies

(3.33) ρ
∂u

∂t
+ ηsAru + k ∗ Aru = Prf + Pr∇ · g, u(0) = u0,

where k ∈ C∞([0, T ]) is defined for t ∈ [0, T ] by k(t) :=
ηp

λ e−
t
λ , g ∈ hμ(W 1,r) is defined for

t ∈ [0, T ] by

(3.34) g(t) :=
ηp

λ

∫ t

0
e−

t−s
2λ IE(w(s) ⊗ qS(t) + qS(t) ⊗ w(s))ds,

and k ∗ Aru denotes the convolution in time of the kernel k with Aru. The right hand side of
(3.33) belongs to hμ(Hr) using Corollary 3.7. Moreover, g(0) = 0 and since (f, u0) ∈ Y , the
compatibility condition

−ηsAru0 + Prf(0) ∈ DAr

Eμ,∞
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is satisfied. It suffices now to apply Lemma 1.24, which ensures the existence and uniqueness of
u ∈ h1+μ(Hr) ∩ hμ(DAr). Going back to (3.31) with a given u ∈ hμ(W 1,r), using the regularity
of w and Remark 3.9, there exists an unique qD ∈ Lγ(h1+μ(W 1,r) ∩ hμ

0 (W 1,r)) adapted to the
filtration (up to indistinguishability). �

We are now in a position to prove the next Lemma.

Lemma 3.12. Let d ≥ 2, let D ⊂ R
d be a bounded, connected open set with boundary of

class C2 and let T > 0. Assume 0 < μ < 1
2 , 2 ≤ γ < ∞ and d < r < ∞. Let (Ω,F ,P) a

complete filtered probability space with Ft right continuous for t ∈ [0, T ] and upon which the
Brownian process B ∈ Lγ(hμ) and the initial condition q0 ∈ Lγ are defined. Moreover assuming
q0 satisfies (3.1) and let qS ∈ Lγ(hμ(W 1,r)) satisfying (3.12). Then there exists δ0 > 0 such
that for every f ∈ hμ(Lr), u0 ∈ DAr satisfying

−ηsAru0 + Prf(0) ∈ DAr

Eμ,∞
,

and

‖Prf − Prf(0)‖hμ(Lr) + ‖u0‖W 2,r + ‖ − ηsAr + Prf(0)‖
DAr

Eμ,∞ ≤ δ0,

there exists exactly one solution of (3.21)-(3.23). Moreover, the mapping

(Prf, u0) �→ (u(f, u0), q
D(f, u0))

is analytic.

Proof. Apply the implicit function theorem to (3.27). From Lemma 3.10, F is well defined
and analytic, F (0, 0) = 0 and from Lemma 3.11 DxF (0, 0) is an isomorphism from X to Z.
Therefore, the implicit function theorem in the analytic case (see Theorem 4.5.4 chapter 4
p. 56 of [BT03]) implies the existence of δ0 > 0 and ϕ : Y → X analytic such that for
y := (Prf, u0) ∈ Y with ‖y‖Y < δ0 we have F (y, ϕ(y)) = 0.

Now check the uniqueness. Assume (u, qD) ∈ X satisfying (3.21)-(3.23). Using a standard
result on a system of ordinary differential equation we obtain that qD satisfies for t ∈ [0, T ]

(3.35) qD(t) = Φ(t)

∫ t

0
Φ(s)−1(∇u(s))qS(s)ds,

where Φ : D × [0, T ] → R
d×d is the fundamental matrix satisfying

Φ(t, x) = I +

∫ t

0

(
∇u(s) − I

2λ

)
Φ(s, x)ds.

Using a fixed point theorem in hμ(W 1,r) (see [Car67]), we obtain Φ ∈ h1+μ([0, T ];W 1,r(D; Rd×d)).
Then by reversing time, it is possible to show Φ−1 also belongs to h1+μ([0, T ];W 1,r(D; Rd×d)).
Moreover, let σ1, σ2, σ3 : D × [0, T ] → R

d×d defined for t ∈ [0, T ] by

σ1(t) := IE(qD(t) ⊗ qS(t)) = Φ

∫ t

0
e−

t−s
2λ Φ−1(s, .)∇u(s, .)ds,

σ2(t) := IE(qS(t) ⊗ qD(t)) =

∫ t

0
e−

t−s
2λ (∇u(s, .))T (Φ−1(s, .))T ds ΦT

and

σ3(t) := IE(qD(t) ⊗ qD(t))

= Φ

∫ t

0

∫ t

0
Φ(s, .)−1(∇u(s, .))e−

|s−k |
2λ (∇u(k, .))T (Φ−1(k, .))T ds dk ΦT .
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Using representation (3.35), relation (3.20), Corollary 3.7, Remarks 3.9 and Corollary 3.6, it
follows

σ1, σ2, σ3 ∈ h1+μ(W 1,r).

Thus, we have
∂σ1

∂t
= − 1

λ
σ1 + (∇u)σ1 + ∇u,

∂σ2

∂t
= − 1

λ
σ2 + σ2(∇u)T + (∇u)T

and
∂σ3

∂t
= − 1

λ
σ3 + (∇u)σ3 + σ3(∇u)T + (∇u)σ2 + σ1(∇u)T .

Finally, setting σ :=
ηp

λ (σ1 + σ2 + σ3) ∈ h1+μ(W 1,r) we obtain

λ

ηp

(
∂σ

∂t
− (∇u)σ − σ(∇u)T

)
+

1

ηp
σ =

(
∇u + (∇u)T

)
,

which corresponds to (3.8) with definition (3.9). Then, using Theorem 2.3, one obtains the
existence of exactly one solution u ∈ h1+μ(Hr) ∩ hμ(DAr). Going back to (3.35), we obtain
the uniqueness (up to indistinguishability) of qD ∈ Lγ(h1+μ(W 1,r) ∩ hμ

0 (W 1,r)) adapted to the
filtration. �

Corollary 3.13. Under the assumptions of the above Lemma, there exists a unique (u, qD, p) ∈
X × hμ(W 1,r ∩ L2

0), satisfying

∂qD

∂t
+

1

2λ
qD − (∇u)qD = (∇u)qS in D × (0, T ) × Ω,(3.36)

ρ
∂u

∂t
− 2ηs∇ · ε(u) − ηp

λ
∇ · IE((qS + qD) ⊗ (qS + qD)) + ∇p = f in D × (0, T ),(3.37)

u (., 0) = u0 in D, ,(3.38)

with qD adapted to (Ft)t≥0.

Let us go back to the proof of Theorem 3.3.

Proof. (of Theorem 3.3) Let y := (Prf, u0) ∈ Y . It was proved in Lemma 3.12 that
x := (u(y), qD(y)) is unique in X but q(y) := qS + qD(y) is only in Lγ(hμ(W 1,r)) because of the
regularity imposed by qS . Obviously, q is unique (up to indistinguishability) and the mapping
y ∈ Y �→ x(y) ∈ X is analytic. �

Remark 3.14. In the proof of uniqueness (in Lemma 3.12), it was proved that V := IE(q⊗q)

satisfies (3.8) with V ∈ h1+μ(W 1,r). Setting σ :=
ηp

λ
(V − I), then σ ∈ h1+μ(W 1,r) and satisfies

(2.3). Lemma 2.2 and Theorem 2.3 ensure (u, σ) ∈ h1+μ(Hr)∩ hμ(DAr)× h1+μ(W 1,r) coincides
with the unique solution of the Oldroyd-B problem. This fact having been established, the
existence and uniqueness could also be directly ensured by Lemma 2.2 and Theorem 2.3, but
this approach is more general. Indeed, it is only necessary that the linearized problem has a
unique solution so that the original problem does not need to have a deterministic equivalent. In
that case, existence still holds but uniqueness is only ensured by the implicit function theorem.
More precisely, there exists a neighborhood V × U ⊂ Y × X of (u, qD) = (0, 0) and an analytic
mapping ϕ : Y → U such that (y, x) ∈ V × U and F (y, x) = 0 is equivalent to y ∈ V and
x = ϕ(y).
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Remark 3.15. Since, having proved IE(q ⊗ q) ∈ h1+μ(W 1,r), and assuming f ∈ h1+μ(Lr),
some compatibility conditions and using the same arguments as in the previous chapter, it is
possible to prove the existence of a solution for (3.2)-(3.7) satisfying u ∈ h2+μ(Hr)∩h1+μ(DAr)
and q ∈ Lγ(hμ(W 1,r)) (q still remains in Lγ(hμ(W 1,r)) because of the Brownian motion).

Remark 3.16. As in the previous chapter, the key point to prove this result when D is a
convex polygon is to prove that the negative Stokes operator −Ar is still the generator of an
analytic semi-group, see Remark 1.26. This assumption will be made and convergence of the
finite element scheme will be proven.

3.3. Existence of the finite element approximation and a priori error estimates

In this section it is assumed that D is a convex polygon, that

2 ≤ γ < ∞, 0 < μ < 1/2, 2 = d < r < ∞
and that the results of the previous section still hold when D is a convex polygon (see Remark
3.16). Let

Y :=
{
(f, u0) ∈ hμ(Lr) ×DAr such that − ηsAru0 + Prf(0) ∈ DAr

Eμ,∞
}
,

W :=
{
w ∈ Lγ(hμ(W 1,r));w adapted to (Ft)t∈[0,T ]

}
, Z := W × Y,

X :=
{
(u, q) ∈ h1+μ(Hr) ∩ hμ(DAr) × Lγ(h1+μ(W 1,r) ∩ hμ

0 (W 1,r)); q adapted to (Ft)t∈[0,T ]

}
,

be the data and solution spaces provided with the norms

‖f, u0‖Y := ‖f‖hμ(Lr) + ‖u0‖W 2,r + ‖ − ηsAru0 + Prf(0)‖
DAr

Eμ,∞ ,

‖w‖W := ‖w‖Lγ(h1+μ(W 1,r)), ‖w, f, u0‖Z := ‖w‖W + ‖f, u0‖Y ,

‖u, q‖X := ‖u‖h1+μ(Lr) + ‖u‖hμ(W 2,r) + ‖q‖Lγ(h1+μ(W 1,r)).

According to Theorem 3.3, Corollary 3.4 and Remark 3.16 it is known that if y := (f, u0) ∈ Y
is sufficiently small, then there exists a unique solution

(u(y), q(y), p(y))

of (3.2)-(3.7), the mapping
y �−→ (u(y), q(y), p(y))

being analytic (therefore continuous).
In order to prove that the solution of the nonlinear finite element discretization (3.15) exists

and converges to that of (3.2)-(3.7), let Xh ⊂ X be defined by

Xh := L2(Vh) × L2(L∞(Rh)),

provided with the norm ‖.‖Xh
defined for xh := (uh, qh) ∈ Xh by

‖xh‖2
Xh

:= 2ηs

∫ T

0
‖ε(uh(t))‖2

L2(D)dt +

∫
Ω

sup
t∈[0,T ]

‖qh(ω, t)‖2
L2(D) dP(ω).

The splitting qh = qS + qD
h will also be used for space discretization (remember qS does not

depend on the space variable and satisfies (3.12)) where qD
h ∈ L2(L∞(Rh)) satisfies

(3.39) (qD
h (t), rh) +

(∫ t

0

(
1

2λ
qD
h (k) − (∇uh(k))(qS(k) + qD

h (k))

)
dk, rh

)
= 0,

for all rh ∈ Rh, a.e in (0, T ) and a.e in Ω.
It will be shown that there exists a unique (uh, qD

h ) ∈ Xh converging to (u, qD) ∈ X and
thus a unique (uh, qh) converging to (u, q). For this purpose, the discrete problem corresponding
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to the unknowns (uh, qD
h , ph) will be written in the abstract framework of the previous chapter

and [CR97]. Using the splitting qh = qS + qD
h , we rewrite the solution of (3.15) as the following

fixed point problem. Given y := (f, u0) ∈ Y , find xh := (uh, qD
h ) ∈ Xh such that

(3.40) xh = Th

(
y, Sc(xh), Sd(xh)

)
,

where Sc and Sd have to be extended to the larger spaces

Sc : L2(H1) × L2(L∞(L2)) −→ L2(L2)

xh := (uh, qD
h ) �−→ Sc(xh) := IE(qD

h ⊗ qD
h ),

Sd : L2(H1) × L2(L∞(L2)) −→ L2(L2(L2))

xh := (uh, qD
h ) �−→ Sd(xh) := (∇uh)qD

h .

The linear operator Th is defined as follows

Th : Y × L2(L2) × L2(L2(L2)) −→ Xh

(f1, u0, f2, w) �−→ Th(f1, u0, f2, w) := (ũh, q̃D
h ),(3.41)

where for almost all t ∈ (0, T ) and almost all ω ∈ Ω

(ũh, q̃D
h , p̃h) : (ω, t) �−→ (ũh(t), q̃D

h (ω, t), p̃h(t)) ∈ Vh × Rh × Qh

satisfies ũh(0) = ihu0 and

(3.42) ρ
(∂ũh

∂t
, vh

)
+ 2ηs

(
ε(ũh), ε(vh)

)
−
(
p̃h,∇ · vh

)
+

ηp

λ

(
IE(q̃D

h ⊗ qS + qS ⊗ q̃D
h ) + f2, ε(vh)

)
−
(
f1, vh

)
+
(
∇ · ũh, sh

)
+
∑

K∈Th

αh2
K

2ηp

(
∇p̃h,∇sh

)
K

(q̃D
h (t), rh) +

(∫ t

0

(
1

2λ
q̃D
h (k) − (∇ũh(k))qS(k)

)
dk, rh

)
− (w, rh) = 0,

for all (vh, rh, sh) ∈ Vh × Rh × Qh, a.e. in (0, T ) and a.e. in Ω.
It should be noted that, given y := (f, u0) ∈ Y sufficiently small, the solution x(y) :=

(u(y), qD(y)) ∈ X of the continuous Hookean dumbbells problem (3.21)-(3.23) also satisfies a
fixed point problem, namely

(3.43) x(y) = T

(
y, Sc(x(y)), Sd(x(y))

)
.

Here the operator T is defined by

T : Y × U × W −→ X

(f1, u0, f2, w) �−→ T(f1, u0, f2, w) := (ũ, q̃D),

where (ũ, q̃D, p̃) ∈ X × hμ(W 1,r ∩ L2
0) satisfy

(3.44)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂q̃D

∂t
+

1

2λ
q̃D − (∇ũ)qS = w,

ρ
∂ũ

∂t
−∇ · (2ηsε(ũ)) − ηp

λ
∇ ·
(
IE(q̃D ⊗ qS + qS ⊗ q̃D) + f2

)
+ ∇p̃ = f1,

u (0) = u0.

Note that it has been proved that for x := (u, qD) ∈ X, then Sc(x) ∈ hμ(W 1,r) and Sd(x) ∈ W
(see Remark 3.8). Moreover, since qD(0) = 0, it follows that Sc(x) = IE(qD ⊗ qD) vanishes at
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time t = 0 and thus Sc(x) ∈ U for x ∈ X. Therefore, Lemma 3.11 and the well known properties
of the Helmholtz-Weyl projector (see section 1.5) ensure that problem (3.43) is well defined.

The elongation vector q̃D can be eliminated from (3.42) and the next Lemma provides the
equation satisfied by ũ. This equation is a discrete approximation of (3.33).

Lemma 3.17. Let γ ≥ 2, 0 < μ < 1/2 and r > 2. Let (f1, u0) ∈ Y , f2 ∈ L2(L2),
w ∈ L2(L2(L2)) and let qS ∈ Lγ(hμ(W 1,r)) be defined by (3.12). Then problem (3.42) admits a
unique solution (ũh, q̃D

h ) ∈ Xh. Moreover, (ũh, p̃h) satisfies

(3.45) ρ
(∂ũh

∂t
, vh

)
+ 2ηs

(
ε(ũh), ε(vh)

)
−
(
p̃h,∇ · vh

)
+ 2
(
k ∗ ihε(uh), ihε(vh)

)
+
(
∇ · ũh, sh

)
+
∑

K∈Th

αh2
K

2ηp

(
∇p̃h,∇sh

)
K

=
(
f1, vh

)
+
(
−ηp

λ
f2 + ihg, ε(vh)

)
,

where k ∈ C∞([0, T ]) is defined by k(t) :=
ηp

λ e−t/λ, where g ∈ Lγ(hμ(W 1,r)) is defined by (3.34)

and where ih is the L2(D) projection onto Rh ⊗ Rh.

Proof. In order to prove the existence (and uniqueness) of a solution (ũh, q̃D
h ), (3.42) will

be written using a basis of Rh. Hence, we introduce ϕn
i , n = 1, 2, i = 1, . . . , P an orthonormal

basis of Rh where P is the number of nodes of the mesh. Let q̃D,n
h,i be the components of qD

h and
ũn

h,i be those of uh with respect to the given basis ϕn
i . Then

q̃D
h (ω, t, x) =

2∑
n=1

P∑
i=1

qD,n
h,i (ω, t)ϕn

i (x), ũh(t, x) =
2∑

n=1

P∑
i=1

ũn
h,i(t)ϕ

n
i (x).

Choosing vh = 0, sh = 0, rh = ϕn
i in (3.42) we have

q̃D,n
h,i (t) =

∫ t

0
e−

t−s
2λ

(
2∑

k=1

∂ũn
h

∂xk
(s)qS,k(s) + wn, ϕn

i

)
ds, n = 1, 2, i = 1, . . . , P,

a.e in (0, T ), a.e. in Ω and with w = (w1, w2)T . The definition of the L2(D) projection ih
implies for t ∈ [0, T ]

(3.46) q̃D
h (t) =

∫ t

0
e−

t−s
2λ

(
ih(∇ũh)qS + ihw

)
ds,

a.e. in Ω. Owning (3.20) and going back to (3.42), (ũh, p̃h) satisfies

ρ
(∂ũh

∂t
, vh

)
+ 2ηs

(
ε(ũh), ε(vh)

)
−
(
p̃h,∇ · vh

)
+ 2
(
k ∗ ihε(uh), ε(vh)

)
+
(
∇ · ũh, sh

)
+
∑

K∈Th

αh2
K

2ηp

(
∇p̃h,∇sh

)
K

=
(
f1, vh

)
+
(
−ηp

λ
f2 + ihg, ε(vh)

)
.

Using the property of the L2-projection

(ihε(ũh), ε(vh) − ihε(vh)) = 0 ∀vh ∈ Vh,

relation (3.45) is obtained. Thus, problem (3.42) is equivalent to (3.45) and (3.46). Existence
(and uniqueness) of ũh ∈ C1([0, T ];Vh) satisfying (3.45) is ensured by a standard argument on
Stokes system (see [GR86, QV91],) and a contraction mapping theorem (see [LTW98] or
sections 1.3 and 1.4). Finally, since qS ∈ Lγ(hμ(W 1,r)), equation (3.46) ensures the existence
(and uniqueness) of q̃D

h ∈ Lγ(C1(Rh)) thus in L2(L∞(Rh)). �
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Remark 3.18. Having proved in the previous Lemma that q̃D
h belongs to Lγ(C1(Rh)), (3.39)

can be rewritten

(3.47) (
∂qD

h

∂t
, rh) + (

1

2λ
qD
h , rh) − ((∇uh)(qS + qD

h ), rh) = 0 ∀rh ∈ Rh, a.e. in Ω.

The following stability and convergence result holds.

Lemma 3.19. The operator Th is well defined and uniformly bounded with respect to h: there
exists C1 > 0 such that for all h > 0 and for all (f1, u0) ∈ Y , f2 ∈ L2(L2), w ∈ L2(L2(L2)) it
holds

(3.48) ||Th(f1, u0, f2, w)||Xh
≤ C1

(
||f1, u0||Y + ||f2||L2(L2) + ||w||L2(L2(L2))

)
.

Moreover, there exists C2 > 0 such that for all h > 0 and for all (f1, u0, f2, w) ∈ Y ×U ×W , it
holds

(3.49) ||(T − Th)(f1, u0, f2, w)||Xh
≤ C2h

(
||f1, u0||Y + ||f2||U + ||w||W

)
.

Proof. Let (ũh, q̃D
h ) := Th(f1, u0, f2, w), where (ũh, q̃D

h ) ∈ Xh satisfies (3.45). From Lemma
1 in [Sob64], we have

(3.50)

∫ T

0

∫ T

0
e−

t−s
λ (ihε(ũh(s)), ihε(ũh(t))) ds dt ≥ 0.

Therefore, choosing vh = uh(t) in (3.45), there exists a constant C independent of f1, f2, g
such that

(3.51) ||ũh||L2(H1) ≤ C
(
||f1, u0||Y + ||f2||L2(L2) + ||ihg||L2(L2)

)
,

where g ∈ hμ
0 (W 1,r) is defined by (3.34). Moreover since ih is bounded in L2(D), using the

continuous embedding hμ([0, T ]) ⊂> C0([0, T ]) and a Cauchy-Schwarz inequality, we have

(3.52) ‖ihg‖L2(L2) ≤ C‖qS‖L2(hμ)‖w‖L2(L2(L2))

where C is a constant independent of h, w, qS and g.
On the other hand from (3.46) we have

(3.53) ‖q̃D
h ‖L2(L∞(L2)) ≤ C

(
‖ũh‖L2(H1) + ‖w‖L2(L2(L2))

)
,

where C is a constant independent of h, f1, u0, f2 and w. Thus (3.52) in (3.51) and (3.53) leads
to (3.48). Let us now prove (3.49). Let

e:u = ũ − ũh = Πu + Cu, Πu := ũ − ihũ, Cu := ihũ − ũh,

ep := p̃ − p̃h = Πp + Cp, Πp := p̃ − ihp̃, Cp := ihp̃ − p̃h,

where (ũh, p̃h) solves (3.45) and (ũ, p̃) solves

(3.54) ρ
∂ũ

∂t
−∇ · (2ηsε(ũ) − 2k ∗ ε(ũ)) + ∇p̃ = f1 +

ηp

λ
∇ · f2 + ∇ · g, ∇ũ = 0, ũ(., 0) = u0.

Using the triangle inequality we have

‖eu‖L2(H1) ≤ ‖Πu‖L2(H1) + ‖Cu‖L2(H1)

and classical interpolation results lead to

‖Πu‖L2(H1) ≤ Ch‖ũ‖L2(H2).
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We now estimate ‖Cu‖L2(H1). The solution of (3.54) satisfies

ρ
(∂ũ

∂t
, vh

)
+ 2ηs

(
ε(ũ), ε(vh)

)
−
(
p̃,∇ · vh

)
+ 2
(
k ∗ ε(ũ), ε(vh)

)
−
(
f1, vh

)
+
(
∇ · ũ, sh

)
+
(ηp

λ
f2 − g, ε(vh)

)
= 0

for all (vh, sh) ∈ Vh × Qh. Subtracting (3.45) from the above equation, it follows that

(3.55) ρ
(∂eu

∂t
, vh

)
+ 2ηs

(
ε(eu), ε(vh)

)
−
(
ep,∇ · vh

)
+ 2
(
k ∗ (ε(ũ) − ihε(ũh)), ε(vh)

)
+
(
∇ · eu, rh

)
+
∑

K∈Th

αh2
K

2ηp

(
∇ep −∇p̃,∇rh

)
K
−
(
g − ihg, ε(vh)

)
= 0,

for all (vh, rh) ∈ Vh × Qh. On the other hand, from the definition of ih (the L2 projection onto
the finite element spaces), Cu and Πu, we have(

k ∗ ihε(Cu), ihε(Cu)
)

=
(
k ∗ ihε(Cu), ε(Cu)

)
=
(
k ∗ (ε(ũ) − ihε(ũh)) + k ∗ (ihε(ũ) − ε(ũ)) − k ∗ ihε(Πu), ε(Cu)

)
.

Hence, we obtain

(3.56) ρ
(∂Cu

∂t
, Cu

)
+ 2ηs

(
ε(Cu), ε(Cu)

)
−
(
Cp,∇ · Cu

)
+ 2
(
k ∗ ihε(Cu), ihε(Cu)

)
+
(
∇ · Cu, Cp

)
+
∑

K∈Th

αh2
K

2ηp

(
∇Cp,∇Cp

)
K

= ρ
(∂(eu − Πu)

∂t
, Cu

)
+ 2ηs

(
ε(eu − Πu), ε(Cu)

)
−
(
ep − Πp,∇ · Cu

)
+ 2
(
k ∗ (ε(ũ) − ihε(ũh)), ε(Cu)

)
− 2
(
k ∗ (ε(ũ) − ihε(ũ)), ε(Cu)

)
− 2
(
k ∗ ihε(Πu), ε(Cu)

)
+
(
∇ · (eu − Πu), Cp

)
+
∑

K∈Th

αh2
K

2ηp

(
∇(ep − Πp),∇Cp

)
K

From the definition of ih again, it is clear that(∂Πu

∂t
, Cu

)
= 0,

so that, using (3.55), (3.56) yields

(3.57)

ρ
(∂Cu

∂t
, Cu

)
+ 2ηs

(
ε(Cu), ε(Cu)

)
+
∑

K∈Th

αh2
K

2ηp

(
∇Cp,∇Cp

)
K

+ 2
(
k ∗ ihε(Cu), ihε(Cu)

)

= −2ηs

(
ε(Πu), ε(Cu)

)
+
(
Πp,∇ · Cu

)
−
(
∇ · (Πu), Cp

)
−
∑

K∈Th

αh2
K

2ηp

(
∇Πp,∇Cp

)
K

+
∑

K∈Th

αh2
K

2ηp

(
∇p̃,∇Cp

)
K

+ 2
(
k ∗ (ε(ũ) − ihε(ũ)), ε(Cu)

)

+ 2
(
k ∗ ihε(Πu), ε(Cu)

)
+ (g − ihg, ε(Cu))

= I1 + · · · + I8.
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It now remains to bound the terms I1, ..., I8 in the above equality. Using Cauchy-Schwarz and
Young’s inequalities, we have

I1 = −2ηs

(
ε(Πu), ε(Cu)

)
≤ 2ηs||ε(Πu)||L2(D)||ε(Cu)||L2(D)

≤ 5ηs||ε(Πu)||2L2(D) +
ηs

5
||ε(Cu)||2L2(D).

Similarly

I2 =
(
Πp,∇ · Cu

)
≤ 5

4ηs
||Πp||2L2(D) +

ηs

5
||∇ · Cu||2L2(D)

≤ 5

4ηs
||Πp||2L2(D) +

ηs

5
||ε(Cu)||2L2(D).

An integration by parts yields, since Πu = 0 on ∂D

I3 =
(
∇ · (Πu), Cp

)
= −

(
Πu,∇Cp

)
= −

∑
K∈Th

(
Πu,∇Cp

)
K

≤
∑

K∈Th

αh2
K

12ηp
||∇Cp||2L2(K) +

∑
K∈Th

3ηp

αh2
K

||Πu||2L2(K).

Again, Cauchy-Schwarz and Young’s inequalities yield

I4 = −
∑

K∈Th

αh2
K

2ηp

(
∇Πp,∇Cp

)
K

≤
∑

K∈Th

αh2
K

12ηp
||∇Cp||2L2(K) +

3αh2

4ηp
||∇Πp||2L2(D)

and

I5 =
∑

K∈Th

αh2
K

2ηp

(
∇p̃,∇Cp

)
K

≤
∑

K∈Th

αh2
K

12ηp
||∇Cp||2L2(K) +

3αh2

4ηp
‖∇p̃‖2

L2(D) .

Since k ∈ C∞([0, T ]) ⊂> C0([0, T ]), using Cauchy-Schwarz and Young’s inequalities yield

I6 = −2
(
k ∗ (ihε(ũ) − ε(ũ)), ε(Cu)

)
≤ 5

ηs
‖k‖2

L∞(0,T )‖ihε(ũ) − ε(ũ)‖2
L2(D) +

ηs

5
‖ε(Cu)‖2

L2(D)

and

I7 = −2
(
k ∗ ihε(Πu), ε(Cu)

)
≤ 5

ηs
‖k‖2

L∞([0,T ])‖ε(Πu)‖2
L2(D) +

ηs

5
‖ε(Cu)‖2

L2(D),

where in the last inequality the stability of ih : L2(D) → L2(D) was used. Finally, a Cauchy-
Schwarz and Young’s inequalities again yields

I8 = (g − ihg, ε(Cu)) ≤ 5

4ηs
‖g − ihg‖2

L2(D) +
ηs

5
‖ε(Cu)‖2

L2(D).

The above estimates of I1, ..., I8 in (3.57) yield

ρ
(∂Cu

∂t
, Cu

)
+

1

2
2ηs

(
ε(Cu), ε(Cu)

)
+

1

2

∑
K∈Th

αh2
K

2ηp

(
∇Cp,∇Cp

)
K

+ 2
(
k ∗ ihε(Cu), ihε(Cu)

)

≤ C
(
||ε(Πu)||2L2(D) + ||Πp||2L2(D) +

∑
K∈Th

1

h2
K

‖Πu‖2
L2(K) + h2||∇Πp||2L2(D) + h2||∇p̃||2L2(D)

)
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where C depends only on ρ, ηs, ηp, k and α. Time integration for 0 ≤ s ≤ T yields

ρ

2
‖Cu(s)‖2

L2(D) + ηs

∫ s

0
‖ε(Cu)‖2

L2(D) + 2

∫ s

0

(
(k ∗ ihε(Cu))(s), ihε(Cu(s))

)
ds

≤ ρ

2
‖Cu(0)‖2

L2(D) + C

∫ s

0

(
||ε(Πu)||2L2(D) + ||Πp||2L2(D) + ||Πσ||2L2(D)

+
∑

K∈Th

1

h2
K

‖Πu‖2
L2(K) + h2||∇Πp||2L2(D) + h2||∇p̃||2L2(D).

Using standard interpolation results and (3.50), we obtain

‖ε(Cu)‖2
L2(L2) ≤ Ch2

(
‖ũ‖2

hμ(W 2,r) + ‖p̃‖2
hμ(W 1,r) + ‖∇u0‖2

L2(D) + ‖g‖2
L2(W 1,r(D))

)
,

where C does not depend on h, f1, f2, u0 and g. Then, using the well known properties of
the Helmholtz-Weyl projector (see section 1.5) and estimation (1.16) there exists a constant C
independent of h, f1, f2, u0 and g such that

‖∂ũ

∂t
‖hμ(Lr) + ‖ũ‖hμ(W 2,r) + ‖p̃‖hμ(W 1,r) ≤ C

(
‖f1, u0‖Y + ‖f2‖hμ(W 1,r) + ‖w‖Lγ(hμ(W 1,r))

)
.

In addition, since

‖g‖L2(W 1,r) ≤ C‖qS‖L2(Ω;L∞([0,T ]))‖w‖L2(L2(W 1,r)) and ‖∇u0‖L2(D) ≤ C‖u0‖DAr

we obtain

||ε(Cu)||L2(L2) ≤ Ch
(
||f1, u0||Y + ||f2||U + ||w||W

)
where C does not depend on h, f1, f2, u0 and w. Thus

(3.58) ||ε(eu)||L2(L2) ≤ Ch
(
||f1, u0||Y + ||f2||U + ||w||W

)
.

It remains to prove that

(3.59) ‖q̃D − q̃D
h ‖L2(L∞(L2)) ≤ Ch

(
||y||Y + ||f2||U + ||w||W

)
,

where C does not depend on h, f1, f2, u0 and w. The solution (ũ, q̃D) := T(y, f2, w) satisfies
for t ∈ [0, T ]

q̃D(t) =

∫ t

0
e−

t−s
2λ

(
(∇ũ)qS + w

)
ds.

Hence, (3.59) follows by subtracting (3.46) from the above equation. �

The goal is now to prove that (3.15) has a unique solution (uh, qh) converging to that of
(3.21)-(3.21). Since qS does not depend on x ∈ D, it suffices to show that (3.40) has a unique
solution (uh, qD

h ) converging to (u, qD) solution of (3.2)-(3.7). For this purpose, use, as in the
previous chapter, an abstract framework and write (3.15) as follows: given y := (f, u0) ∈ Y ,
find xh := (uh, qD

h ) ∈ Xh such that

(3.60) Fh(y, xh) = 0,

where Fh is defined by

Fh : Y × Xh −→ Xh

(y, xh) �−→ Fh(y, xh) := xh − Th

(
y, Sc(xh), Sd(ihx)

)
.

In order to prove existence and convergence, use Lemma 2.25. The mapping Fh : Y ×Xh →
Xh is C1. First prove that the scheme is consistent and that DxF is locally Lipschitz.
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Lemma 3.20. Let y := (f, u0) ∈ Y be sufficiently small, assume Remark 3.16 and let x(y) :=
(u(y), qD(y)) ∈ X be the solution of (3.21)-(3.23). Then, there exists a constant C1 such that
for all 0 < h < 1, for all y ∈ Y it holds

(3.61) ‖Fh(y, ihx(y))‖Xh
≤ C1h

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
.

Moreover, there exists a constant C2 such that for all h > 0, for all y ∈ Y , for all z ∈ Xh we
have

(3.62) ‖DxFh(y, ihx(y)) − DxFh(y, z)‖L(Xh) ≤
C2

h
‖ihx(y) − z‖Xh

.

Proof. From the definition of Fh we have

Fh(y, ihx) = ihx − x − Th

(
y, Sc(ihx), Sd(ihx)

)
= (ihx − x) + Th(0, 0, Sc(ihx) − Sc(x), Sd(x) − Sd(ihx)) + (T − Th)(y, Sc(x), Sd(x))

so that,

1

3
‖Fh(y, ihx)‖2

Xh
≤‖ihx − x‖2

Xh
+ ‖Th(0, 0, Sc(ihx) − Sc(x), Sd(x) − Sd(ihx))‖2

Xh

+ ‖(T − Th)(y, Sc(x), Sd(x))‖2
Xh

.

Using standard interpolation results for the first term of the right hand side and Lemma 3.19
for the second and third terms, it follows that

(3.63) ‖Fh(y, ihx)‖2
Xh

≤ C
(
h2‖x‖2

X + ‖Sc(x) − Sc(ihx)‖2
L2(L2) + ‖Sd(x) − Sd(ihx)‖2

L2(L2(L2))

+ h2‖y‖2
Y + h2‖Sc(x)‖hμ(W 1,r) + h2‖Sd(x)‖2

L2(hμ(W 1,r))

)
,

C being independent of h and y. Proceeding as in Corollary 3.7, we have
(3.64)

‖Sc(x)‖hμ(W 1,r)+‖Sd(x)‖L2(hμ(W 1,r)) = ‖ λ

ηp
IE(qD⊗qD)‖hμ(W 1,r)+‖(∇u)qD‖L2(hμ(W 1,r)) ≤ C‖x‖2

X ,

C being independent of h and y. On the other hand, we also have

Sd(x) − Sd(ihx) = (∇u)qD − (∇ihu)ihqD

= (∇(u − ihu))qD + (∇ihu)(qD − ihqD)

so that, using a Cauchy-Schwarz inequality

‖Sd(x) − Sd(ihx)‖2
L2(L2(L2)) ≤ C‖x − ihx‖Xh

(
‖qD‖L2(L∞(L∞)) + ‖∇ihu‖L2(L∞)

)
C being independent of h and y. Standard interpolation results lead to

‖x − ihx‖Xh
≤ C1h‖x‖X

and

‖∇ihu‖L2(L∞) ≤ ‖∇u‖L2(L∞) + ‖∇(u − ihu‖L2(L∞) ≤ C2‖u‖hμ(W 2,r),

for 0 < h < 1 and where C1, C2 are constants independent of h and x. Thus

(3.65) ‖Sd(x) − Sd(ihx)‖L2(L2(L2)) ≤ Ch‖x‖X ,

C being independent of h and y. Similarly

(3.66) ‖Sc(x) − Sc(ihx)‖L2(L2) ≤ Ch‖x‖X .

Finally, (3.64), (3.65) and (3.66) in (3.63) yields (3.61).
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Now prove (3.62). Let z := (v, r) ∈ Xh, let z̃ := (ṽ, r̃) ∈ Xh, we have(
DxFh(y, ihx) − DxFh(y, z)

)
z̃ = −Th

(
0, 0, (DSc(ihx) − DSc(z))z̃, (DSd(ihx) − DSd(z))z̃

)
.

Using Lemma 3.19 we obtain

(3.67) ‖ (DxFh(y, ihx) − DxFh(y, z)) z̃‖Xh

≤ C
(
‖(DSc(ihx) − DSc(z))z̃‖L2(L2) + ‖(DSd(ihx) − DSd(z))z̃‖L2(L2(L2))

)
,

C being independent of h and y. Using Cauchy-Schwarz inequality, there exists a constant C
independent of h and y such that

‖(DSd(ihx) − DSd(z))z̃‖L2(L2(L2))

≤ C
(
‖∇(ihu − v)‖L2(L∞)‖r̃‖L2(L∞(L2)) + ‖∇ṽ‖L2(L∞)‖ihqD − r‖L2(L∞(L2))

)
.

A classical inverse inequality yields

‖(DSd(ihx) − DSd(z))z̃‖L2(L2(L2))

≤ C̃

h

(
‖∇(ihu − v)‖L2(L2)‖r̃‖L2(L∞(L2)) + ‖∇ṽ‖L2(L2)‖ihqD − r‖L2(L∞(L2))

)
,

C̃ being independent of h and y, so that we finally have

(3.68) ‖(DSd(ihx) − DSd(z))z̃‖L2(L2(L2)) ≤
C̃

h
‖ihx − z‖Xh

‖z̃‖Xh
.

Similarly

‖(DSc(ihx) − DSc(z))z̃‖L2(0,T ;L2(D)) ≤ C‖ihq − r‖L2(L∞(L∞))‖r̃‖L2(L∞(L2))

≤ C̃

h
‖ihx − z‖Xh

‖z̃‖Xh
.(3.69)

Inequalities (3.68) and (3.69) in (3.67) yields (3.62). �

Before proving existence of a solution to (3.60) it is still necessary to check that DxFh(y, ihx)
is invertible.

Lemma 3.21. Let y := (f, u0) ∈ Y be sufficiently small, assume Remark 3.16 and let x(y) :=
(u(y), qD(y)) ∈ X be the solution of (3.21)-(3.23). Then, for y sufficiently small, for h ≤ 1 it
holds

‖DxFh(y, ihx(y))−1‖L(Xh) ≤ 2.

Proof. By definition of Fh, we have

DxFh(y, ihx) = I − Th(0, 0, DSc(ihx), DSd(ihx)),

so that

DxFh(y, ihx) = I − Gh with Gh := Th(0, 0, DSc(ihx), DS(ihx)).

Proving that ‖Gh‖L(Xh) ≤ 1/2 for y sufficiently small will imply that DxFh(y, ihx) is invertible
and

‖DxFh(y, ihx)−1‖L(Xh) ≤ 2.

Let z := (v, τ) ∈ Xh. Using Lemma 3.19 we have

‖Gh(z)‖Xh
≤ C1

(
‖DSc(ihx)z‖L2(L2) + ‖DSd(ihx)z‖L2(L2(L2))

)
,
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C1 being independent of y and h. Proceeding as in the proof of Lemma 3.20, we have

‖DSd(ihx)z‖L2(L2(L2)) ≤ C2

(
‖∇u‖L2(W 1,r)‖τ‖L2(L∞(L2)) + ‖∇v‖L2(L2)‖qD‖L2(L∞(W 1,r))

)
,

C2 being independent of y, h and z. Hence,

‖Gh(z)‖Xh
≤ C3‖x‖X‖z‖Xh

,

where C3 is independent of y, h and z. From Lemma 3.12, the mapping y �→ x(y) is continuous,
thus if ||y||Y is sufficiently small we have ‖x‖X ≤ 1/(2C3) so that

‖Gh(z)‖Xh
≤ 1

2
‖z‖Xh

.

�

Existence of a solution to the finite element scheme (3.15) and convergence to the solution
of (3.2)-(3.7) can now be proved.

Theorem 3.22. Let y := (f, u0) ∈ Y be sufficiently small, assume Remark 3.16 and let
x(y) := (u(y), qD(y)) ∈ X be the solution of (3.21)-(3.21). Then, there exists ζ > 0 such that
for y and h sufficiently small, there exists a unique xh(y) = (uh(y), qD

h (y)) in the ball of Xh

centered at ihx(y) with radius ζh, satisfying

Fh(y, xh(y)) = 0.

Moreover, the mapping y �→ xh(y) is continuous and there exists C > 0 independent of h and y
such that the following a priori error estimate holds

(3.70) ‖x(y) − xh(y)‖Xh
≤ Ch.

The proof of Theorem 3.22 can now be provided.

Proof of Theorem 3.22. Apply Lemma 2.25 with Y := Xh, Z := Xh, G := Fh and
v := ihx(y). According to Lemma 3.20 there exists a constant C1 independent of y and h such
that

ε = ‖Fh(y, ihx(y))‖Xh
≤ C1h

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
.

According to Lemma 3.21, for ‖y‖Y sufficiently small

γ = DxFh(y, ihx(y))L(Xh) ≤ 2.

According to Lemma 3.20, there is a constant C2 independent of y and h such that

L(α) = sup
x∈B(ihx(y),α)

‖DFh(ihx(y)) − DFh(x)‖L(Xh) ≤
C2

h
α.

Hence, we have

2γL(2γε) ≤ 2.2
C2

h

(
2.2C1h

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

))

= 16C1C2

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
.

Using the continuity of the mapping y → x(y) it follows that, for sufficiently small ‖y‖Y then
2γL(2γε) < 1 and Lemma 2.25 applies. There exists a unique xh(y) in the ball B(ihx(y), 2γε)
such that

Fh(y, xh(y)) = 0

and we have
‖ihx(y) − xh(y)‖Xh

≤ 4C1h.
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It suffices to use the triangle inequality

‖x(y) − xh(y)‖Xh
≤ ‖x(y) − ihx(y)‖Xh

+ ‖ihx(y) − xh(y)‖Xh
,

and standard interpolation results to obtain (3.70). The fact that the mapping y �→ (xh(y)) is
continuous is as a direct consequence of the implicit function theorem. �





CHAPTER 4

Numerical simulation of 3D viscoelastic flows with free surfaces

This chapter is mainly extracted from [BPL05] and involves the simulation of viscoelastic
flows with complex free surfaces in three space dimensions. The mathematical formulation of
the model is similar to that of the volume of fluid (VOF) method, but the numerical procedures
are different.

A splitting method is used for the time discretization. The prediction step consists of solving
three advection problems, one for the volume fraction of liquid (which allows the new liquid
domain to be obtained), one for the velocity field and one for the extra-stress. The correction
step corresponds to solving an Oldroyd-B fluid flow problem without advection in the new liquid
domain.

Two different grids are used for the space discretization. The three advection problems are
solved on a fixed, structured grid made up of small cubic cells, using a forward characteristics
method. The Oldroyd-B problem without advection is solved using continuous, piecewise linear
stabilized finite elements on a fixed, unstructured mesh of tetrahedrons.

Efficient post-processing algorithms enhance the quality of the numerical solution. A hier-
archical data structure reduces the memory requirements.

Convergence of the numerical method is checked for the pure extensional flow and the filling
of a pipe. Numerical results are presented for the stretching of a filament. Fingering instabilities
are obtained when the aspect ratio is large. Results pertaining to jet buckling are also shown.

4.1. The model

Let Λ be a cavity of R
3 in which an Oldroyd-B fluid is confined, and let T > 0 be the final

time of the simulation. At time t, the liquid region is denoted D(t). Finally, let QT be the
space-time domain containing the liquid

QT := {(x, t) ∈ Λ × (0, T ); x ∈ D(t), 0 < t < T},

and let ΣT be the space-time free surface between the liquid and the surrounding air. The
notation is shown in two space dimensions in Fig. 1.

In the liquid region, the velocity field u : QT → R
3, the pressure field p : QT → R and the

symmetric extra-stress tensor field σ : QT → R
3×3 must satisfy :

ρ
∂u

∂t
+ ρ(u · ∇)u − 2ηs ∇ · ε(u) + ∇p −∇ · σ = ρg,

∇ · u = 0,

σ + λ
(∂σ

∂t
+ (u · ∇)σ −∇uσ − σ∇uT

)
− 2ηpε(u) = 0.

Here ρ is the density, g the gravity, ηs ≥ 0 and ηp > 0 are the solvent and polymer viscosities
and λ the relaxation time.

Let ϕ : Λ × [0, T ] → R be the volume fraction of liquid. The function ϕ is a step function,
which equals one if liquid is present and zero if it is not; thus ϕ is the characteristic function of

63
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Λ

D(0)

D(t)

D(T )

t = 0

t = T

t

Figure 1. Calculation domain for the stretching of a filament in two space
dimensions. At the initial time, the viscoelastic fluid is at rest and occupies the
domain D(0). At t > 0, the upper plate moves at a given velocity.

the liquid region

D(t) := {x ∈ Λ; ϕ(x, t) = 1}.
Since the interface moves with the liquid, the function ϕ must satisfy (in a weak sense)

(4.1)
∂ϕ

∂t
+ u · ∇ϕ = 0 in QT .

From a Lagrangian point of view, the function ϕ is constant along the trajectories of the fluid
particles. More precisely, ϕ(X(t), t) = ϕ(X(0), 0), where X(t) is the trajectory of a fluid particle,
thus X ′(t) = u(X(t), t).

Initial and boundary conditions are as follows: At the initial time, the volume fraction of
liquid ϕ(·, 0) is given, which defines the liquid region,

D(0) := {x ∈ Λ; ϕ(x, 0) = 1},
(see Fig. 1 for the notations in two space dimensions). The initial velocity field u and extra-
stress tensor σ are then prescribed in D(0). Now turn to the boundary conditions for the
velocity field. It is assumed that no external forces act on the free surface ΣT (effects of surface
tension are neglected) :

(4.2) −pn +
(
2ηsε(u) + σ

)
n = 0 on ΣT ,

where n is the unit outer normal of ΣT . Neglecting surface tension effects may not be correct
in many applications, however, surface tension was not implemented for the following rea-
sons: Firstly, realistic results can be obtained when including viscoelastic effects and without
considering surface tension forces (see the numerical results of section 4.4). Secondly, even
though accurate procedures are available in VOF-like methods to compute surface tension
[GLN+99, LF04, SZ99, Ren88], the mesh size required to obtain a good approximation
of curvature would be too small to allow viscoelastic computations in three space dimensions.
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Inflow
conditions
(velocity and
extra-stress)

Zero force

Slip or no-slip

Zero force

No-slip (zero velocity)

Imposed velocity

Figure 2. Boundary conditions. Top : jet emerging from a die. Bottom :
stretching of a filament.

On the boundary of the liquid region being in contact with the walls (i.e. the boundary
of the cavity Λ, see Fig. 1), essential boundary conditions (i.e. imposed velocity components)
or natural boundary conditions (i.e. boundary conditions which are not explicitly enforced but
which are implicitly included in the weak formulation) can be imposed for the velocity and
the extra-stress. Consider the two following situations : ı) a jet emerging from a die ıı) the
stretching of a filament, see Fig. 2. In case ı), both the velocity and extra-stress are imposed at
the inflow boundary. Either slip or no-slip boundary conditions apply on the other boundaries
of the cavity Λ. If no-slip conditions are enforced for the velocity, then no other conditions
apply. If slip boundary conditions are enforced i.e. u ·n = 0, then the fluid tangent force should
also be set to zero, namely

(4.3)

(
−pn +

(
2ηsε(u) + σ

)
n

)
· ti = 0 i = 1, 2,

where t1 and t2 are two unit vectors tangent to the boundary of the cavity. In case ıı), the
velocity is imposed on the top and bottom sides of the cavity whereas condition (4.2) applies
on the lateral side. Boundary conditions (4.2) and (4.3) are straightforward to implement in
the framework of finite element methods since the corresponding terms vanish after integration
by parts in the variational formulation, see section 3.2 hereafter.

4.2. Time discretization: an implicit splitting algorithm

The implicit, order one, splitting algorithm described in [MPR99, MPR03, CPR05] for
Newtonian flows is extended here to viscoelastic situations. This splitting algorithm allows
advection phenomena to be decoupled from other phenomena, see [Glo03]. The reader should
note that a similar algorithm has already been presented for viscoelastic flow computations in
fixed domains [PW99].

Let 0 = t0 < t1 < t2 < . . . < tN = T be a subdivision of the time interval [0, T ], define
Δtn = tn − tn−1 as the n-th time step, n = 1, 2, . . . , N , Δt the largest time step. At time tn−1,
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un−1, σn−1

un− 1

2

σn− 1

2

un

σn

Dn−1

Dn Dn

tn−1 tn−
1

2 (prediction step) tn (correction step)

Figure 3. The splitting algorithm.

assume that an approximation ϕn−1 : Λ → R of the volume fraction of liquid is known, which
defines the liquid region :

Dn−1 := {x ∈ Λ; ϕn−1(x) = 1}.
Also assume that approximations of the velocity un−1 : Dn−1 → R

3 and the extra stress
σn−1 : Dn−1 → R

3×3 are available. Then ϕn, Dn, un, σn are computed by means of a splitting
algorithm as illustrated in Fig. 3. The prediction step consists of solving three advection
problems, which yields the new volume fraction of liquid ϕn, the new liquid region Dn, the

predicted velocity un− 1

2 : Dn → R
3 and the predicted extra-stress σn− 1

2 : Dn → R
3×3. Then,

the correction step is performed, a generalized Stokes problem is solved, which yields the new
velocity un : Dn → R

3 and pressure pn : Dn → R. The new extra-stress σn : Dn → R
3×3 is

then updated from the Oldroyd-B constitutive equation.

4.2.1. Prediction step : advection. The prediction step consists of solving between
time tn−1 and tn the three advection problems :

∂v

∂t
+ (v · ∇)v = 0,(4.4)

∂τ

∂t
+ (v · ∇)τ = 0,(4.5)

∂ψ

∂t
+ v · ∇ψ = 0,(4.6)

with initial conditions

v(tn−1) = un−1,

τ(tn−1) = σn−1,

ψ(tn−1) = ϕn−1.

These three problems can be solved exactly using the method of characteristics [Pir89, PLT92,

QV91], the trajectories of the velocity field being straight lines. Indeed, the trajectories are
given by X ′(t) = v(X(t), t), but since v is constant along the trajectories, it follows that

X ′(t) = v(X(tn−1), tn−1) = un−1(X(tn−1)). Let un− 1

2 , σn− 1

2 , ϕn denote the solution at time tn

of (4.4), (4.5), (4.6), respectively. Thus

un− 1

2 (x + Δtnun−1(x)) = un−1(x),(4.7)

σn− 1

2 (x + Δtnun−1(x)) = σn−1(x),(4.8)

ϕn(x + Δtnun−1(x)) = ϕn−1(x),(4.9)
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hold for x belonging to Dn−1. Once ϕn is known in the cavity Λ, then the liquid region at time
tn is defined by :

Dn := {y ∈ Λ; ϕn(y) = 1} .

At this point it should be stressed that after the prediction step, the obtained velocity un− 1

2 is
not divergence free. The divergence free property is obtained after the correction step, see eq.
(4.10) and (4.11) below.

4.2.2. Correction step : Stokes and Oldroyd-B. The new liquid region Dn being

known, the predicted velocity un− 1

2 : Dn → R
3 and the extra-stress σn− 1

2 : Dn → R
3×3 being

also known, the new velocity un is obtained by solving a generalized Stokes problem :

ρ
un − un− 1

2

Δtn
− 2ηs∇ · ε(un) + ∇pn −∇ · σn− 1

2 = ρg in Dn,(4.10)

∇ · un = 0 in Dn,(4.11)

then, the new extra-stress σn is obtained from Oldroyd-B constitutive equation :

(4.12) σn + λ
(σn − σn− 1

2

Δtn
−∇unσn− 1

2 − σn− 1

2 (∇un)T
)
− 2ηpε(u

n) = 0.

4.3. Space discretization and implementation

Two distinct grids are used to solve the prediction and correction steps. Since the shape of
the cavity Λ can be complex (for instance the case in mould filling or extrusion processes), finite
element techniques are well suited for solving (4.10)-(4.12) using an unstructured mesh. On the
other hand, a structured grid of cubic cells is used to implement (4.7)-(4.9). The reasons for
using a structured grid are the following: Firstly, the method of characteristics can be easily
implemented on structured grids. Secondly, the size of the cells can be tuned in order to control
numerical diffusion when projecting (4.7)-(4.9) on the structured grid. Numerical experiments
reported in [MPR99, MPR03, CPR05] have shown that choosing the cell spacing three to
five times smaller than the mesh spacing is a good trade-off between numerical diffusion and
computational costs or memory storage.

4.3.1. Advection step : structured grid of cubic cells. The implementation of (4.7)-
(4.9) is now discussed. Assume that the grid is made out of cubic cells Cijk of size h. Let ϕn−1

ijk ,

un−1
ijk and σn−1

ijk be the approximate value of ϕ, u and σ at center of cell number (ijk) and time

tn−1. According to (4.7)-(4.9), the advection step on cell number (ijk) consists of advecting
ϕn−1

ijk , un−1
ijk and σn−1

ijk by Δtnun−1
ijk and then projecting the values onto the structured grid. An

example of cell advection and projection is presented in Fig. 4 in two space dimensions.

This advection algorithm is unconditionally stable with respect to the CFL condition -
velocity multiplied by the time step divided by the cells spacing h - and O(Δt + h2/Δt) con-
vergent, according to the theoretical results available for the characteristics-Galerkin method
[Pir89, PLT92, QV91]. However, this algorithm has two drawbacks. The first is that numeri-
cal diffusion is introduced when projecting the values of the advected cells on the grid (remember
that the volume fraction of liquid is discontinuous across the interface) and the second is if the
time step is too large, two cells may arrive at the same place, producing numerical (artificial)
compression.

In order to enhance the quality of the volume fraction of liquid, two post-processing proce-
dures have been implemented. Refer to [MPR99, MPR03, CPR05] for a description in two
and three space dimensions. The first procedure reduces numerical diffusion and is a simplified
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index j

index i

ϕn−1
ij

Δtnun−1
ij

ϕn−1
ij

16
3
ϕn−1

ij

16

9
ϕn−1

ij

16
3
ϕn−1

ij

16

Figure 4. An example of two dimensional advection of ϕn−1
ij by Δtnun−1

ij , and
projection on the grid. The advected cell is represented by the dashed lines. The
four cells containing the advected cell receive a fraction of ϕn−1

ij , according to
the position of the advected cell. In this example, the new values of the volume
fraction of liquid ϕn are updated as follows : ϕn

i+1,j+1 = ϕn
i+1,j+1 + 3/16ϕn−1

ij ;

ϕn
i+2,j+1 = ϕn

i+2,j+1 + 9/16ϕn−1
ij ; ϕn

i+1,j+2 = ϕn
i+1,j+2 + 1/16ϕn−1

ij ; ϕn
i+2,j+2 =

ϕn
i+2,j+2 + 3/16ϕn−1

ij ;

implementation of the SLIC (Simple Linear Interface Calculation) algorithm [Cho80, NW76,

SZ99], see Figures 5 and 6 for a simple example. In the SLIC procedure, if a cell is partially
filled with liquid, then the volume fraction of liquid is condensed either along the cells faces,
edges or corners (see Fig. 7), according to the volume fraction of liquid of the neighbouring
cells (see Fig. 8).

1

1

1

1/2 1/2

1/2 1/2

1/2

1/2

1/2

1/2

1/4

1/4

1/41/4

1/4

1/4

1/2

time tn time tn+1 time tn+2

uΔt = 1.5h

Figure 5. Numerical diffusion during the advection step. At time tn, the cells
have a volume fraction of liquid one or zero. The velocity u is horizontal, the
time step Δt is chosen so that uΔt = 1.5h where h is the cells spacing.

The second procedure removes artificial compression (that is values of the volume fraction of
liquid greater than one), which may happen when the volume fraction of liquid advected in two
cells arrive at the same place, see Fig. 9. The aim of this procedure is to produce new values
ϕn

ijk which are between zero and one and is as follows: At each time step, all the cells having

values ϕn
ijk greater than one (strictly) or between zero and one (strictly) are sorted according

to their values ϕn
ijk. This can be done in an efficient way using quick sort algorithms. The cells

having values ϕn
ijk greater than one are called the dealer cells, whereas the cells having values

ϕn
ijk between zero and one are called the receiver cells. The second procedure then consists of

moving the excess fraction of liquid in the dealer cells to the receiver cells, see [MPR99, Mar00]
for details.
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Figure 6. Reducing numerical diffusion using the SLIC algorithm. Before ad-
vecting a cell partially filled with liquid, the volume fraction of liquid is condensed
along the cells boundaries, according to the neighbouring cells.

Figure 7. SLIC algorithm. If the cell is partially filled with liquid, the liquid is
pushed along a face, an edge, or a vertex of the cell, according to the neighbours
volume fraction of liquid.

Figure 8. SLIC algorithm. The volume fraction of liquid in a cell partially
filled with liquid is pushed according to the volume fraction of liquid of the
neighbouring cells. Two examples are proposed. Left: the left and bottom
neighbouring cells are full of liquid, the right and top neighbouring cells are
empty, the liquid is pushed at the bottom left corner of the cell. Right: the
bottom neighbouring cell is full of liquid, the right neighbouring cell is empty, the
other two neighbouring cells are partially filled with liquid, the volume fraction
of liquid is pushed along the left side of the cell.

Figure 9. An example of numerical (artificial) compression.
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Validation of these procedures using standard two dimensional test cases taken from [AMS03,

RK98] have been performed in [CPR05]. Translation, rotation and stretching of a circular
region of fluid are shown in Fig. 10. For more details refer to section 5.1 of [CPR05].

Figure 10. Validation of the advection step. Left: Translation of a circular
region of liquid, the interface is shown at time t = 0 and t = 0.06 s. Middle:
Rotation of a circular region of liquid, the interface is shown at time t = 0 and
t = 0.126 s. Right: Single vortex test case, the interface is shown at time t = 1
(maximal deformation) and t = 2 s (return to initial circular shape).

In a number of industrial applications, the shape of the cavity containing the liquid is
complex. Therefore, a special data structure has been implemented in order to reduce the
memory requirements used to store the cell data. An example is proposed in Fig. 11. The
cavity containing the liquid is meshed into tetrahedrons. Without any particular cells data
structure, a great number of cells would be stored in the memory without ever being used. The
data structure makes use of three hierarchical levels to define the cells. At the coarsest level, the
cavity is meshed into windows which can be glued together. Each window is then subdivided
into blocks. Finally, a block is cut into smaller cubes, namely the cells (ijk). When a block
is free of liquid (ϕ = 0), it is switched off, i.e. the memory corresponding to the cells is not
allocated. When liquid enters a block, the block is switched on, i.e. the memory corresponding
to the cells is allocated.

Once values ϕn
ijk, u

n− 1

2

ijk and σ
n− 1

2

ijk have been computed on the cells (ijk), values are inter-
polated at the vertices P of the finite element mesh. More precisely, the volume fraction of
liquid at vertex P is computed by considering all the cells (ijk) contained in the triangles K
containing the vertex P , see Fig. 12, using the following formula :

(4.13) ϕn
h(P ) =

∑
K

P∈K

∑
(ijk)⊂K

φP (xijk)ϕ
n
ijk

∑
K

P∈K

∑
(ijk)⊂K

φP (xijk)
,

where xijk denotes the center of cell (ijk) and φP is the finite element basis function attached
to vertex P . Similar formulae hold for the velocity and extra-stress. Thus, the liquid region is
defined as follows: An element (tetrahedron) of the mesh is said to be liquid if, at least one of
its vertices has a volume fraction of liquid ϕn

h > 0.5, see Fig. 13. The computational domain Dn
h

used for solving (4.10)-(4.12) is then defined to be the union of all liquid elements. At this point,
it is necessary to stress that the values of the volume fraction of liquid on the unstructured finite
element mesh are only used in order to define the liquid region. Again, advection of the volume
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finite element mesh

window level

block level

cell level

Figure 11. The hierarchical window-block-cell data structure used to imple-
ment cells advection in the framework of the 2D filament stretching.

P

Figure 12. Interpolation of the volume fraction of liquid from the structured
cells to the unstructured finite element mesh. The volume fraction of liquid at
vertex P depends on the volume fraction of liquid in the shaded cells.

fraction of liquid only occurs on the structured cells, and not on the unstructured finite element
mesh. Also, the volume constraint is not directly enforced in the numerical model. However, if
numerical diffusion of the volume fraction of liquid is small, then the volume constraint will be
satisfied. This is precisely the goal of the two post-processing procedures that have been added.
In all the computations, it has been observed that the (numerical) diffusion layer of the volume
fraction of liquid (0 < ϕ < 1) is of the order of one or two cells and that the volume constraint
is satisfied up to 1%. In order to achieve this goal, the two post-processing procedures must be
switched on and the cells spacing must be three to five times smaller than the mesh spacing.

4.3.2. Correction step : Stokes and Oldroyd-B with finite elements. Turn to the
finite element techniques used for solving (4.10)-(4.12). Following [BPS01, PR01], an EVSS
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Figure 13. A two dimensional example of a liquid element. The values of the
volume fraction of liquid ϕ at the center of the cells are known. A value ϕ is then
interpolated at the vertices of the finite element mesh. The displayed triangle
has at least one vertex with value ϕ greater than 0.5. Therefore, the triangle is
liquid and the velocity, the pressure and the extra-stress will be computed at the
three vertices of the triangle.

(Elastic Viscous Split Stress) formulation with continuous, piecewise linear stabilized finite

elements has been used. More precisely, given the predicted velocity u
n− 1

2

h , an extra-variable

B
n− 1

2

h defined by ∫
Dn

B
n− 1

2

h : Ehdx =

∫
Dn

ε(u
n− 1

2

h ) : Ehdx ∀Eh ∈ Mh,

(see section 2.1 for the definition of Mh) is introduced for stability purposes. No boundary

conditions apply to B
n− 1

2

h . This equation results in solving a diagonal linear system provided
a mass lumping quadrature formula is used. Since the mass lumping quadrature formula is

order two accurate in space, the global accuracy of the method is not affected. Once B
n− 1

2

h is
computed, the new velocity un

h and pressure pn
h are obtained by solving the following Stokes

problem :

∫
Dn

ρ
un

h − u
n− 1

2

h

Δtn
· vhdx + 2(ηs + ηp)

∫
Dn

ε(un
h) : ε(vh)dx −

∫
Dn

pn
h∇ · vhdx

=

∫
Dn

(
2ηpB

n− 1

2

h − σ
n− 1

2

h

)
: ε(vh)dx +

∫
Dn

ρg · vhdx ∀vh ∈ Vh,

∫
Dn

∇ · un
hqhdx +

∑
K⊂Dn

αK

∫
K

⎛
⎝ρ

un
h − u

n− 1

2

h

Δtn
+ ∇pn

h −∇ · σn− 1

2

h − ρg

⎞
⎠ · ∇qh dx = 0 ∀qh ∈ Qh,

(4.14)

see the definitions of Vh and Qh in section 2.1. Here K denotes a tetrahedron, αK is the local
stabilization coefficient defined by

αK :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|K| 23
12(ηs + ηp)

if ReK ≤ 3,

|K| 23
4ReK(ηs + ηp)

else,
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where the local Reynolds number ReK is defined by

ReK :=
ρ|K| 13 max

x∈K
|un− 1

2 (x)|

2(ηs + ηp)
.

Note that in (4.14) the corrected velocity un
h can be prescribed on the boundary of the cavity Λ

whenever needed, see Fig. 2 for an illustration of the boundary conditions. Also note that the
boundary condition (4.2) is implicitly contained in the above variational formulation. Indeed,
(4.14) has been obtained by multiplying the momentum equation with a test function vh ∈ Vh,
integrating by parts, and using the boundary condition (4.2). Thus, from the implementation
point of view, no additional work is required to enforce (4.2). All the degrees of freedom
corresponding to velocity and pressure are stored in a single matrix and the linear system
is solved using the GMRES algorithm with a classical incomplete LU preconditioner and no
restart.

It then remains to update the extra-stress σn
h from Oldroyd-B constitutive equation :(

1 +
λ

Δtn

)∫
Dn

σn
h : τhdx = λ

∫
Dn

(
1

Δtn
σ

n− 1

2

h + ∇un
hσ

n− 1

2

h + σ
n− 1

2

h (∇un)T
)

: τhdx

+ 2ηp

∫
Dn

ε(un
h) : τhdx ∀τh ∈ Mh.

Here σn
h must be prescribed at the inflow boundary, if there is one, see Fig. 2. Again, this

equation results in solving a diagonal linear system whenever a mass lumping quadrature for-
mula is used. In [BPS01, PR01] it is proved that this finite element scheme is convergent
for stationary problems in fixed computational domains. More precisely, it is proved that the
approximate velocity gradient, the approximate pressure and the approximate extra-stress con-
verge with order one in space in the L2 norm, even when the solvent viscosity is small compared
to the polymer viscosity.

Finally, once the new velocity un
h and extra-stress σn

h are computed at the vertices of the
finite element mesh, values are interpolated at the center of the cells (ijk):

(4.15) un
ijk =

∑
P

φP (xijk)u
n
h(P ),

where P denotes a mesh vertex, xijk denotes the center of cell (ijk), φP denotes the finite
element basis function corresponding to vertex P and un

h(P ) is the approximated velocity at
vertex P . A similar formula is used for the extra-stress σn

ijk. Please note that the volume
fraction of liquid is not interpolated from the finite element mesh to the cells. Indeed, the
volume fraction of liquid is only computed on the structured cells. It is interpolated on the
unstructured finite element mesh only in order to define the liquid region after the prediction
step, see the end of section 3.1 above.

4.3.3. Implementations details. The memory storage is as follows: For each cubic cell,
the volume fraction of liquid, the velocity and the extra-stress must be stored in order to
implement (4.7)-(4.9), therefore 1 + 3 + 6 = 10 values. For each vertex of the finite element

mesh, the velocity, the pressure, the extra-stress and the EVSS field B
n−1/2
h = ihε(u

n−1/2
h )

(where ih is the L2 projection onto the finite element space Mh) must be stored, therefore
3 + 1 + 6 + 6 = 16 values. The code is written in the C++ programming language and the
finite element data structure is classical. The data structure of the cells is as follows. Each cell
is labeled by indices (ijk) within a block. Also, each block is labeled by indices (ijk) within a
window, see Fig. 11.
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Mesh Subdivisions (radius × height) Vertices Tetrahedrons
coarse 10 × 80 29565 160320

intermediate 15 × 120 115155 648024
fine 23 × 180 397377 2284800

Table 1. Elongational flow; the three meshes used to check convergence.

Efficient interpolation between the two grids (structured cells/unstructured finite elements)
has been performed by using the following data structure. In order to implement interpolation
from the finite element mesh to the cells, eq. (4.15), the index of the finite element (tetrahedron)
containing each cell is needed. Alternatively, in order to implement interpolation from the cells
to the finite element mesh, eq. (4.13), the list of the cells contained in each finite element
(tetrahedron) is required. This additional data structure is built at the beginning of each
computation. It can be stored in case several computations are performed using the same grids.
The additional CPU time required to build this data structure is small (less than 1%) compared
to the total CPU time.

4.4. Numerical results

Several tests are presented in this section. Firstly, our numerical model is validated for two
simple flows, namely an elongational flow and the filling of a pipe. Then, numerical experiments
corresponding to the stretching of a filament and jet buckling are considered.

4.4.1. Elongational flow. At the initial time, liquid at rest occupies a cylinder with radius
R0 = 0.0034 m and height L0 = 0.0019 m. Then, the velocity field on the top and bottom sides
of the cylinder is imposed to be

u(x, y, z, t) =

⎛
⎝−1

2 ε̇0x
−1

2 ε̇0y
ε̇0z

⎞
⎠ ,

with ε̇0 = 4.68 s−1, whereas (4.2) applies to the lateral sides. Since there is no inflow velocity, no
boundary conditions have to be enforced for the extra-stress. A simple calculation shows that,
for all time t, the above velocity field satisfies the momentum equations, that the extra-stress
tensor is homogeneous, for instance

σxx(x, y, z, t) = − ηpε̇0
1 + ε̇0λ

(
1 − e−( 1

λ
+ε̇0)t

)
,

σxz(x, y, z, t) = 0,

σzz(x, y, z, t) =
2ηpε̇0

1 − 2ε̇0λ

(
1 − e−( 1

λ
−2ε̇0)t

)
,

and that the liquid region remains a cylinder with radius R(t) = R0e
− 1

2
ε̇0t. Indeed, the trajec-

tories of the fluid particles are defined by X ′(t) = u(X(t), t) which yields⎧⎪⎨
⎪⎩

X(t) = X(0)e−
1

2
ε̇0t,

Y (t) = Y (0)e−
1

2
ε̇0t,

Z(t) = Z(0)eε̇0t.

The computational domain is the cylinder with radius of 0.004 m and high of 0.02 m. Three
meshes are used for the computations, the finer mesh being obtained by dividing the mesh size
by 1.5 see Table 1. The cells’ spacing is four times smaller than the mesh size and When using
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the coarse (resp. fine) mesh, the cell size is 0.0001 m (resp. 0.00005 m). The time steps where
chosen so that the CFL number of the cells - velocity multiplied by the time step divided by
the cells spacing - equals 0.9 at time t = 0 and 3.7 at time t = 0.3.

Numerical results corresponding to 0.05 % by weight Polystyrene (the parameter values are
taken from [CLLD01], ρ = 1030 kg/m3, ηs = 9.15 Pa.s, ηp = 25.8 Pa.s, λ = 0.421 s, thus
De = λε̇0 = 1.97) are illustrated in Fig. 14 and 15. Clearly the computed velocity agrees
perfectly with the exact velocity whereas the error for the extra-stress is within 10% on the fine
grid. The fact that the velocity is more precise than the extra-stress is not surprising since the
finite element method is expected to be of order two (in the L2 norm and in a fixed domain) for
the velocity but only of order one for the extra-stress. Convergence rates are shown in Figure
16 and it can be seen that each component is of the order of one.

Figure 14. Elongational flow : shape of the liquid region (the volume corre-
sponding to volume fraction of liquid ϕ > 0.5 is shown); from left to right:
t = 0 s, t = 0.1 s, t = 0.2 s, t = 0.3 s, t = 0.4 s.

4.4.2. Filling of a pipe. Consider a rectangular pipe of dimensions [0, L1]×[0, L2]×[0, L3]
in the xyz directions, where L1 = 4 m, L2 = 1 m, L3 = 0.3 m. At the initial time, the pipe is
empty. Then, fluid enters from the left side (x = 0) with the velocity and extra-stress given by

(4.16) u(x, y, z, t) =

⎛
⎝ux

0
0

⎞
⎠ , σ(x, y, z, t) =

⎛
⎝σxx σxy 0

σxy 0 0
0 0 0

⎞
⎠ ,

with ux(y) = 6y(L2−y), σxx(y) = 72ηsλ(2y−L2)
2 and σxy(y) = −6ηp(2y−L2). The boundary

conditions are detailed in Fig. 17 and as follows: On the top and bottom sides (y = 0 and
y = L2), no-slip boundary conditions apply. On the front and rear sides (z = 0 and z = L3),
slip boundary conditions apply. On the right side (x = L1) the fluid is free to exit the pipe with
zero vertical velocity. The parameter values are taken from [TMC+02] subsection 6.1 and are
the following : ρ = 1 kg/m3, ηs = ηp = 0.5 Pa.s and λ = 5 s. Three finite element meshes
are used in this subsection, see Table 2 and Fig. 18 for details. The cells spacing is five times
smaller than the finite element mesh spacing.

First consider the filling of the pipe, starting from empty. This experiment has been con-
sidered in [PC98, TMC+02] and is sometimes called fountain flow. The imposed velocity and
extra-stress profile at the inlet are those corresponding to Poiseuille flow, see (4.16). Following
[GVV04], after some time the shape of free surface should be close to a half circle. In Fig. 17,
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Figure 15. Elongational flow; top : vertical velocity uz along the vertical axis
Oz at final time t = 0.3 s; bottom : extra-stress σzz at z = 0.0006 m as a
function of time.
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Figure 16. Elongational flow; error in the L2 norm with respect to the mesh size.



4.4. NUMERICAL RESULTS 77

Mesh Subdivisions Vertices Tetrahedrons
coarse 40 × 10 × 3 1804 7200

intermediate 80 × 20 × 6 11900 57600
fine 160 × 40 × 12 85813 460800

Table 2. Filling of a pipe; the three meshes used to check convergence.

the velocity and the shape of the free surface is shown at several times. The mesh is the finest
one and the time step is Δt = 0.03 s, so that the CFL number of the cells - velocity multiplied
by the time step divided by the cells spacing - equals 4.5. Away from the inlet, the position of
the free surface is the same for both Newtonian and viscoelastic flows, see Fig. 19. As predicted
theoretically [GVV04], the shape is almost circular. Details of the fountain flow at the free
surface are provided in Fig. 19.

inflow

x = 0 outflow

x = L1

y = 0

y = L2

Figure 17. Filling of a pipe; notations and isovalue ϕ = 0.5 for a Newtonian
fluid at times t = 0, 0.6, 1.2, 1.8, 2.4, 3.0 s.

Once totally filled with liquid, the velocity and extra-stress must satisfy (4.16) in the whole
pipe. Convergence of the stationary solution is checked with λ = 1 s, thus De = λU/L2 = 1,
where U = 1 m/s is the average velocity. In Fig. 20, σxx, σxy and ux are plotted along the
vertical line x = L1/2, 0 ≤ y ≤ L2, z = L3/2. Convergence can be observed even though
boundary layer effects are present, this being classical with low order finite elements. In Fig.
21, the error in the L2 norm of σxx, σxy and ux is plotted versus the mesh size. Clearly order one
convergence rate is observed for the extra-stress, order two for the velocity, this being consistent
with theoretical predictions for simpler problems [BPS01].

4.4.3. Stretching of a filament. The flow of an Oldroyd-B fluid contained between two
parallel coaxial circular disks with radius R0 = 0.003 m is considered. At the initial time, the
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Figure 18. Filling of a pipe; fine mesh

Figure 19. Filling of a pipe. Left : position of the free surface at time t =
0, 0.6, 1.2, 1.8, 2.4, 3.0 s. Right : Velocity field close to the free surface at time
t = 1.8 s. Top : Newtonian flow. Bottom : viscoelastic flow (λ = 5 s thus
De = 5).

distance between the two end-plates is L0 = 0.0019 m and the liquid is at rest. Then, the
top end-plate is moved vertically with velocity L0ε̇0e

ε̇0t. The model data (ρ, ηs, ηp, λ, ε̇0) are
those of subsection 4.4.1. The fine mesh of subsection 4.4.1 was used with an initial time step
Δt0 = 0.005 s, thus the initial CFL number of the cells - velocity multiplied by the time step
divided by the cells spacing - is close to one, the time step at time tn being such, that the
distance of the moving end-plate between two time steps is constant, i.e.

Δtn = Δtn−1e−ε̇0Δtn−1

.

Therefore, the CFL number remains constant throughout the simulation. The shape of the
liquid region at several times is represented in Fig. 22, for both Newtonian and non-Newtonian
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Figure 20. Filling of a pipe; top : σxx along the vertical line x = L1/2, 0 ≤
y ≤ L2, z = L3/2, middle : σxy, bottom : horizontal velocity ux.
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Figure 21. Filling of a pipe; error in the L2 norm with respect to the mesh size.

computations. 2D cuts along plane y = 0 are show in Fig. 23. As reported in [YM98], the
’necking’ phenomena occurring in the central part of the liquid for Newtonian fluids is not
observed for viscoelastic fluids, due to strain hardening. This calculation requires 2 hours (resp.
24 hours) on the coarse mesh (resp. fine mesh) using a single user Pentium 4 CPU 2.8 Ghz,
with 2Gb memory, under the Linux operating system. Most of the time is spent in solving the
associated Stokes problem. The memory usage is 200 Mb for the coarse mesh, resp. 1.6 Gb for
the fine mesh.

Unfortunately, the high Hencky strains as reported in [YM98, CLLD01] for 2D axisymetric
computations has not been reached. The reasons may be the following: ı) When the Hencky
strain is large, the filament is highly stretched and the number of vertices in the thinnest region
of the filament decreases, and so does the accuracy. Therefore, Lagrangian numerical models
should be more accurate than Eulerian models provided the mesh is not too distorted. ıı)
Surface tension, which should stabilize the filament shape, is not include in the model. ııı)
Since the filament breaking is due to 3D instabilities, 2D axisymetric computations should be
more stable than 3D computations. At this point, it should be mentioned that in [RH99], the
authors have also reported the same discrepancies when comparing results achieved by their 3D
Lagrangian model with experiments [SM96]. Moreover, from Fig. 11 of [RH99], it is predicted
that the onset of instability when De = 2 is obtained for Hencky strains ε � 2. This is in
accordance with the results of Fig. 23.

It will now be shown that the numerical model is capable of reproducing fingering instabilities
reported in [RH99, BRLH02, MS02, DLCB03] for non-Newtonian flows. Following section
4.4 in [MS02], take an aspect ratio L0/R0 = 1/20 (R0 = 0.003 m, L0 = 0.00015 m), so that the
Weissenberg number We = DeR2

0/L2
0 is large. The finite element mesh has 50 vertices along

the radius and 25 vertices along the height, thus the mesh size is 0.00006 m. The cells size is
0.00001 m and the initial time step is Δt0 = 0.01 s thus the CFL number of the cells - velocity
multiplied by the time step divided by the cells spacing - is close to one. The shape of the
filament is shown in Fig. 24 and fingering instabilities can be observed from the very beginning
of the stretching, leading to branched structures, as described in [MS02, BRLH02, DLCB03].
Clearly, such complex shapes cannot be obtained using Lagrangian models, the mesh distortion
would be too large. In Fig. 25, the mesh is changed in order to check for the dependence of the
results on the mesh topology. In Fig. 26, the same simulation is performed for a Newtonian
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Figure 22. Filament stretching. Aspect ratio L0/R0 = 19/30. Shape of the
liquid region in the y = 0 plane (the isovalues of ϕ are shown); column 1 :
ε = ε̇0t = 0; column 2 : ε = ε̇0t = 0.57; column 3 : ε = ε̇0t = 1.12; column 4 :
ε = ε̇0t = 2.25; column 5 : ε = ε̇0t = 4.49; top row : Newtonian fluid; bottom
row : Viscoelastic fluid with λ = 0.421 s (De = 1.97).

fluid and no fingering instabilities can be seen. It is possible therefore to conclude that these
instabilities are essentially elastic, as reported in [RH99]. However, it should be noted that
fingering instabilities can also be obtained for Newtonian flows, see [STW97].

4.4.4. Jet buckling. The transient flow of a jet injected into a parallelepiped cavity is
reproduced. First, the 3D computations are compared to the 2D results reported in [TMC+02],
section 7.3. Then, the 3D computations are shown.

In order to compare the 3D computations to those of [TM99, TMC+02], consider a thin
cavity of width 0.05 m, variable height H and depth 0.004 m, the width of the jet being
D = 0.005 m and the vertical gravity g = 9.81 m/s2. Slip boundary conditions apply whenever
the jet hits the boundary of the cavity. The finite element mesh can be seen in Fig. 27; the mesh
size is 0.00125 m, it has 16605 vertices and 76800 tetrahedrons; it is obtained by generating
40 × 80 × 4 hexahedrons, each hexahedron being cut into 6 tetrahedrons. The cells size is
0.0002 m and the time step is 0.004 s thus the CFL number of the cells - velocity multiplied by
the time step divided by the cells spacing - is ten.
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1 2 3 4 5

Figure 23. Filament stretching. Aspect ratio L0/R0 = 19/30. Shape of the
liquid region in the y = 0 plane (the isovalues of ϕ are shown); column 1 :
ε = ε̇0t = 0; column 2 : ε = ε̇0t = 0.57; column 3 : ε = ε̇0t = 1.12; column 4 :
ε = ε̇0t = 2.25; column 5 : ε = ε̇0t = 4.49; top row : Newtonian fluid; bottom
row : Viscoelastic fluid with λ = 0.421 s (De = 1.97).

From [TM99], the condition for a Newtonian jet to buckle is

(4.17) Re2 ≤ 1

π

(H/D)2.6 − 8.82.6

(H/D)2.6
,

where Re = ρUD/(ηs +ηp) is the Reynolds number, U being the inflow jet velocity at the top of
the cavity. The aim is to check that the numerical model is consistent with such a condition. The
fluid parameters for the Newtonian case are ρ = 1030 kg/m3, ηs + ηp = 10.3 Pa.s and λ = 0 s.
Firstly, we set U = 1 m/s, so that Re = 0.5 and find the critical cavity height H in order
to obtain buckling. When H/D = 14 no buckling is observed whereas buckling occurs when
H/D = 16. This is consistent with relation (4.17) which predicts buckling when H/D > 15.9.
Secondly, choose a constant ratio H/D = 20 and vary the jet velocity U in order to determine
the maximum Reynolds number for which buckling occurs. The results are shown in Fig. 28.
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Figure 24. Filament stretching, λ = 0.421 s (De = 1.97), aspect ratio L0/R0 =
1/20. Left: shape of the liquid region at time t = 0 s, t = 0.33 s, t = 0.66 s and
t = 1 s. Right: horizontal cut through the middle of the liquid region.
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Figure 25. Filament stretching, λ = 0.421 s (De = 1.97), aspect ratio L0/R0 =
1/20, time t = 1 s. Horizontal cut through the middle of the liquid region. Left:
the mesh has 200 vertices along the diameter. Middle : the mesh has 204 vertices
along the diameter. Right: the middle mesh is rotated by π/4.

Figure 26. Filament stretching, Newtonian fluid, aspect ratio L0/R0 = 1/20.
Left: shape of the liquid region at time t = 1 s. Right: horizontal cut at the
middle of the liquid region. Compare with Fig. 24.

The jet buckles when Re = 0.2 and Re = 0.5 but does not buckle when Re = 0.7. This is
again consistent with condition (4.17) which yields buckling whenever Re ≤ 0.53. Finally, set
Re = 1, H/D = 20 so that no buckling occurs in the Newtonian case and perform a viscoelastic
computation with ηs = 1.03, ηp = 9.27 Pa.s, λ = 0.1 s. The result is shown in Fig. 28, and
obviously buckling occurs. Other computations show that the jet buckles whenever λ < 0.005 s.
Therefore it is possible to conclude that the numerical model yields results which agree with
condition (4.17) in the Newtonian case and that this condition depends on λ for viscoelastic
flows.
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Figure 27. Jet buckling in a thin cavity. The mesh.

Figure 28. Jet buckling of a fluid in a thin cavity, H/D = 20. The first three
figures correspond to Newtonian flows at time t = 0.408 s (Re = 0.2, 0.5, 0.7),
the fourth figure corresponds to a viscoelastic flow at time t = 0.264 s (λ = 0.1 s).

Then compare the 3D viscoelastic computations to those 2D of [TMC+02], with H = 0.1 m
(H/D = 20) and U = 0.5 m/s (Re = 0.25), λ ranges from 0 to 1 s so that De = λU/D ranges
from 0 to 100. The shape of the jet is shown in Fig. 29 and 30. As in [TMC+02], when
the Newtonian jet starts to buckle, the non-Newtonian jet has already produced many folds.
However, a thin viscoelastic jet as in [TMC+02] (time t = 0.3 s) was not observed at all during
the whole experiment.

Finally, simulations for a thick cavity of width 0.05 m, depth 0.05 m and height 0.1 m were
undertaken, the diameter of the jet being D = 0.005 m. Liquid enters from the top of the
cavity with vertical velocity U = 0.5 m/s. The relaxation time λ = 1 s so that De = 100. The
finite element mesh has 503171 vertices and 2918760 tetrahedrons. The cells size is 0.0002 m
and the time step is 0.001 s thus the CFL number of the cells - velocity multiplied by the time
step divided by the cells spacing - is 2.5. The shape of the jet is shown in Fig. 31 and 32 for
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Figure 29. Jet buckling in a thin cavity. Shape of the jet at time t = 0.1 s
(first row), t = 0.2 s (second row), t = 0.3 s (third row), t = 0.4 s (last row),
Newtonian flow (first column), λ = 0.01 s (second column), λ = 0.1 s (third
column), λ = 1 s (last column).
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Figure 30. Jet buckling in a thin cavity. Shape of the jet at time t = 0.5 s
(first row), t = 0.6 s (second row), t = 0.7 s (third row), t = 0.8 s (last row),
Newtonian flow (first column), λ = 0.01 s (second column), λ = 0.1 s (third
column), λ = 1 s (last column).
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Newtonian and viscoelastic flows. This computation took 64 hours on a AMD opteron CPU
with 8Gb memory.
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Figure 31. Jet buckling in a thick cavity. Shape of the jet at time t = 0.1 s
(row 1), t = 0.2 s (row 2), t = 0.3 s (row 3), t = 0.4 s (row 4), t = 0.5 s (row 5),
Newtonian fluid (col. 1 and 2), λ = 1 s (col. 3 and 4).
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Figure 32. Jet buckling in a thick cavity. Shape of the jet at time t = 0.6 s
(row 1), t = 0.7 s (row 2), t = 0.8 s (row 3), t = 0.9 s (row 4), t = 1.6 s (row 5),
Newtonian fluid (col. 1 and 2), λ = 1 s (col. 3 and 4).



Conclusions

Viscoelastic flows have been investigated from both mathematical and numerical points of
view.

Initially the mathematical study of two simplified models was considered. The first was the
time dependent Oldroyd-B model without convective terms. Existence on a fixed time interval
has been proved in several Banach spaces provided the data are small enough, and short time
existence for arbitrarily large data was proved in Hölder continuous spaces for the time variable.
These results are based on properties of the Stokes operator: the maximal regularity property
and the analycity behavior of the corresponding semi-group. A finite element discretization in
space was proposed. Existence of the numerical solution was proved for small data, as well as
a priori error estimates, using an abstract framework closely related to the one used for the
continuous problem.

Then, the extension of these results to the stochastic Hookean dumbbells model was dis-
cussed. Due to the presence of Brownian motion, existence on a fixed time interval, provided
the data are small enough, was proved only in some Banach spaces considered for the previous
deterministic model. A splitting was used in order to avoid complications due to the stochastic
behavior of the solution. Classical results were used for the stochastic component and the same
framework as for the Oldroyd-B model was set up for the other component. A finite element
discretization in space was also proposed. Existence of the numerical solution was proved for
small data, as well as a priori error estimates.

It is anticipated that the existence as well as the convergence of a space-time discretization
using the implicit Euler scheme will be proven.

Secondly, a numerical algorithm for solving viscoelastic flows was described. An Eulerian
model based on the VOF formulation was presented for the simulation of viscoelastic flows with
complex free surfaces in three space dimensions.

A splitting method was used for time discretization. The prediction step consists of solving
three advection problems, one for the volume fraction of liquid, one for the velocity field, one for
the extra-stress. The correction step corresponds to solving an Oldroyd-B flow problem without
advection. Two different grids were used for space discretization. The three advection problems
were solved on a fixed, structured grid made out of small cubic cells, using a forward character-
istics method. The viscoelastic flow problem, without advection, was solved using continuous,
piecewise linear stabilized finite elements on a fixed, unstructured mesh of tetrahedrons.

Convergence of the numerical method was checked for two test cases, namely an elongational
flow and the filling of a pipe. Numerical results were then presented and typical viscoealstic
behavior of the fluid was computed. In the framework of the stretching of a filament, when the
aspect ratio is large, fingering instabilities were obtained. Jet buckling was also presented and
a comparison with two dimentional results present in the literature was succesfull.

It is anticipated that the numerical simulations will be improved in several different ways.
The Stokes solver requires much attention and could be optimized by using, for instance, a
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decoupling velocity-pressure algorithm, see [FG83, GLT76a, GLT76b, GLT81, Glo03]. The
stabilizing effect of the surface tension should be taken into account. Moreover the FENE
dumbbells model remains to be implemented in three dimensional spaces in order to reproduce
physical behavior of which the Oldroyd-B model is unable.
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[DL88] R. Dautray and J.-L. Lions. Analyse mathématique et calcul numérique pour les sciences et les

techniques. Vol. 8. INSTN: Collection Enseignement. [INSTN: Teaching Collection]. Masson, Paris,
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[JLLB04] B. Jourdain, T. Lelièvre, and C. Le Bris. Existence of solution for a micro-macro model of polymeric
fluid: the FENE model. J. Funct. Anal., 209(1):162–193, 2004.

[KAHC05] I.I. Kudish, R.G. Airapetyan, G.R. Hayrapetyan, and M.J. Covitch. Kinetics approach to modeling
of stress-induced degradation of lubricants formulated with star polymer additives. Tribol. Trans.,
48(2):176–189, 2005.

[KDI+05] S.E. Kudaibergenov, A.G. Didukh, Z.E. Ibraeva, L.A. Bimendina, F. Rullens, M. Devillers, and
A. Laschewsky. A regular, hydrophobically modified polyampholyte as novel pour point depressant.
J. Appl. Polym. Sci., 98(5):2101–2108, 2005.

[Keu97] R. Keunings. On the Peterlin approximation for finitely extensible dumbbells. J. Non Newtonian
Fluid Mech., 68:85–100, 1997.

[Keu04] R. Keunings. Micro-marco methods for the multi-scale simulation of viscoelastic flow using molec-
ular models of kinetic theory. Rheology Reviews, pages 67–98, 2004.



96 BIBLIOGRAPHY

[KS91] I. Karatzas and S.E. Shreve. Brownian motion and stochastic calculus, volume 113 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1991.

[LBL04] C. Le Bris and P.-L. Lions. Renormalized solutions of some transport equations with partially W
1,1

velocities and applications. Ann. Mat. Pura Appl. (4), 183(1):97–130, 2004.
[Lel04] T. Lelièvre. Optimal error estimate for the CONNFFESSIT approach in a simple case. Comput. &

Fluids, 33(5-6):815–820, 2004.
[LF04] D. Lorstad and L. Fuchs. High-order surface tension vof-model for 3d bubble flows with high density

ratio. J. Comput. Phys., 200(1):153–176, 2004.
[LM00] P. L. Lions and N. Masmoudi. Global solutions for some Oldroyd models of non-Newtonian flows.

Chinese Ann. Math. Ser. B, 21(2):131–146, 2000.
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mondi. In 1997 I was admitted to the Ecole polytechnique fédérale de Lausanne from where,
in 2002, I received a masters degree of mathematician engineer. I completed my master’s the-
sis under the supervision of Professor Jacques Rappaz at the European Aeronautic Defense and
Space, Paris. Since then, I have been working as an assistant in the Chair of Numerical Analysis
and Simulation for Professor Jacques Rappaz. The theme of my research is numerical analysis
of partial differential equations coupled with stochastic differential equations.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


