
Multi-Robot Learning with Particle Swarm Optimization

Jim Pugh and Alcherio Martinoli
Swarm-Intelligent Systems Group

École Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland

{jim.pugh,alcherio.martinoli}@epfl.ch

ABSTRACT
We apply an adapted version of Particle Swarm Optimiza-
tion to distributed unsupervised robotic learning in groups
of robots with only local information. The performance of
the learning technique for a simple task is compared across
robot groups of various sizes, with the maximum group size
allowing each robot to individually contain and manage a
single PSO particle. Different PSO neighborhoods based on
limitations of real robotic communication are tested in this
scenario, and the effect of varying communication power is
explored. The algorithms are then applied to a group learn-
ing scenario to explore their susceptibility to the credit as-
signment problem. Results are discussed and future work is
proposed.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Autonomous ve-

hicles; I.2.11 [Artificial Intelligence]: Distributed Artifi-
cial Intelligence—Multiagent systems

General Terms
Algorithms, Experimentation

Keywords
particle swarm optimization, unsupervised learning, multi-
robot systems

1. INTRODUCTION
Designing even simple behaviors for robots that are effi-

cient and robust can be very difficult for humans; it is often
not hard to implement a rudimentary controller that accom-
plishes the task, but achieving optimal performance can be
very challenging. Unsupervised robotic learning allows for
automated design of efficient, robust controllers, which saves
much design time and effort. Unsupervised learning is also
useful for allowing robots to adapt to situations where the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

task/environment is unknown beforehand or is constantly
changing.

Genetic Algorithms (GAs) are a very common method of
accomplishing machine learning and optimization. Candi-
date solutions to a problem are modeled as members of a
population, and breeding (selection and crossover) and mu-
tation are applied to “parents” (high performing solutions)
in the population to generate “children” (new candidate so-
lutions). GA can be used to shape an Artificial Neural Net-
work (ANN) controller by using the parameter set as the
weights, and the evaluative function as a measure of the
performance of a desired robot behavior.

Particle Swarm Optimization (PSO) is a promising new
optimization technique which models a set of potential prob-
lem solutions as a swarm of particles moving about in a
virtual search space. The method was inspired by the move-
ment of flocking birds and their interactions with their neigh-
bors in the group. PSO can also be used to evolve ANN
robotic controllers.

Both GA and PSO use groups of interacting virtual agents
in order to achieve their optimization. In collective robotics,
groups of robots interact to accomplish their goals. It may
therefore be possible to implement these algorithms in a
parallel distributed fashion for learning in multi-robot sys-
tems. Each robot would be responsible for several virtual
agents, which it would need to evaluate at each iteration.
After each set of evaluations, the robots would communi-
cate to share the fitness information needed to progress to
the next iteration of the algorithm. By running the algo-
rithms in this fashion, we would need no external supervisor
to oversee the learning process, and the speed of learning
could be significantly improved, as many robots evaluating
in parallel would decrease the number of required controller
evaluations and therefore decrease the total learning time.

In the local neighborhood version of PSO, each particle
only needs to be aware of the state of a small subset of
particles in the population in order to update itself at each
iteration. It may therefore be possible to implement PSO in
a distributed manner where communication from any given
node would only be necessary with several other nodes, mak-
ing it a very scalable parallel approach. In contrast, the GA
population manager must have knowledge of the entire pop-
ulation in order to implement standard breeding techniques,
which prevents the same scalable technique from being ap-
plied.

In this paper, we explore the effectiveness of using a mod-
ified version of PSO on groups of realistically simulated
robots performing distributed unsupervised learning. At the

maximum group size, the number of robots is set equal to
the number of particles in the PSO population, allowing
each robot in the group to manage a single unique parti-
cle. We test how the performance is affected if we adapt the
standard PSO neighborhood structure to more closely model
what is possible in a real robot group with limited communi-
cation abilities. Section 2 provides some background on GA,
PSO, unsupervised robotic learning, and multi-robot learn-
ing. Section 3 examines how the effectiveness of distributed
unsupervised learning is affected by the number of robots in
the group. Section 4 analyzes how the learning performance
is affected by different neighborhood structures based on
the limitations of robotic communication when each robot
contains a single particle. Section 5 focuses on one such
neighborhood structure and tests the effect of varying the
communication range of the robots. Section 6 applies the al-
gorithms to a group learning task, to see how affected they
are by the credit assignment problem and to see how the
communication-based neighborhoods fare in different sce-
narios. Section 7 discusses the implications of the results
and suggests future work, and Section 8 concludes.

2. BACKGROUND
Genetic algorithms were originally developed in the 1960s

by John Holland. The algorithms are inspired by evolution,
where the fittest members of a population tend to repro-
duce more often than the less fit members. Candidate so-
lutions are modeled as a population of “chromosomes”. At
each iteration of the algorithm, a new population is gen-
erated from the previous one. Selection of the parents of
the new generation is implemented using one or more of
several schemes, such as elitism (using only the top per-
forming members of the population), Roulette Wheel sam-
pling (stochastically choosing parents with weight propor-
tional to performance), and rank selection (ranking chromo-
somes from best to worst and stochastically choosing parents
with weight proportional to the rank). After parents have
been chosen, crossover between the parents can occur with
some probability (each chromosome is split into two, and
children use one part from one parent and the other part
from the other). This allows positive aspects from different
chromosomes to be merged into a single chromosome. Last,
mutation is applied, where each element of the chromosome
may have its value randomly changed with some probability.
This provides a random local search, which allows solutions
to continue to improve beyond the genetic diversity that was
available in the original population ([6], [15]).

The original PSO method was developed by James Kennedy
and Russel Eberhart ([9], [3]). Every particle in the popula-
tion begins with a randomized position (xi,j) and random-
ized velocity (vi,j) in the n-dimensional search space, where i

represents the particle index and j represents the dimension
in the search space. Candidate solutions are optimized by
flying the particles through the virtual space, with attrac-
tion to positions in the space that yielded the best results.
Each particle remembers the position at which it achieved
its highest performance (x∗

i,j). Each particle is also a mem-
ber of some neighborhood of particles, and remembers which
particle achieved the best overall position in that neighbor-
hood (given by the index i′). This neighborhood can either
be a subset of the particles (local neighborhood), or all the
particles (global neighborhood). For local neighborhoods,
the standard method is to set neighbors in a pre-defined

way (such as using particles with the closest array indices
as neighbors modulo the size of the population, henceforth
known as a “ring topology”) regardless of the particles’ po-
sitions in the search space. The equations executed by PSO
at each step of the algorithm are

vi,j = w · (vi,j + pw · rand() · (x∗

i,j − xi,j)

+ nw · rand() · (x∗

i′,j − xi,j))

xi,j = xi,j + vi,j

where w is the inertia coefficient which slows velocity over
time, pw is the weight given to the attraction to the pre-
vious best location of the current particle and nw is the
weight given to the attraction to the previous best loca-
tion of the particle neighborhood. rand() is a uniformly-
distributed random number in [0, 1].

PSO has been shown to perform as well as or better than
GA in several instances. Eberhart and Kennedy found PSO
performs on par with GA on the Schaffer f6 function [3, 9].
In work by Kennedy and Spears [10], a version of PSO out-
performs GA in a factorial time-series experiment. Fourie
showed that PSO appears to outperform GA in optimizing
several standard size and shape design problems [5].

Unsupervised learning describes learning scenarios where
there is no external entity which decides upon the train-
ing set inputs for the learning agent(s). Rather, inputs are
generated dynamically as the agents interact with their envi-
ronment. This is as opposed to supervised learning, where
the inputs are generated/collected first and then used re-
peatedly. In supervised learning, the accuracy of the system
at each iteration is usually decided by an external “teacher”
evaluating the system output. The pre-defined inputs are
split into two separate sets, one for training the system and
the other for testing the performance. Supervised learning
tends to be easier than unsupervised, as the data does not
change between iterations of the algorithm and can be pre-
selected to avoid using unusual or particularly noisy data
points. However, supervised learning is not possible in sit-
uations where the input data to the system depends on the
current state of the learning agent; this is the case for online
robotic learning, since the robot’s movements affect what its
sensors will perceive.

Evolutionary algorithms have been used extensively for
unsupervised learning of robotic behavior. A good survey
of the work is given in [12]. More specifically, standard GA
has been shown to be effective in evolving simple robotic
controllers [4], and modified noise-resistant versions of both
GA and PSO were shown to achieve very good performance
on simulated unsupervised robotic learning, outperforming
the standard versions of the algorithms [18].

In collective robotics, many desired behaviors result in
strong interactions between robots in the group, and the ac-
tions of one robot can significantly impact the performance
of another. If a behavior is being learned and each robot is
evaluating a different controller, this can give rise to the
“credit assignment” problem, where robots do not know
whether a good/bad fitness score was due to its own per-
formance or to that of other robots. This effect can be par-
ticularly pronounced in cases where robots do not explicitly
share their intentions through communication channels and
can severely hamper the learning process. The credit as-
signment problem can arise in two different scenarios. The

first is when robots are learning individual behaviors, but
the performance of their behavior can be impacted by the
actions of other robots in the group, causing an inaccurate
fitness evaluation. The second is when robots are learn-
ing a group behavior with a single collective fitness. Often,
it is not easy to decompose the fitness value to know which
robots positively affected the performance and which didn’t.
An elegant way to bypass the credit assignment problem in
these cases is to use “homogenous” learning (as opposed to
“heterogeneous” learning), where all the robots simultane-
ously evaluate the same controller and therefore contribute
equally to the collective score on average. While this drasti-
cally slows the learning process, it is the only way of achiev-
ing good results in some highly stochastic scenarios, such as
those investigated in Hayes et al. [7].

Multi-robot learning has been used and explored in var-
ious ways. Matarić studied mechanisms to encourage indi-
vidual agents in a group to act in ways to help the group
performance [11]. Multi-robot learning using several meth-
ods in a wide variety of scenarios has been explored ([2],
[20]). Techniques for increasing individual learning speed
via multi-robot learning were studied in [8] and [13]. A
modified version of a genetic algorithm has been embedded
onto a 2-robot system to allow for distributed parallel learn-
ing [17]. Particle swarm optimization has thus far not been
used for learning in scalable multi-robot systems.

3. VARYING THE ROBOTIC GROUP SIZE
In Pugh et al. [18], unsupervised learning was used to

teach robots obstacle avoidance behavior for both a single
robot and two robots co-learning. We wish to expand this
to test unsupervised learning on much larger robotic groups,
where the evolving candidate solutions are distributed through-
out the group to achieve faster learning.

3.1 Experimental Setup
We use the noise-resistant GA and PSO algorithms from

[18]. GA uses elitism to select the best half of the population
as the parent set, and then applies Roulette Wheel sampling
to replenish the missing chromosomes. PSO uses a local
neighborhood in a ring topology with one neighbor on each
side. At every iteration, these algorithms reevaluate their
previous best locations and parent sets for PSO and GA,
respectively, combining the new fitness value with previous
ones to get a more accurate measure of the actual fitness.
Although this requires twice as many fitness evaluations at
each iteration as their standard counterparts, this technique
prevents noisy fitness evaluations from severely disrupting
the learning process and gives much better results given the
same amount of computational time.

We modify the noise-resistant PSO algorithm from its
original form slightly: when updating the neighborhood best
particle for particle i (x∗

i′), the neighborhood best is only
changed if the new neighborhood best particle (x∗

i′′) has
higher fitness than the previous best location of the current
particle. In other words

x
∗

i′ = x
∗

i′′ only if fitness(x∗

i′′) > fitness(x∗

i)

It should be noted that this excludes the previous best loca-
tion of a particle from ever being its neighborhood best. We
found that this modification dramatically improved the per-
formance of the learning over the standard update method.
Although we are not certain why this is the case, it may

be that the new technique encourages diversity by ensuring
that every particle will have two distinct locations to which
it is attracted.

The parameters for the algorithms are given in Table 1.

Table 1: GA and PSO Parameters for Unsupervised
Learning

GA PSO

Population Size 20 Population Size 20

Crossover Probability 0.6 pw 2.0

Mutation Probability 0.15 nw 2.0

Mutation Range [-5.0, 5.0] w 0.6

We use Webots, a realistic simulator, for our robotic sim-
ulations [14], using the Khepera robot model [16]. The
robot(s) operate in a 2.0 m x 2.0 m square arena (see Fig.
1). The robotic controller is a single-layer discrete-time ar-
tificial neural network of two neurons, one for each wheel
speed, with sigmoidal output functions. The inputs are the
eight infrared proximity sensors (six in front, two in back),
as well as a recursive connection from the previous output of
the neuron, lateral inhibitions and bias values (see Fig. 2),
giving us 22 weights total. Sensors have a maximum range
of 5.0 cm, and sensor output varies linearly from 0.0 at max-
imum range to 5.12 at minimum range (0.0 cm) with 10%
noise. Slip noise of 10% is applied to the wheel speed. The
time step for neural updates is 128 ms. We use the fitness
function used in [18]. The fitness function is given by:

F = V · (1 −
√

∆v) · (1 − i)

0 ≤ V ≤ 1

0 ≤ ∆v ≤ 1

0 ≤ i ≤ 1

where V is the average absolute wheel speed of both wheels,
∆v is the average of the difference between the wheel speeds,
and i is the average activation value of the most active prox-
imity sensor over the evaluation period. These factors re-
ward robots that move quickly, turn as little as possible, and
spend little time near obstacles, respectively. The terms are
normalized to give a maximum fitness of 1. The evaluation
period of the fitness tests for these experiments is 480 steps,
or approximately 60 seconds. Between each fitness test, the
position and bearing of the robots are randomly set by the
simulator to ensure the randomness of the next evaluation.

We test for robot group sizes of 1, 2, 5, 10, and 20 for 100
iterations of each algorithm. Since learning is being done in
parallel, this has a significant effect on the simulated time
needed (∼67 hours for 1 robot compared to ∼3 hours for
20). In the case of 20 robots, each robot effectively contains
a single candidate solution in the algorithm population.

3.2 Results
A comparison of the average fitnesses can be seen in Fig.

3. The progress of the average population fitness through-
out the learning process for a 20-robot group can be seen in
Fig. 4. There is no significant change in the performances
of the algorithms for different robot group sizes, indicat-

Figure 1: Robot arena with Khepera robots. Lines
protruding from Kheperas represent proximity sen-
sors.

Figure 2: Depiction of the artificial neural network
used for the robot controller. Grey boxes represent
proximity sensor inputs and white boxes on the sides
represent the motor outputs. Curved arrows are
recurrent connections and lateral inhibitions.

ing that this technique is quite scalable. Although GA has
initially faster convergence, the performance is noticeably
lower than that of PSO for all group sizes. This was due
to GA converging to poor solutions a large fraction of the
time. A likely cause of this is the small population size (20
agents here as opposed to 60 in [18]), which does not provide
enough genetic diversity for GA in this scenario, while PSO,
though slower, is able to converge well with much smaller
population sizes.

4. COMMUNICATION-BASED
NEIGHBORHOODS

In multi-robot scenarios, communication range is often
limited. Untethered robots have a very limited amount of
available energy at their disposal, and it is important to con-
serve this by restricting transmission power. Also, if commu-
nication range is too large, interference between signals can
decrease the rate at which data can be sent. If we distribute
particles in a PSO population between robots and use the
standard PSO local neighborhood model, robots may be re-
quired to share information with other robots that are far
from their position. Therefore, to realistically model a scal-
able multi-robot system, particle neighborhoods should be
set in such a way that robots are not required to communi-
cate with other robots outside of some close proximity.

0

0.2

0.4

0.6

0.8

1

Robot Group Size

F
itn

es
s

GA
PSO

1 2 5 10 20

Figure 3: Average of final best performances over
20 evolutions for GA and PSO with different robotic
group sizes. Error bars represent standard deviation
across evolutionary runs.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

F
itn

es
s

GA
PSO

Figure 4: Average performance of population over
20 evolutions for GA and PSO with 20-robot groups.

4.1 Experimental Setup
We propose two such models for PSO neighborhoods to

emulate realistic robot communication.
Model 1: Each robot contains one particle. At the end

of each fitness evaluation, the robot selects the two robots
closest to it, and uses their particles as its neighborhood for
the next iteration of the algorithm. This maintains the same
number of particles in the neighborhood, but allows for the
neighbors to change over the course of the learning. As the
physical location of the robots is independent of the parti-
cle indices, this should be roughly equivalent to randomly
choosing two neighbors at each iteration of the algorithm,
especially since obstacle avoidance behavior should result in
a uniformly random distribution of robots within the envi-
ronment.

Model 2: Each robot contains one particle. At the end
of each fitness evaluation, the robot selects all robots within
a fixed radius r, and uses their particles as its neighborhood
for the next iteration of the algorithm. This results in a

variable number of neighbors, as the robot may be close to
very few or very many robots randomly. However, it is per-
haps more realistic than Model 1, since for very sparse robot
distributions, there may be fewer than two other robots in
close proximity at times.

We compare the performance of the original neighborhood
topology to the two new models, using r = 40 cm, for a group
of 20 robots. We use the setup previously described.

4.2 Results
A comparison of the average fitnesses is shown in Fig.

5. Both new neighborhood models achieve slightly better
fitness than the original. This suggests that random neigh-
borhood selection at each iteration is marginally superior
to the fixed ring topology. The good performance of Model
2 indicates that the effectiveness of learning is not tied to
keeping strictly two neighbors at each iteration. The success
of these models shows that we can accomplish distributed
unsupervised learning in a realistic multi-robot system.

0

0.2

0.4

0.6

0.8

1

F
itn

es
s

Standard Model 1 Model 2

Figure 5: Average of final best performances over 20
evolutions for different neighborhood models. Error
bars represent standard deviation across evolution-
ary runs.

5. VARYING COMMUNICATION RANGE
We now explore the effects of varying the communication

range used in Model 2. This could be accomplished in a real
robotic system by varying the output power of the trans-
mission. It is useful to know the trade-off between output
power and learning performance.

5.1 Experimental Setup
We use communication ranges of 10 cm, 20 cm, 40 cm,

80 cm, and 160 cm. The expected number of robots within
communication range are given in Table 2, assuming a uni-
formly random distribution of robots within the arena. We
therefore go from almost no interparticle communication to
almost full interparticle communication.

5.2 Results
The average fitnesses for different communication ranges

can be seen in Fig. 6. The progress of the average population
fitness throughout the learning process for 10 cm, 40 cm,
and 160 cm can be seen in Fig. 7. Both very high and very

Table 2: Expected Number of Neighboring Particles

r (cm) Expected Number of Neighbors

10 0.14

20 0.54

40 2.0

80 6.5

160 16

low communication ranges achieve fairly poor performance,
while the intermediate ranges all achieve fairly good results.

Failure of low communication range is due to not enough
information being exchanged between particles; particles end
up almost exclusively using their own personal best position
for learning, which causes extremely slow convergence. In
the case of very high communication range, the initial con-
vergence of the population was faster than with the shorter
communication ranges, but it would often prematurely con-
verge on a solution which did not have particularly high
performance. This indicates that a global neighborhood is
actually detrimental to finding very good solutions, and we
therefore gain no benefit whatsoever by expanding our com-
munication range beyond a certain point.

Both communication ranges of 40 cm and 80 cm (corre-
sponding to average neighborhood sizes of 2.0 and 6.5 par-
ticles respectively) achieved very high fitness. Even a com-
munication range of 20 cm, corresponding to 0.54 neighbors
on average, achieved good fitness. The success of all these
suggests that the effectiveness of the algorithm is not highly
dependent on choosing an exact neighborhood size, making
the algorithm parameters quite flexible. This is an impor-
tant feature, as the communication range with real robots
can vary due to obstruction and environmental effects.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Communication Range (cm)

F
itn

es
s

10 20 40 80 160

Figure 6: Average of final best performances over
20 evolutions for different communication ranges in
Model 2. Error bars represent standard deviation
across evolutionary runs.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

F
itn

es
s

10 cm
40 cm
160 cm

Figure 7: Average performance of population over
20 evolutions for 10 cm, 40 cm, and 160 cm commu-
nication range in Model 2.

6. GROUP LEARNING AND
CREDIT ASSIGNMENT

Obstacle avoidance is a largely single-robot behavior. The
observations and actions of other robots do not impact a
robot’s performance, except in having to avoid robots which
move into its path. We wish to explore how susceptible our
algorithms are to the credit assignment problem by evolving
aggregation, a behavior whose success is highly dependent
on the coordinated actions of many agents in the group.

6.1 Experimental Setup
We endow the Khepera robots with the ability to detect

the relative positions of other nearby robots. This measure-
ment is completely independent of any global coordinate
system, and is given solely by where other robots are from
the detecting robot’s point of view (for example, range, the
distance to the other robot, and bearing, the angular off-
set from the detecting robot’s forward direction). This is a
capability common to many robots working in collective sce-
narios, and can be accomplished with fairly simple systems
(e.g., [19]). We add zero-mean Gaussian noise to the range
and bearing, with range noise standard deviation equal to
10% of the range value and bearing noise standard deviation
equal to 0.1 radians. We assume our relative positioning sys-
tem is not susceptible to occlusions.

We expand the inputs to our artificial neurons to include
relative positioning information. Because the number of
robots within relative positioning range may vary, we use
the center of mass of all detected robots as the input values.
This is represented as x and y, where x is the forward-back
displacement of the center of mass and y is the left-right
displacement from the robot’s point of view. This increases
our total neural weights to 26.

The fitness value we use for this scenario is given by

F (i) =
robRP (i)

robtot

where F (i) is the fitness of robot i, robRP (i) is the number of
robots within relative positioning range of i, and robtot is the
total number of robots. Therefore, a robot is rewarded for
having the maximum number of other robots within relative

proximity range at the end of a run.
The progress of evolving aggregation behavior may be sus-

ceptible to the first type of credit assignment problem de-
scribed in Section 2, where robots use individual fitness val-
ues which can be impacted by the actions of other robots
in the group, causing inaccurate evaluations. We therefore
wish to compare the performance of our normal heteroge-
neous algorithms to homogenous algorithms, an established
method of overcoming the credit assignment problem where
all robots use the same controller at each evaluation. We
generate a group fitness for each run by averaging all the
individual fitness values obtained:

Fg =
1

robtot

∑

i

F (i)

Because the individual and group fitness functions are well-
aligned, this allows us to compare their performances in a
very fair manner. While homogenous learning will drasti-
cally slow the algorithm speed since we can no longer eval-
uate controllers in parallel, it will immediately provide a
very noise-free estimation of the effectiveness of the solu-
tion, something which may not be available in the hetero-
geneous case (e.g., a robot may have a very good controller,
but achieves poor performance because no other robot is
aggregating well).

We use an unbounded arena with 20 Khepera robots for
our setup. At each evaluative run, the Kheperas are dis-
tributed randomly in a 2m x 2m square. The evaluation
lasts 10 simulated seconds, and the fitness is measured at
the end. Robots are capable of sensing other robots within
80 cm of them. The arena can be seen in Fig. 8.

Figure 8: Aggregation arena with Khepera robots
aggregating. The dimmed circle represents the rela-
tive positioning range of the white robot. All robots
within this range are detectable.

We use our noise-resistant GA and PSO (with ring topol-
ogy) algorithms and homogenous versions of these algorithms
(HGA and HPSO, respectively), as well as the Model 1 and
Model 2 neighborhood versions of the PSO algorithm. All al-
gorithms have the same parameters used previously. Model
2 uses r = 40 cm. We run 100 iterations of the heterogeneous
algorithms. Because we are using 20 robots, homogenous
versions of the algorithms progress 20 times slower than the
heterogeneous versions. We therefore run only 5 iterations

of these algorithms to match the number of evaluative runs.

6.2 Results
The final performance of all algorithms can be seen in Fig.

9. The progression of GA, PSO, HGA, and HPSO over the
evolution can be seen in Fig. 10. All algorithms achieved
good results in this scenario. For GA, the heterogeneous
algorithm performed slightly worse than the homogenous
version, while heterogeneous PSO performed as well as ho-
mogenous PSO on average, though with a higher standard
deviation. This suggests that PSO may be less susceptible to
the credit assignment problem than GA. However, as very
few iterations were performed with the homogenous algo-
rithms, it is likely HPSO would be able to achieve superior
performance in longer runs. If we observe the progression of
the algorithms throughout the learning process, GA initially
improves more quickly, but levels off, while PSO continues
to improve throughout. GA could therefore be preferable to
PSO if we are only able to run very few iterations.

While the best final solutions from homogenous GA and
PSO achieved very similar performances, the average pop-
ulation fitness for HGA was much higher than the average
population fitness for HPSO throughout the learning pro-
cess. This was observed in [18] and is likely due to the
GA population containing much less variation than the PSO
population, as the local neighborhood in PSO maintains di-
versity and no mechanism is present in GA to accomplish
this. This diversity is likely what allows PSO to continue
improving after the GA population converges on some solu-
tion.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
itn

es
s

HGA GA HPSO PSO Model 1 Model 2

Figure 9: Average of final best performances in
aggregation over 20 evolutions. HGA and HPSO
are homogenous versions of the GA and PSO algo-
rithms. Model 1 and Model 2 are PSO with neigh-
borhoods described in Section 4. Error bars repre-
sent standard deviation across evolutionary runs.

Model 1 and Model 2 neighborhoods again achieved per-
formances comparable to the standard ring topology, in spite
of the very different distribution of robots in aggregation
(high performing robots will be clustered together, while
low performing robots may have traveled very far from the
group center). The fact that these models continue to per-
form well is a good indication that neighborhoods based on
limited communication capabilities of real robots can con-
tinue to function in a variety of scenarios.

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

F
itn

es
s

HGA
HPSO
GA
PSO

Figure 10: Average performance of population in
aggregation over 20 evolutions. HGA and HPSO
are the homogenous versions of the GA and PSO
algorithms.

7. DISCUSSION AND OUTLOOK
Although PSO far outperformed GA in Section 2 of this

paper, we suspect this is due almost exclusively to the small
population size used. Indeed, the good performance of GA
in Section 6 indicates that it can perform comparatively to
PSO, and even better for fewer iterations. However, because
of the different ways in which the population is managed, we
would need to modify GA much more heavily in order to al-
low it to function distributedly with limited communication.
Although this is certainly possible (e.g., as was done in [17]),
the fundamental changes to the algorithm structure make it
much more likely that we will lose the useful dynamics of
the algorithm, as compared to PSO, where very few modifi-
cations are needed.

By increasing the robot group size from 1 to 20 robots,
we were able to decrease the behavior learning time by a
factor of 20. However, using a particle population size of
20, there is no easy to further decrease the time while main-
taining only local interactions. It may be possible to use 40
robots to simultaneously evaluate the 20 new particles and
reevaluate 20 previous best particles, but this would require
a global supervisor to manage the assignments of candidate
solutions to different robots, as each robot is no longer fully
in charge of a particle. Therefore, further increasing the
number of robots using only local interactions would only
allow us to increase the size of the population. It has yet to
be explored how increasing the population size could effect
the convergence time.

In our model, the progress of all the robots was synchro-
nized (i.e., fitness evaluations began and ended at the same
time). In real-world multi-robot scenarios, this often isn’t
the case. Therefore, it would not make sense to exchange
particle information only at the end of an evaluation, as the
difference in time between robots could cause major delays.
A simple alternative would be to exchange particle informa-
tion on the previous evaluation during the evaluation itself.
This is a rather minor modification to the algorithm, and
we predict it will not significantly impact the performance.
In fact, robots moving about during the evaluation would
likely be exposed to more robots in close proximity, which

may allow them to further decrease their communication
range while maintaining the same number of neighbors.

The model we use for communication in this paper is om-
nidirectional, immune to obstruction and error free. This
corresponds to using radio transmissions in an open noise-
less environment. In the real world, many other commu-
nication methods may be preferred or required. Infrared
transmissions are often directional and could be blocked by
other robots or by environmental obstacles. Radio could
be blocked by large obstacles in some environments. Many
types of communications may be susceptible to errors in
noisy environments. The performance of the algorithm in
these scenarios is thus far unexamined.

The scenario we used for testing susceptibility to the credit
assignment problem only explored a small portion of the
problem. It would be interesting to apply the algorithms to
other scenarios, such those requiring specialization amongst
robots or having less well-aligned group and individual fit-
ness functions.

8. CONCLUSION
A modified version of the Particle Swarm Optimization

algorithm was tested for unsupervised learning in groups
of robots. The algorithm maintained good performance for
groups of robots of various sizes. In the case of assigning
a single unique particle to each robot, the performance was
further improved by using PSO neighborhoods based on the
limited communication abilities of real-world robots. Vary-
ing the communication range demonstrated that there is no
benefit to communicating farther than a certain distance,
and that the algorithm maintains high performance over a
large variation of range. Applying the algorithm to a group
learning task showed that it is able to overcome the credit
assignment problem and that communication-based neigh-
borhoods can perform well for non-uniform robot distribu-
tions. Implications of the results are examined and future
research is suggested.

9. ACKNOWLEDGEMENTS
Jim Pugh and Alcherio Martinoli are currently sponsored

by a Swiss NSF grant (contract Nr. PP002-68647).

10. REFERENCES
[1] Antonsson E. K, Zhang Y., & Martinoli A. “Evolving

Engineering Design Trade-Offs”. Proc. of the ASME
Fifteenth Int. Conf. on Design Theory and
Methodology, September 2003, Chicago, IL.

[2] Balch, T. Behavioral diversity in learning robot teams.

PhD Thesis, College of Computing, Georgia Institute
of Technology, 1998.

[3] Eberhart, R. & Kennedy, J. “A new optimizer using
particle swarm theory” Proc. of the Sixth Int.
Symposium on Micro Machine and Human Science,
MHS ’95, 4-6 Oct 1995, pp. 39-43.

[4] Floreano, D. & Mondada, F. “Evolution of Homing
Navigation in a Real Mobile Robot” Systems, Man
and Cybernetics, Part B, IEEE Transactions on, Vol.
26, No. 3, Jun 1996, pp. 396-407.

[5] Fourie, P. C. & Groenwold, A. A. “The particle swarm
optimization algorithm in size and shape
optimization” Struct. Multidisc. Optim., 2002, Vo. 23,
pp. 259-267.

[6] Goldberg, D. E. Genetic Algorithms in Search,

Optimization & Machine Learning. Addison-Wesley,
Reading, MA, 1989.

[7] Hayes, A. T., Martinoli, A. & Goodman, R. M.
“Swarm Robotic Odor Localization: Off-Line
Optimization and Validation with Real Robots”,
Special Issue on Biological Robots, D. McFarland,
editor, Robotica, 2003, Vol. 21, pp. 427-441.

[8] Kelly, I. D. & Keating, D. A. “Faster learning of
control parameters through sharing experiences of
autonomous mobile robots” Int. Journal of System
Science, 1998, Vol. 29, No. 7, pp. 783-793.

[9] Kennedy, J. & Eberhart, R. “Particle swarm
optimization” Neural Networks, 1995. Proceedings.,
IEEE International Conference on, Vol.4, Iss.,
Nov/Dec 1995, pp. 1942-1948.

[10] Kennedy, J. & Spears, W. M. “Matching algorithms
to problems: an experimental test of the particle
swarm and some genetic algorithms on the
multimodal problem generator” in Proceedings of
IEEE International Conference on Evolutionary
Computation, Anchorage, May 1998, pp. 78-83.

[11] Matarić, M. J. “Learning to Behave Socially” In Proc.
of the 3rd Int. Conf. on Simulation and Adaptive
Behaviors - From animals to animats 3, 1994, pp.
453-462.

[12] Mataríıc, M. J. & Cliff, D., “Challenges in evolving
controllers for physical robots”, Robot. and
Autonomous Syst., 1996, Vol. 19, No. 1, pp. 6783.

[13] Matarić, M. J. “Learning in behavior-based
multi-robot systems: Policies, models, and other
agents” Special Issue on Multi-disciplinary studies of
multi-agent learning, Ron Sun, editor, Cognitive
Systems Research, 2001, Vol. 2, No. 1, pp. 81-93.

[14] Michel, O. “Webots: Professional Mobile Robot
Simulation” Int. J. of Advanced Robotic Systems,
2004, Vo. 1, pp. 39-42.

[15] Mitchell, M. An Introduction to Genetic Algorithms.

MIT Press, Cambridge, MA, 1996.

[16] Mondada, F., Franzi, E. & Ienne, P. “Mobile robot
miniaturisation: A tool for investigation in control
algorithms” Proc. of the Third Int. Symp. on
Experimental Robotics, Kyoto, Japan, October, 1993,
pp. 501-513.

[17] Nehmzow, U. “Learning in multi-robot scenarios
through physically embedded genetic algorithms” In
Proc. of the 7th Int. Conf. on the Simulation of
Adaptive Behavior: From animals to animats, 2002,
pp. 391-392.

[18] Pugh, J., Zhang, Y. & Martinoli, A. “Particle swarm
optimization for unsupervised robotic learning”
Swarm Intelligence Symposium, Pasadena, CA, June
2005, pp. 92-99.

[19] Pugh, J. & Martinoli, A. “Relative Localization and
Communication Module for Small-Scale Multi-Robot
Systems”, Proc. of the IEEE International Conference
on Robotics and Automation, Miami, Florida, USA,
May 15-19, 2006.

[20] Stone, P. Layered Learning in Multi-Agent Systems.

PhD Thesis, School of Computer Science, Carnegie
Mellon University, 1998.

