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The  study of electron spin relaxation in aqueous Gd(III) complexes is the 

source of new insights into the physics and chemistry of magnetic resonance 
imaging (MRI) contrast agents. The coupling of the seven unpaired electrons 
of the Gd(III) ion with the surrounding water protons observed in MRI is the 
basis of the contrast agent effectiveness. Therefore, understanding the 
behavior of the electron spin system can provide valuable information for the 
development of new compounds. 

The availability of high frequency electron paramagnetic resonance (HF 
EPR) spectrometers is vital for complete relaxation studies, and played an 
important role in improving our knowledge of Gd(III) electron spin 
relaxation in the last few years. HF EPR has been an invaluable tool to 
improve our understanding of the underlying relaxation mechanisms. 

1. INTRODUCTION AND HISTORICAL 
BACKGROUND 

Paramagnetic Gd(III) complexes are widely used as contrast agents in 
medical magnetic resonance imaging (MRI) due to the enhancement of the 



 3 

relaxation rate of the neighboring protons that they induce (Caravan et al., 
1999a; Merbach and Tóth, 2001). This enhancement, called relaxivity, is a 
consequence of the dipolar coupling between the proton nuclear spin and the 
electronic spin of the metal ion. Among other factors, relaxivity is 
determined by (1) the rotational correlation time of the complex τR, (2) the 
water residence time τm in the first coordination shell of the metal ion, and 
(3) the electronic spin relaxation times T1e and T2e. While the molecular 
factors influencing (1) and (2) are rather well understood, the electronic spin 
relaxation of Gd(III) complexes relevant for MRI remains the subject of 
much discussion (Borel et al., 2000; Clarkson et al., 1998; Powell et al., 
1993; Powell et al., 1996). The influence of the electronic spin relaxation on 
the relaxivity, which may be quite important in some cases (Borel et al., 
2001), is essentially governed by the decay of the electronic spin 
magnetization in the direction parallel to the external field. This decay is 
described by the longitudinal electronic relaxation time T1e. For Gd(III) 
complexes, it is too short to be directly measurable by the commonly 
available techniques. Nevertheless, standard electron paramagnetic 
resonance allows the investigation of the decay of the electronic spin 
magnetization perpendicular to the external field, usually characterized by a 
transverse electronic relaxation time T2e. The analysis of the transverse 
relaxation data allows the subsequent estimation of T1e within the framework 
of a given model of the electronic relaxation. For a reasonable prediction of 
T1e, one needs a model which correctly describes the underlying physics. 
Extensive experimental data is also required to determine accurately the 
underlying parameters. Consequently, the last few years have witnessed a 
considerable interest for new studies, both experimental and theoretical, on 
this particular subject. 

The 8S7/2 ion Gd(III) is well known to undergo zero-field splitting in the 
solid state, as observed in a number of compounds such as gadolinium 
chloride (Hutchinson and Wong, 1958) or Gd(III) doped into lanthanide 
ethylsulfates (Abragam and Bleaney, 1970; Smith et al., 1977). Proposed 
thirty years ago by Hudson and Lewis(Hudson and Lewis, 1970), the basic 
theory of the EPR line shape of Gd(III) complexes uses a transient zero-field 
splitting (modulated by rotation or molecular distortions) as the main 
relaxation mechanism. This basic assumption leads to the calculation of a 
7x7 (transverse) or 8x8 (longitudinal) relaxation matrix following Redfield 
(Redfield, 1965). The eigenvalues of these matrices can then be evaluated to 
calculate the line shape (Binsch, 1968). An important feature of this theory is 
that the transverse electronic spin relaxation, which governs the EPR line 
shape, can not be described by a single T2e. Four different relaxation times 
are necessary as the experimental spectrum results from a superposition of 
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four transitions with different intensities, so the line shape problem can not 
be solved analytically. 

Both the observation frequency ω and the correlation time τ for the 
Hamiltonian fluctuations play an important role in magnetic relaxation 
processes out of the extreme narrowing regime (ωτ << 1 ). This is generally 
the case for EPR measurements in solution. For example, Brownian rotation 
(1/τR ≥ 10-11 s at room temperature for molecules larger than a few atoms in 
aqueous solution) is often an efficient mechanism for the modulation of a 
given interaction (g/A anisotropy, dipolar coupling...). Even at X-band (ω ≅ 
6×1011 s-1) such a correlation time is certainly not short enough to justify the 
extreme narrowing approximation. This consideration, and the uncertainty 
regarding the nature of the ZFS fluctuation itself, led to the first variable 
temperature and frequency studies of Gd(III) complexes in solution (X- and 
Q-band by Reuben (Reuben, 1971)). The short correlation times obtained 
through the analysis of the peak-to-peak widths using the relaxation matrix 
of Hudson and Lewis (5 to 8 ps) suggested that the modulation of the ZFS 
should arise from symmetry fluctuations of the complex (low frequency 
vibrations, collisions with solvent molecules) rather than from the 
reorientation of the complex. 

In order to simplify this theory, Powell et al. (Powell et al., 1993) later 
proposed empirical formulas to describe both the transverse and longitudinal 
relaxation times, which they later applied in a unified model to 
simultaneously interpret 17O-NMR, 1H-NMR, and EPR (Gonzalez et al., 
1994; Powell et al., 1996) of Gd(III) polyaminocarboxylate complexes 
relevant for MRI. The empirical equations allowed an easy calculation of 
average longitudinal and transverse relaxation times, to be used in the 
Solomon-Bloembergen-Morgan (Bloembergen, 1957; Bloembergen and 
Morgan, 1961) equations describing the nuclear magnetic relaxation in the 
presence of a paramagnetic agent. These studies took advantage of the 
development of high frequency EPR spectrometers such as Lebedev's 
(Lebedev, 1990) to considerably extend the observation frequency range. 
New effects were observed, such as a concentration dependence of the 
observed peak-to-peak width at high frequency. The simultaneous analysis 
of EPR and NMR relaxation data also suggested the existence of a magnetic 
field independent contribution to the electron spin relaxation rates (Micskei 
et al., 1993; Powell et al., 1996), attributed to a spin rotation mechanism 
(Curl, 1965; Nyberg, 1967). However, even with the addition of this 
relaxation process, the obtained results were sometimes in a very poor 
agreement with the experimental EPR data (Aime et al., 1997a). 
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Figure 1. DTPA5-, DTPA-BMA3- and DOTA4- ligand structures 

Various authors suggested a more rigorous calculation of the line shape, 
also accounting for the dynamic frequency shift, which is a small 
displacement in the transition frequencies, often neglected. Poupko et al. 
(Poupko et al., 1974) calculated the imaginary part of the complex Redfield 
relaxation matrix for S = 3/2, 5/2 and 7/2, the real part of the last being given 
by Hudson and Lewis (Hudson and Lewis, 1970). They applied their theory 
to the numerical analysis of X- and Q-band variable temperature spectra of 
Gd(NO3)3 in DMF, using not only the usual peak-to-peak width but also the 
resonance field and the asymmetry of the line shape. They obtained a fair 
agreement between the experimental data and the simulations using their 
best fitting parameters. With the increase of the available computer power, 
this approach has become quite affordable even if the line shape analysis 
involves repeated matrix diagonalizations. Since the empirical formulas of 
Powell had proved  unable to account for the observed peak-to-peak widths 
in a number of studies performed in our lab, we applied the Poupko 
approach to three different complexes observed at 9.425, 75, 150 and 225 
GHz (Borel et al., 2000). We were able to account semi quantitatively for 
the observed peak-to-peak widths and resonance fields, but the analysis of 
the high-frequency data was only possible by including a magnetic field 
independent term, which was attributed to spin rotation following Powell. 
Alternatively, Strandberg and Westlund (Strandberg and Westlund, 1999) 
used the superoperator formalism to calculate a reduced relaxation matrix, 
yielding an analytical expression of the line shape although the peak-to-peak 
width and resonance field still required solving high order polynomial 
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equations. Unfortunately, the experimental data reported to support this 
interesting theoretical work was scarce. Clarkson and coworkers (Clarkson 
et al., 1998; Smirnova et al., 1998) used an approach developed by 
Alexander (Alexander et al., 1977) for powder spectra in order to calculate 
high frequency (Q-band and higher) line widths and shifts, yielding elegant 
analytical equations. However they clearly stated that this theory could not 
always account for lower frequency (for example X-band) observed values. 
Furthermore, they also needed a frequency independent contribution R0 to 
the peak-to-peak widths, without proposing an underlying mechanism. 

The studies above, performed for the over such a wide temperature and 
frequency range, showed the shortcomings of the model transient ZFS 
model. Very recently, Rast et al. (Rast et al., 2001b; Rast et al., 1999; Rast et 
al., 2000) developed a refined model of the electronic relaxation of the S 
states of metal ion complexes in solutions. This refined treatment now 
includes the contribution of the static crystal field surrounding the Gd(III) 
ion caused by its modulation by the rotation of the whole complex, besides a 
part due to the usual transient crystal zero-field splitting (ZFS) caused by 
vibration, intramolecular rearrangement, and collision with surrounding 
solvent molecules. A good agreement with the measured peak-to-peak 
distances was obtained for [Gd(H2O)8]3+, [Gd(DTPA)(H2O)]2-, and  
[Gd(DTPA-BMA)(H2O)] complexes in a new analysis of the experimental 
data measured by Powell (Rast et al., 1999; Rast et al., 2000). The final 
refinement of this theory, including a rigorous calculation of the EPR line 
shape, including dynamic frequency shifts and instrumental factors such as 
spectrum phasing, was successfully applied to the analysis of multiple 
frequency and temperature spectra of [Gd(H2O)8]3+ and [Gd(DOTA)(H2O)]- 
(Rast et al., 2001b). In the framework of this new model, and contrarily to 
previous works (Borel et al., 2000; Micskei et al., 1993), it is not necessary 
to include the spin rotation mechanism in the interpretation of the 
measurements as this effect is expected to be very weak for molecules larger 
than a few atoms (Curl, 1965; Nyberg, 1967). The above model was also 
successful for describing the proton NMRD behavior of probe solutes like 
the tetramethylammonium N(CH3)4

+ ions of well known spatial dynamics 
with respect to the [Gd(H2O)8]3+ complex, without additional fitting 
parameters (Rast et al., 2001a). 

However, this new model, as well as most of the previous approaches of 
this problem, was developed in the framework of the Redfield relaxation 
theory (Abragam, 1961b; Redfield, 1965) describing the time dependence of 
the correlation functions of the spin system components. This theory has 
essentially two limitations. Denoting by ω0 the unperturbed Zeeman angular 
frequency and by H1 the time dependent perturbing Hamiltonian inducing 
electronic transitions between the Zeeman levels, one must have 1 1cH τ <<  
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and 2
01 cH τ ω<< , where τc is the correlation time of the fluctuating term 

H1. The first condition can be violated when we consider large complexes. 
When the relevant time τc is the rotational correlation time of the complex, 
its inverse which is the rotational diffusion constant DR  can reach values of 
the same order as H1, especially in the low temperature region where DR 
decreases. The second condition corresponds to the secular 
approximation(Abragam, 1961a) and may be hardly satisfied when 
experiments are performed at low fields, mainly for large complexes and at 
temperatures just above 0 °C. 

To overcome these problems, a new approach using Monte-Carlo (MC) 
simulations of the electronic relaxation processes was presented (Rast et al., 
2001c). In this method independent Brownian rotational trajectories of 
Gd(III) complexes are generated in discrete time steps. Similar numerical 
approaches had already been used in the past (for example in the work of 
Abernathy and Sharp (Abernathy and Sharp, 1997), but in our case the 
simulated Hamiltonian took into account all contributions (static and 
transient) to the relaxation process. A MC procedure for the reorientation of 
the Gd(III) complexes, combined with a Ornstein-Uhlenbeck process (Bauer, 
1991; Kannan, 1979) used to model the transient zero-field splitting, was 
applied to the electronic relaxation theory beyond the Redfield limit where 
there is no analytical solution. The comparison of the simulation results with 
the Redfield predictions allowed a rigorous estimation of the error induced 
by the Redfield approximation outside its limits. The slow molecular 
tumbling at low temperature was found to be of no consequence for the 
relatively small studied complexes ([Gd(H2O)8]3+ and [Gd(DOTA)(H2O)]2-) 
in the range of conventional EPR (0.34 T and above), but the extrapolation 
of the Redfield theory down to low fields (0.1 T and below) lead to 
significant discrepancies. For example, the simulated electronic relaxation 
times were over 20 % longer than the Redfield predictions for the aqua ion. 
This was an important finding since such low magnetic fields are routinely 
used in NMRD experiments on Gd(III) complexes. 

Although this improved theory brought new insights into the phenomena 
underlying electron spin relaxation, it also dug an increasingly wide gap 
between the 1H/17O-NMR experiments commonly performed in the study of 
potential MRI contrast agents and the state of the art in the field of EPR. In 
particular, it became important to replace the simultaneous fitting approach 
first proposed by Powell et al. (Powell et al., 1996) with an integrated and 
theoretically sound approach combining 17O-NMR, NMRD and EPR 
experimental data with a full description of electron spin relaxation taking 
possible violations of Redfield's approximation into account. This was 
successfully accomplished with the octa aqua ion [Gd(H2O)8]3+ as a test case 
(Borel et al., 2002). Furthermore, newly developed experimental methods 
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have made the direct measurements of short T1e possible (Atsarkin et al., 
2001). It was found that the combination of the static and transient crystal 
field effects was able to correctly predict the observed results (Borel et al., ). 

 

2. THEORETICAL SECTION 

2.1 Overview 

Neglecting any hyperfine interaction, the spin Hamiltonian of an S > 1/2 
metal ion without orbital moment such as Gd(III) (S = 7/2, half-filled 4f 
shell) is assumed to be divided into two contributions, namely a Zeeman 
term due to the external magnetic field and a zero field splitting (ZFS) term 
caused by the crystal field around the ion. 

  Ĥ = Ĥ
Zeeman

+ Ĥ
ZFS

 (1) 

The Zeeman term is constant in a uniform magnetic field. We denote it 
H0. The crystal field attached to the molecular frame M is randomly 
modulated over time in the laboratory frame L. The corresponding term, 
written H1, is therefore time dependant. 

  Ĥ = Ĥ
0
+ Ĥ

1
L(t)  (2) 

The time-dependant ZFS term is the origin of the longitudinal and 
transverse electron spin relaxation. It is further divided into two 
contributions depending on the nature of the modulating motion. On one 
hand, a so called static part H1S is due to the average coordination 
polyhedron. It is constant in the M frame, but modulated in the L frame by 
molecular tumbling in solution. On  the other hand, the transient part H1T is 
modulated by the deformations of the coordination polyhedron, for example 
due to solvent collisions or exchanges in the first coordination shell of the 
ion. This second term is averaged out over time even in the M frame but can 
be non-zero at a given time t. 

  Ĥ1
L(t) = Ĥ

1S
L (t)+ Ĥ

1T
L (t)  (3) 

The treatment of this time-dependant Hamiltonian using the Redfield 
relaxation theory is the basis of the theory presented in the following section. 
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The electron spin relaxation is governed by the amplitude of the static and 
transient ZFS Hamiltonians and by the respective correlation times for their 
modulation in the laboratory frame. Since molecular tumbling and vibrations 
happen on different time scales, the relative importance of the static and 
transient ZFS contributions to relaxation depends on the observation 
frequency. While conventional X-band EPR is mainly influenced by the 
rotational modulation of the static ZFS, HF EPR is an irreplaceable tool for 
the study of the transient ZFS. 

The calculation of the relaxation matrix based on this Hamiltonian leads 
to the prediction of a multi-exponential decay of the transverse 
magnetization described by several relaxation times T2ei. Although the same 
prediction is made for the longitudinal relaxation, an essentially 
mono-exponential decay is calculated in this case. 

A rigorous calculation of the continuous wave EPR lineshape shows the 
existence of a dynamic frequency shift (Fraenkel, 1965; Fraenkel, 1967) that 
is a variable displacement of the central resonance field. This shift can be 
used together with the peak-to-peak width for the analysis of EPR spectra of 
Gd(III) complexes in solution. When possible, the calculation of the 
complete spectrum is the best way to analyze the data. 

 

2.2 Theory and practical implementation 

2.2.1 Crystal field Hamiltonian 

First, we define the static crystal field ZFS Hamiltonian on the basis of 
the electron spin components. In the M frame it can be expressed as linear 
combinations of irreducible tensor operators of rank k, Tk

q (| q| < k) 
(Buckmaster et al., 1972). 

  
Ĥ

1S
M = B

kη

k,η
∑ b

kη
q T̂

k

q

q=−k

+k

∑  (4) 

k is even and limited to K = 2S, i.e. K = 4 for d electrons and 6 for f 
electrons. The real coefficients Bkη determine the magnitude of each 
contribution. The linear combinations Σbkη

qTk
q have complex coefficients bkη 

and must be invariant under the symmetry operations of the point group of 
the molecule. These coefficients can be always be chosen orthonormal: 
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bkηq*
q=−k

k

∑ bkη 'q = δηη '  (5) 

Depending on the symmetry, there may be several such combinations of 
same rank k, making the supplementary index η necessary. The number of 
possible linear combinations is given by the coefficient of the fully 
symmetric irreducible representation after reduction of the representation 
Dk

+ of the full rotation group (spherical harmonics of order k) in the point 
symmetry group of the system. For example, in the D4d symmetry, one finds 
that there is only one linear combination of tensors in any of the orders k = 2, 
4, 6: 

12 2 3

1 1 2 14 2 3

1 1 2 16 2 32 2

D A E E

D A B B E E E

D A B B E E E

+

+

+

= + +

= + + + + +

= + + + + +

 

In the molecular frame, the best known form of the Hamiltonian (4) is the 
usual second order ZFS term: 

  
D Ŝz

2 − 1
3
Ŝ 2⎛

⎝⎜
⎞
⎠⎟
+ E

2
Ŝ +

2 + Ŝ -
2( )  = D

2
3
T̂

0
2 +E T̂

2
2 +T̂−2

2( )  (6) 

Thus our static crystal field Hamiltonian is in principle a generalized 
form of the ZFS found in earlier papers by various researchers (Borel et al., 
2000; Clarkson et al., 1998; Hudson and Lewis, 1970; Nilsson and 
Kowalewski, 2000; Poupko et al., 1974; Powell et al., 1993; Strandberg and 
Westlund, 1996). A comparison of equations (4) and (6) in axial symmetry 
(E = 0 in equation (6)) shows that the identity of B2 (there is only one single 
η in this case) with the ZFS spin Hamiltonian coefficient (2/3)1/2D. Adding 
an orthorombic deformation leads to a second tensor combination with B2η = 
21/2E. This corresponds to a  D2h, D2 or C2v symmetry. In the lower C1, Ci, 
C2h, C2 or CS  point groups there are more than two linear combinations of 
2nd order irreducible tensors. The 4th order contribution is less frequently 
present in the literature, but its importance was discussed for example for S = 
2 complexes of d elements, such as Mn3+ compounds (Abernathy et al., 
1998) 

Let us now consider the transformation of the Hamiltonian from the M 
frame to the L frame. It is performed by a rotation R(α,β,γ) depending on the 
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instantaneous orientation of the M frame with respect to the L frame, using 
the associated Wigner matrix of rank k. 

  
Ĥ

1S
L (t) = B

kη

k,η
∑ b

q

kη
T̂

q

k
D

pq

k (R(t))
p,q=−k

+k

∑  (7) 

For the static ZFS, the Bkη coefficients are constant, and the time 
dependence only appears in the Wigner rotation matrices. For the transient 
ZFS term, these coefficients are also functions of time. If we restrict our 
development to 2nd order we obtain: 

  
Ĥ

L

1T
(t) = B

2ηT

η
∑ (t) b

2ηT

q T̂q

2
D

2
pq

(R(t))
p,q=−2

+2

∑  (8) 

The total crystal field Hamiltonian in the laboratory frame is then as 
follows: 

  
Ĥ1

L (t) = B
kη

k,η
∑ b

kη
q T̂

k

q
D

k

pq
(R(t))

p,q=−k

+k

∑ + B
2ηT

η
∑ (t) b

2ηT
q T̂

2
q

D
2
pq

(R(t))
p,q=−2

+2

∑  

 (9) 

2.2.2 EPR line shape 

We have now built the Hamiltonian which governs the time evolution of 
our quantum mechanical system and we turn our attention to the line shape. 
The density operator in the interaction picture σI expressed in a basis of spin 
states –S ≤ α, β, γ, etc. ≤ +S follows a system of first order differential 
equations 

  

dσα ,α '
I

dt
= Rαα 'ββ '

ω
0( )

β ,β '
∑ σβ ,β '

I  (10) 

with the restriction that α - α' = β - β', expressing the secular 
approximation which eliminates the rapidly oscillating elements of the 
relaxation matrix R. 
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Rαα 'ββ '
ω

0( ) = dτ e
i β−α( )ω0τ⎡

⎣⎢ β ' Ĥ
1
L(t)α ' β Ĥ

1
L(t − τ )α

*

0

∞

∫

+ei α '−β '( )ω0τ α Ĥ
1
L(t) β α ' Ĥ

1
L(t − τ ) β '

*

−δα 'β '
e

i β−γ( )ω0τ α Ĥ
1
L(t) γ β Ĥ

1
L(t − τ ) γ

*

γ
∑

−δαβ e
i γ −β '( )ω0τ γ Ĥ

1
L(t)α ' γ Ĥ

1
L(t − τ ) β '

*

µ
∑

 (11) 

 where the bar represents the ensemble average over the various 
orientations of the complex. Replacing the integrals with spectral density 
functions J(ω), we get 

  

Jαβα ' β '(ω) = α H 1(t) β β ' H 1(t − τ )α ' e − iωτ
dτ

0

+∞

∫
Rαα ' ββ ' = Jαβα ' β '(ωα ' β ')+ Jαβα ' β '(ωαβ)− δα ' β ' J γβγα(ωγβ)

γ
∑ − δαβ J γα ' γβ '(ωγβ ')

γ
∑ (12) 

Let us consider a spin operator component Si with i = x, y, z, and its time 
correlation function Gi(t): 

1
( ) tr ( ) (0)

2 1i i i
G t S t S

S
=

+
 (13) 

The bar indicates the mean value of the matrix elements of these 
operators and tr is the trace operation. Within the high temperature 
semiclassical formalism, the absorption line shape under an oscillating field 
polarized in the x direction is (Abragam, 1961b) 

( ) Re ( ) i txF G t e dtωω
∞

−∞

= ∫  (14) 

In what follows it is useful to define a slowly time dependent operator 

   
!̂S
i
(t) = e

−iĤ0tŜ
i
(t)eiĤ0t  (15) 
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whose matrix elements have the same time evolution as σI except a 
minus sign before ω0, i.e. 

   

d !̂S
iα ,α '

dt
= Rαα 'ββ '

−ω
0( )

β ,β '
∑ !̂S

iβ ,β '
 (16) 

We can express the time correlation function Gx(t) in the basis of the spin 
states diagonalizing Sz 

  
G

x
(t) = 1

2S + 1
α Ŝ

x
(t)α ' α ' Ŝ

x
α

α ,α '
∑  (17) 

The summation can be restricted to the (α, α') pairs where α - α' = ±1. 
The sum over the pairs α - α' = -1 is the complex conjugate of the sum over 
the pairs α - α' = +1, so we can write 

   

G
x
(t) = 2

2S + 1
Re α Ŝ

x
(t)α − 1 α − 1 Ŝ

x
α

α=−S+1

S

∑

= 2
2S + 1

Re eiω0t α !̂S
x
(t)α − 1 α − 1 !̂S

x
α

α=−S+1

S

∑
 (18) 

Defining a vector X(t) with components Xα = 1xSα α −%  we can rewrite 
the time evolution equation as 

( )0, 1, , 1

dX
R X

dt
α

α α β β β
β

ω− −= −∑  (19) 

with initial conditions Xα(0) = < α | Sx | α - 1> = {S(S+1)-α (α - 1)}1/2/2, 
and the time correlation function Gx(t) as  

0

1

2
( ) Re ( ) (0)

2 1

S
i t

x
S

G t e X t X
S

ω
α α

α=− +

=
+ ∑  (20) 

Similarly the longitudinal relaxation behavior is described by 

0
2

( ) Re ( ) (0)
2 1

S
i t

z
S

G t e Z t Z
S

ω
α α

α=−

=
+ ∑  (21) 
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where the matrix elements Zα(t) satisfy: 

( )0, , ,

dZ
R Z

dt
α

α α β β β
β

ω= −∑  (22) 

Generally, the spectral densities are complex functions, so the matrix 
Rαα'ββ' is also complex. Indeed, If we calculate the transform of the time 
correlation functions for the matrix elements of the Hamiltonian assuming an 
exponential decay: 

' ' 1 1

' ' ' '

( ) ( ) ' ( ) '

( ) ( ) i

g H t H t

J g e d

αβα β

ωτ
αβα β αβα β

τ α β β τ α

ω τ τ
+∞

−

−∞

= +

= ∫
0' '

0 0

1
( ) exp( ( ))i

c
g e d g i dωτ
αβα β τ τ τ ω τ

τ

+∞ +∞
− = − −∫ ∫

2

0 2 21 ( ) 1 ( )
c c

c c
g i

τ ωτ
ωτ ωτ

⎧ ⎫
= −⎨ ⎬+ +⎩ ⎭

 (23) 

It has been shown that the relevant Redfield matrix for the transverse 
relaxation R2αβ = Rα,α-1,β,β-1 is complex and symmetric, but is not a normal 
matrix, (Binsch, 1968; Rast et al., 2000) leading to complex eigenvalues. 
The imaginary part of the relaxation matrix has rarely been used. Poupko 
(Poupko et al., 1974), followed by later work in our laboratory (Borel et al., 
2000), took it into account in the analysis of EPR spectra of Gd(III) 
complexes in solution. Strandberg (Strandberg and Westlund, 1996) also 
included it in a simulation of EPR line shapes and NMRD profiles. Finally, 
the slow motion (or high frequency) limit theory used by Clarkson and 
coworkers produced an elegant but unfortunately limited result for the 
frequency dependence of the dynamic frequency shift (Clarkson et al., 1998; 
Smirnova et al., 1998). Unlike its transverse counterpart, the relevant matrix 
R1αβ = Rααβ,β for the longitudinal relaxation is a real symmetric matrix. The 
technical details concerning the diagonalization of these matrices are 
discussed in the computational details section. In our case we have checked 
that the eigenspace of R2αβ(ω0) = Rα,α-1,β,β-1(ω0) (α, β = -S+1,... S) is 
2S-dimensional and its eigenvalues are denoted by Λλ = Λλ

r + i×Λλ
i, λ = -

S+1,..., S with the corresponding eigenvectors ηλ, which have to be chosen to 
fulfill the following relation: 

 1=λλ ηη .  instead of 1* =λλ ηη .  (24) 
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 else the eigenvectors are only defined to an arbitrary complex phase 
factor and calculation of the intensities is no longer possible. As it stands, 
only 4 of the 7 transitions have non-zero intensity. At a given external 
magnetic field B0 with an associated frequency ω0, we obtain an explicit 
formula for the Fourier transform of Gx(t) which is denoted by I(ω0,ω0) 
(Poupko et al., 1974). With Û the matrix that diagonalizes R2αβ(ω0) this 
Fourier transform can be safely approximated for ω0 ≈ ω0 as: 

   
I(ω,ω

0
) = Re

!
XÛ[i(ω 0−ω )̂1 + Λ̂] − 1 tÛ

!
X{ }

2

22

0

2
0

22

0

(  ) ( )
Re

(  )

Im

r

i r

i

i r

X

X

λ λ

λ

λ λ

λ λ

λ λ

η

ω ω

η ω ω

ω ω

⎧ ⎫
⎪ ⎪Λ
⎪ ⎪=
⎨ ⎬⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪− + Λ + Λ⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤⎛ ⎞

− + Λ⎪ ⎪⎢ ⎥⎜ ⎟
⎪ ⎪⎝ ⎠⎣ ⎦− ⎨ ⎬⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪− + Λ + Λ⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

∑
r r

r r

 (25) 

where the contribution to the absorption centered at –ω0 has been 
dropped. The absorption part of the EPR spectrum at fixed frequency  and 
variable field B0 is proportional to the derivative dI(ω0, gµBB0/ħ)/dB0. 

We now turn to the calculation of the spectral densities in our model of 
the Hamiltonian fluctuations. In the calculation of the spectral densities 
defined by equation (12): 

  
Jαβα ' β '(ω) = α H

1S
L (t)+H

1T
L (t) β β ' H

1S
L (t − τ )+H

1T
L (t − τ )α ' e − iωτ

dτ
0

+∞

∫  

 (26) 

we find a term involving only the rotation dependent modulation of the 
static part of the crystal field described by H1S

L, a pure transient term 
involving only H1T

L, and cross terms. By assuming that the stochastic 
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fluctuations described by H1T
M are independent from the rotations, the cross 

terms vanish. Assuming that the complex undergoes a Brownian rotation 
with a characteristic τD = 1/DR (DR being the rotational diffusion constant) 
we write 

τk = τD/{k(k+1)} (27) 

Since 2nd order effects are most commonly used in the description of 
magnetic relaxation processes in solution, we follow the convention that τR = 
τ2 =τD /6. When comparing results from different studies, care must be taken 
to understand the respective definitions, either τR = τ2 (frequently used by 
various authors) or τR = τD (Rast et al., 2001b; Rast et al., 1999; Rast et al., 
2000). By inserting the Hamiltonian expression (7) into equation (12) and 
using the orthogonality property (28) 

  
D

pq
k * (R(t))D

p 'q '
k ' (R(t − τ )) = 1

2k + 1
e

− τ /τ kδ kk 'δ pp 'δ qq '  (28) 

we obtain the following expression for the spectral densities: 

   

Jαα ' ββ '(ω) =

    
1

2k + 1
bq

kη*bq
kη ' BkηBk η ' eiωτe− τ /τ k α

⌢
T

k

q ' α ' β
⌢

T
k

q ' β ' * dt
0

∞

∫
η,η '
∑

k
∑

q,q'
∑  

 

 (29) 

In equation (29), the integral can be rewritten in terms of 3j symbols 
using the Wigner-Eckart theorem and evaluated, taking into account the 
imaginary part of the transform according to equation (23) and the selection 
rules α = α' + q' and β = β' + q': 

  

Jαα ' ββ '(ω) = 1
2k + 1

S Tk S 2 τ k

1 +ω 2τ k
2
+ i

ωτ k
2

1 +ω 2τ k
2

⎛
⎝⎜

⎞
⎠⎟k

∑ ×

(Bkη)2(−1)S − α S k S
−α α −α ' α '

⎛
⎝⎜

⎞
⎠⎟
(−1)S − β

η
∑ S k S

−β β − β ' β '

⎛

⎝⎜
⎞

⎠⎟

 

 (30) 
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with the reduced matrix element 
2( !) (2 1)!

2 (2 )!(2 )!
k

k

k S k
S T S

k S k
+ +=

−
. 

Let us now consider the contribution of the transient ZFS interaction to 
the relaxation matrix. It is very difficult to treat all the relevant effects 
(solvent collisions, coordination shell rearrangements) in a rigorous way. For 
this reason we use a simplified (2nd order) transient ZFS Hamiltonian similar 
to the one of most authors (Powell et al., 1993; Rubinstein et al., 1971): 

2
22 22

1
, 2

à à( ) ( ) ( ( ))
TTL
q q pqT

p q

H t B t b T D R t
ηη

η

+

=−

= ∑ ∑  (31) 

In equation (31), B2ηT is a time dependant real random function. We 
assume its time correlation function to be given by the simple form: 

2 2 2 2 | |/( ) ( ) ( (0)) vT T TB t B t B eη η η τ ττ −− =  (32) 

τv being a unique characteristic correlation time. As mentioned earlier, 
the cross correlation terms vanish due to the independence of the rotations 
and the effects leading to the transient ZFS. Choosing orthonormal 
coefficients bq

2ηT according to equation (5) and using the orthogonality 
property (28), we obtain the following expression for the transient ZFS 
spectral densities: 

  

JT
αα ' ββ ' (ω) = 1

5
S T 2 S 2 τ '

1 +ω 2τ ' 2
+ i

ωτ ' 2

1 +ω 2τ ' 2
⎛
⎝⎜

⎞
⎠⎟
×

(B
2ηT(0))2(−1)S − α S 2 S

−α α −α ' α '

⎛
⎝⎜

⎞
⎠⎟
(−1)S − β

η
∑ S 2 S

−β β − β ' β '

⎛

⎝⎜
⎞

⎠⎟

 

 (33) 

with a combined correlation time τ' defined by 1/τ' = 1/τv + 1/τ2. Adding 
expressions (30) and (33) yields the complete spectral densities necessary for 
the calculation of the Redfield matrix elements in equation (12). 
Consequently, the matrix elements can be expressed in terms of a reduced 
number of independent adjustable parameters, namely: 
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- for each value of k = 2, 4, 6, a static ZFS magnitude parameter 

∑=
η

η 2)( k
k Ba  

- the correlation time τD (or equivalently the rotational diffusion 
constant DR) which provides the τk through equation (27); 

- the transient ZFS magnitude parameter 22
2

( (0))T
T
a B

η
= ∑ ; 

- the transient ZFS fluctuation correlation time τv. 

For completeness on further parameter must be added for the line shape 
calculation according to equation (25), i.e. the natural g-factor of the 
molecule. Furthermore, it is assumed that the correlation times have a 
temperature dependence described by an Arrhenius law with respective 
activation energies ER for the rotations and Ev for the vibrations: 

1 1298 exp
298.15

ER
D D R T
τ τ

⎧ ⎫⎪ ⎪⎛ ⎞= −⎨ ⎬⎜ ⎟⎝ ⎠⎪ ⎪⎩ ⎭

 (34) 

1 1298 exp
298.15

Ev
v v R T

τ τ ⎧ ⎫⎛ ⎞= −⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭
 (35) 

 
We see that the two contributions are additive at the Redfield matrix 

elements level. However it is not generally possible to separate them in the 
final effect (the magnetization decay) since the eigenvectors and transition 
intensities depend on the input parameters, as already recognized for the 
simple 2nd order ZFS mechanism (Hudson and Lewis, 1970).  

 

2.2.3 Consequences for 1H and 17O NMR 

We give in this section a brief outline of the consequences of the 
presented electron spin relaxation model in the analysis of the 1H and 17O 
NMR relaxation data of Gd(III) complexes in solution. For such studies, a 
good understanding of the electron spin relaxation is an important step 
towards a more rational design of MRI contrast agents. In this respect, HF 
EPR is a very important tool in sight of the high magnetic fields used in 
these experiments (4.7 T and more for 17O NMR). 
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Since most of the equations relevant for NMR have been frequently 
presented in the literature (Caravan et al., 1999a; Merbach and Tóth, 2001), 
we will only describe the modifications brought by our electron spin 
relaxation model. 

2.2.3.1 Time correlation functions 
 
NMR time correlation functions in the absence of cross-relaxation can be 

written as a product of the time correlation functions for the various active 
relaxation mechanisms (Vigouroux et al., 1999): 

)()....()()( tgtgtgtg xba=  (36) 

The 1D NMR line shape is simply the Fourier transform of the overall 
time correlation function: 

∫
∞

−=
0

)()( dttgeI tiωω  (37) 

In the case of solutions of paramagnetic agents, this leads eventually to 
the well-known equations of Solomon-Bloembergen (Bloembergen, 1957; 
Bloembergen and Morgan, 1961) and Freed (Freed, 1978; Hwang and Freed, 
1975) for 1H relaxation, and to the Swift-Connick (Swift and Connick, 1962) 
equations for 17O. 

Whereas it is observed that the longitudinal relaxation can be adequately 
described by a single correlation time T1e (i.e. gze(t) = exp(-t/T1e)), the 
transverse relaxation function of S = 7/2 ions is generally a combination of 
four time correlation functions with different intensities Ik, and characteristic 
times T2ek, k =1..4. 

2
1

( ) exp( / )k

N

xe ek
k

g t I t T
=

= −∑  (38) 

Consequently, this multi-exponential behavior should be reflected in all 
equations where transverse electronic relaxation plays a role. 

2.2.3.2 Outer-sphere relaxivity 
 
Outer sphere relaxivity describes the contribution to relaxivity due to 

solvent molecules in the neighborhood of the paramagnetic center. As found 
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by Freed (Freed, 1978), the spectral density for dipolar relaxation modulated 
by free diffusion and finite electronic relaxation is given by equation (39). 

[ ]( )
0

( ) 2Re ( )exp 1/n neJ G t i T t dtω ω
∞

= − +∫ , n = 1,2 (39) 

where G(t) is the time correlation function obtained from the solution of 
Smoluchowski's diffusion equation. If we now substitute the electronic 
decaying exponential with our expression of gxe(t) (equation (38)) we obtain 
the correct form of J2(ω): 

  

J 2(ω) = 2Re G(t)gxe(t)exp −iωt( )dt
0

∞

∫ = 2 ReIk G(t)exp −iω + 1/T2e k⎡⎣ ⎤⎦ t( )dt
0

∞

∫
k=1

4

∑

= Ik J2 Freed(ω,T2ek )
k=1

4

∑ (40) 

Thus we see that the effect of a multi-exponential electronic relaxation is 
only to replace the single T2e-dependant spectral density with a linear 
combination of individual spectral densities with respective coefficients Ik, 
k = 1..4. Incidentally, the effect of the dynamic frequency shift (imaginary 
part of T2ek) is negligible as it is always small compared to the electronic 
frequency ω used for J2. 

2.2.3.3 Inner-sphere relaxivity and 17O longitudinal relaxation 
  

Inner sphere relaxivity is the contribution caused by water molecules 
directly bound to the paramagnetic center and transferred . Both 1H and 17O 
inner-sphere longitudinal dipolar relaxation rates depend on the transverse 
electronic relaxation through the second dipolar correlation time τd2 defined 
by equation (41). 

m 2ed2 R

1 1 1 1
Tτ τ τ

= + +  (41) 

This definition expresses the relative independence of the chemical 
exchange, molecular rotation and electronic relaxation processes that 
modulate the dipolar interaction. Similarly to the previous example, the 
corresponding spectral density must then be rewritten as equation (42). 
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ω ω ω

ω

∞ ∞

=

=

= − = − +

=

∑∫ ∫

∑

e kM R xe k M R
k

k std ek
k

tJ g t g t g t i t dt I g t g t i T dt

I J T
 (42) 

However, one may question the independence of the relaxation 
mechanisms. Indeed, electronic relaxation is itself a function of rotational 
diffusion, which modulates the static crystal field in the laboratory frame. 
The consequences of this correlation are twofold (Kowalewski et al., 1985): 
(i) cross relaxation effects appear between the nuclear dipolar relaxation and 
the electron relaxation, and (ii) cross terms also appear between the dipolar 
and scalar relaxation processes. We can overlook (i) since it only affects the 
transverse nuclear relaxation (Benetis et al., 1983a), and thus plays no role in 
our study of 1H relaxation where only T1 is considered. The second effect, 
arising from the artificial separation of the electron-nucleus coupling into 
two contribution, can also be neglected for the inner-sphere protons where 
scalar relaxation is negligible. For 17O, one should in principle take this 
effect into account. However, in our case it can be conveniently neglected, as 
it is only important when the time-dependant interaction (static crystal field) 
is stronger than the electron Zeeman interaction (Benetis et al., 1983b; 
Benetis et al., 1984). In the conditions of 17O-NMR (minimum external field 
1.4 T in our data), this is not the case for the Gd(III) aqua ion, nor for any of 
the polyaminocarboxylate complexes studied so far.  

The same argument might be raised regarding chemical exchange (which 
modulates the crystal field tensor by changing the coordination sphere). This 
does not hold for Gd(III) complexes where chemical exchange is at least two 
orders of magnitude slower than electronic relaxation: we can safely assume 
a fixed coordination sphere (except for small vibrations) on the EPR time 
scale. 

2.2.3.4 17O transverse (scalar) relaxation 
 
In a very similar manner, the scalar relaxation mechanism dominating the 

transverse relaxation of inner sphere 17O is influenced by T2e through the 
second scalar correlation time τ2S : 

m 2e2

1 1 1

S
Tτ τ

= +  (43) 
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The spectral densities should therefore be substituted accordingly, 
yielding equation (44). 

( ) ( )
2 4

2
1 2 2

12 2

/1 1
3 1

Sk
kS

ksc Sk

A
S S I

T
ττ
ω τ=

⎡ ⎤= + +⎢ ⎥+⎣ ⎦
∑h

 (44) 

There is no need to consider cross-relaxation effects in this case, since 
the dipolar contribution is negligible compared to the scalar term. 

 

2.2.4 Computational details 

As briefly mentioned earlier, only 4 out of the 7 eigenvectors of the R2αβ 
transverse relaxation matrix lead to non zero intensities. Indeed the Redfield 
matrix is symmetric (Rast et al., 2000) with respect to the principal diagonal 
(Rαα'β,β' = Rβ,β'αα') and the antidiagonal (Rαα'β,β' = R-β'-β-α'-α). Thus we are able to 
transform the matrix in block-diagonal form by a similarity transformation 
with the symmetric matrix T:  

1

1 1
... ...

1 11
    (even-sized )

1 12
... ...

1 1

1 1
... ...

1 1
1 2     (odd-sized )
2

1 1
... ...

1 1

R

T T

R

−

⎧ ⎛ ⎞
⎪ ⎜ ⎟
⎪ ⎜ ⎟
⎪ ⎜ ⎟
⎪ ⎜ ⎟
⎪ −⎜ ⎟
⎪ ⎜ ⎟
⎪ ⎜ ⎟
⎪ ⎜ ⎟⎜ ⎟−⎝ ⎠⎪
⎪⎪ ⎛ ⎞= = ⎨

⎜ ⎟⎪
⎜ ⎟⎪
⎜ ⎟⎪
⎜ ⎟⎪
⎜ ⎟⎪
⎜ ⎟⎪

−⎜ ⎟⎪
⎜ ⎟⎪
⎜ ⎟⎪
⎜ ⎟⎜ ⎟⎪ −⎪ ⎝ ⎠⎩

 (45) 

The transformed matrix TR2αβT is reduced to block diagonal form with 
two blocks. We need then only diagonalize the block for which 
ΣβTαβXβ(0) ≠ 0 so that (Xηλ)2 ≠ 0 in equation (25). The same procedure 
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can be used for the longitudinal matrix  R1αβ. We obtain two reduced 
relaxation matrices R1 = TR1αβT and R2 = TR2αβT with the general form: 

2 2
1, 2 ki

k

A E H J

E B F IkR S T S a
H F C G

J I G D

=

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

∑  (46) 

where k = 2, 4, 6, 2T and the matrix elements A...J are combinations of 
spectral densities with linear coefficients following equations (11), (30), (33) 
and (45). This 4×4 block form is similar to the one obtained by Strandberg 
(Strandberg and Westlund, 1996) using the simple 2nd order ZFS relaxation 
mechanism. It not only reduces the computational cost of the fitting 
procedure, but also avoids some numerical problems due to the presence of 
almost degenerate eigenvalues of the R2αβ matrix. 

Let us now consider the fitting procedure in more detail. The measured 
EPR spectra are a superposition of absorption and dispersion contributions 
and of a base line which is a linear function of the magnetic field B0. For a 
given set of the nine fitting parameters (a2, a4, a6, a2T, τR, ER, τv, Ev and g), 
the theoretical spectrum is then 

00 0
01 2 3 4

0 0 0

( )( ) ( ) thth th
a d

d Bd B d B
B

dB dB dB

ϕϕ ϕ
ξ ξ ξ ξ= + + +  (47) 

 where dφa/dB0 is the derivative of the absorption line shape (25), and 
dφa/dB0 is the derivative of the dispersion contribution (Rast et al., 2001b). 
Thus, for each experimental spectrum dφn

exp/dB0, where the index n 
corresponds to a particular temperature and frequency, the associated 
theoretical spectrum is that given by the parameters ξ1n, ξ2n, ξ3n, ξ4n. which 
minimize the difference between the experimental spectrum and the 
spectrum calculated from the nine adjustable parameters using equations 
(25) and (47). It was especially important to acknowledge the dispersion 
contribution in order to analyze our HF EPR spectra, where the experimental 
phasing procedure at measurement time was not always able to yield pure 
absorption spectra. 

The central field Bc
th and the peak-to-peak distance ΔHpp

th can be 
extracted from the expression of the absorption line shape by searching the 
zeros of the first and second derivatives. 
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2.3 Beyond the Redfield limit 

The presented approach has been developed within the framework of the 
Redfield theory of magnetic relaxation. It is then only valid if the two 
following conditions are verified: 

11 <<cH τ  (48) 

0
2

1 ωτ <<cH  (49) 

where ω0 is the unperturbed Zeeman angular frequency, H1 the time 
dependent perturbing Hamiltonian inducing electronic transitions between 
the Zeeman levels, and τc is the correlation time of the fluctuating term H1. 
The first condition can be violated when we consider large, slowly tumbling 
complexes. When the relevant time τc is the rotational correlation time of the 
complex, its inverse which is the rotational diffusion constant DR  can reach 
values of the same order as H1, especially in the low temperature region 
where DR decreases. The second condition corresponds to the secular 
approximation(Abragam, 1961a) and may be hardly satisfied when 
experiments are performed at low fields, mainly for large complexes and at 
temperatures just above 0 °C. 

Since the problem is rather insignificant from the point of view of HF 
EPR, we will only briefly consider the numerical calculation of the line 
shape using Monte Carlo simulations (Rast et al., 2001c). As mentioned 
earlier, we are interested in the decay of the magnetization, described by 
equation (50), where i = x, y,or z.  

1
( ) tr ( ) (0)

2 1i i i
G t S t S

S
=

+
 (50) 

Under a time dependent Hamiltonian H(t), the spin operators Si(t) are 
given by: 

  Ŝi
(t) = Û(t)†Ŝ

i
Û(t)  (51) 

where U(t) is the unitary time evolution operator satisfying the 
Schrödinger equation (52) 

  

dÛ(t)
dt

= −iĤ(t)Û(t)  (52) 
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with the initial condition U(0) = 0. The numerical resolution of this 
equation can be performed by generating a large number (500-3000) of 
independent realizations of the L frame Hamiltonian H1

L(t) (equation (9)). 
For each realization, equation (52) is integrated over a time interval [0, tmax] 
using a short enough time step Δt so that we can approximate H(t) by H(nΔt) 
for nΔt ≤ t ≤ (n+1)Δt. The time evolution operator is then given by: 

  Û((n + 1)Δt) = e
−iĤ (nΔt )Δt

Û(nΔt)  

Practically, the realizations of H1
L(t) require two different steps, namely 

the simulation of the transient ZFS crystal field parameters B2ηT(t) and that 
of the Wigner matrices expressing the transformation from the molecular 
frame into the laboratory frame. 

This briefly outlined technique, implemented in a computer program, 
allows a systematic study of the validity of the Redfield approximation for a 
given set of  crystal field parameters and correlation times. The calculations 
performed using the available data on [Gd(H2O)8]3+ and [Gd(DOTA)(H2O)]- 
(see below) showed that for such small complexes the Redfield limit is not a 
problem at the usually available EPR frequencies (X-band and above) at any 
temperature between 0 and 100 °C (Rast et al., 2001c). However, at lower 
magnetic field (0.1 T and below) the Redfield theory overestimates the 
electron spin relaxation rate by 15 % or more. This point is an important one 
for the analysis of NMR relaxation data in the presence of Gd(III) 
complexes, as shown in the following section. 

3. RECENT RESULTS AND DEVELOPMENTS 

The successful application of the theory to recent experimental data is 
presented and discussed. 

3.1 Analysis of multiple frequency and temperature 
spectra of Gd(III) complexes 

Extensive data has been obtained (Borel et al., 2001; Borel et al., 2000) 
for full EPR spectra of [Gd(H2O)8]3+ and [Gd(DOTA)(H2O)]- in water at 
various concentrations at the spectrometer frequencies of 9.425 GHz, 75 
GHz, 150 GHz, and 225 GHz, and temperatures between 0 °C and 100 °C. 

A significant source of uncertainty in the determination of the model 
parameters arises from the extraction of the peak-to-peak distances ΔHpp

exp 
and central fields Bc

exp which are biased, whatever the extraction method. 
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Indeed, for each experimental spectrum, the associated peak-to-peak 
distance and apparent g-factor are those of a theoretical spectrum of the 
form (47) which best fits the experiments and obviously corresponds to a 
particular molecular and line shape model. Such an indirect procedure is 
necessary because each experimental EPR spectrum is a superposition of 
absorption and dispersion contributions related to an unknown phasing 
problem with an additional effect of shifted and tilted baseline. 

In earlier studies approximate values of ΔHpp
exp and Bc

exp were obtained 
through two different methods. First, a direct reading procedure from the 
spectra was used (Borel et al., 2000; Powell et al., 1993) but it is particularly 
affected by the uncontrollable error due to the lack of knowledge of the 
phasing of the spectra and of the baseline positions. Second, as already done 
for the HF EPR (75-225 GHz) measurements in earlier papers(Borel et al., 
2000; Caravan et al., 1999b), ΔHpp

exp and ΔHpp
exp can be determined by 

fitting a single Lorentzian curve and its corresponding dispersion part to 
each experimental spectrum in order to address the phase problem. This 
implies a monoexponential decay T2e of the transverse magnetization, whcih 
is clearly inadequate in sight of our physical relaxation model involving four 
different exponentials. However, we found that a single Lorentzian line 
almost perfectly fits the different [Gd(H2O)8]3+ spectra whereas the spectra 
of [Gd(DOTA)(H2O)]- are less well reproduced, but the values of T2e do not 
correspond to a true physical description of the system and are only 
independent fitted parameters. Nevertheless, the comparison of peak-to-peak 
distances and central fields from theory and experiment remains a 
comprehensive way to present the results. 

For all these reasons, in this work, the crystal field parameters, 
correlation times, activation energies, and g-factors were adjusted 
simultaneously, within our physical model, to the whole set of full, not phase 
corrected, spectra as described in the computational details section. 

In figure 1, we show some examples of experimental spectra and their 
counterparts calculated from our best fitting model for the [Gd(H2O)8]3+ 
complex. To summarize the results, we calculated the peak-to-peak distances 
and central fields of the theoretical absorption spectra and compared them 
with the data extracted from the experimental spectra used in the fit. In 
figure 2, for the convenience of the graphical representation, we do not show 
the central fields, but we depict the apparent g-factor gapp which is defined 
by 

app

cB

g
B
ω

µ
= h  (53) 



 27 

where ω is the operating frequency of the spectrometer and Bc the central 
field. The continuous lines are the results for ΔHpp

th and Bc
th from our model 

using the parameters shown in table 1. 
 

3.1.1 [Gd(H2O)8]3+ 

 
The [Gd(H2O)8]3+ complex is discussed in more detail because the known 

square antiprism symmetry of the static crystal field allows a deeper insight 
in the physics of this complex. 

The numerical adjustment of the theoretical spectra to the experimental 
data with respect to the nine adjustable parameters is rather difficult because 
of possible mutual compensation effects. We found that the g-factor is very 
well determined at the end of a least-square fit whereas it is more difficult to 
adjust the other parameters. We decided to start from the parameters of the 
previous work by Rast (Rast et al., 2000) including the 4th and 6th order 
crystal field contributions, but limited to the peak-to-peak distance analysis. 
The rotational correlation time τD was fixed at 140 ps and the corresponding 
activation energy ER at 18.9 kJ/mol in the fitting procedure in order to 
maintain them at the values predicted by the Stokes-Einstein model as 
discussed by Rast (Rast et al., 2000). The guessed starting value of the g-
factor was 1.9927. The constraint minimization led to a value of Fmin = 
0.014 of FS which is somewhat lower than the value 0.019 found for FS 
using the initial parameters and the above g value. 

The agreement with experimental line shapes, peak-to-peak distances, 
and dynamic shifts for all the studied frequencies and temperatures is 
excellent for the new parameter set as it is demonstrated in figure 1 for 
typical examples of whole spectra and in figure 2a for the peak-to-peak 
distances and apparent g-factors. The line shape is very well reproduced 
even in the wings of the spectra, underlining the quality of our fit. 

It should be stressed that it was not necessary to include any contribution 
from the spin rotation mechanism in our model in order to interpret the 
various experiments. This contribution to the transverse relaxation, which is 
independent of the spectrometer frequency, was introduced in other works to 
account for an excess electron spin relaxation rate in 17O NMR 
measurements (Powell et al., 1996) or HF EPR spectra (Borel et al., 2000). 
It generally led to an approximate agreement with the experimental data. It 
does not seem to be effective, a result quite understandable according to the 
large size and therefore to the large inertial moment of the magnetic complex 
(Nyberg, 1967). A good agreement with the experiments is possible only 
with two different, but frequency dependent crystal field contributions. The 
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short correlation time for the transient ZFS (τv ~ 1 ps) is such that the 
corresponding spectral densities will not vanish even at very high 
frequencies. We observed that the contribution of the static crystal field 
Hamiltonian is dominant at X-band, but is far less important at higher 
frequencies. 

For the g-factor, we found reasonable values comparable to those in other 
Gd(III) salts in solids (Abragam and Bleaney, 1970). The perfect agreement 
of the experimental spectra with their theoretical counterparts in the 
framework of our model justifies the choice of τD and ER = 18.9 kJ/mol from 
the Stokes-Einstein model of rotational diffusion (Rast et al., 2001b; Rast et 
al., 2000). These values are in reasonable agreement with τD = 6τR = 246 ps 
and ER  = 15 kJ/mol deduced from independent NMR experiments (Powell et 
al., 1996). 

The total crystal field splitting of the 8S multiplet can be calculated 
thanks to the D4d symmetry of the [Gd(H2O)8]3+ complex (Rast et al., 2000). 
The crystal field Hamiltonian reduces to: 

0
2,4,6

à àk k

k

H B T
=

= ∑  (54) 

where T0
k is an irreducible tensor of order k (Buckmaster et al., 1972), 

and the coefficients Bk are such that ak = |Bk|. From the diagonalization of the 
crystal field Hamiltonian we obtained a total crystal field splitting of the 
order of 0.4 cm-1 whatever the choice of the signs of the coefficients B2, B4, 
B6. This value is in reasonable agreement with that observed for Gd(III) in 
lanthanum ethylsulfate (0.25 cm-1) in the solid state (Abragam and Bleaney, 
1970). 

It is not very useful to compare our crystal field parameters a2 and a2T to 
the zero-field splitting parameter Δ2 of previous works (Borel et al., 2000; 
Powell et al., 1993; Powell et al., 1996), because Δ2 reflects an averaged 
effect of the transient and static zero-field splitting. This is a consequence of 
the rather simple model including only one second order term in the 
Hamiltonian and a unique correlation time in order to describe all the crystal 
field fluctuations. 

An important interest in understanding the EPR spectra of Gd(III) 
complexes lies in the evaluation of the longitudinal electronic relaxation for 
the study of the NMR relaxation of protons in presence of these complexes. 
It was observed that Gz(t) is practically a mono-exponential function with a 
characteristic time T1e having a relative weight of at least 97 % (Rast et al., 
2001b; Rast et al., 2000). 
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3.1.2 [Gd(DOTA)(H2O)]- 

 
In the fitting procedure of the whole set of experimental spectra for the 

[Gd(DOTA)(H2O)]- complex we have to be more cautious than in the 
previous case. The rotation correlation time is longer than for the 
[Gd(H2O)8]3+ complex so that the Redfield limit may be violated at low 
temperatures, mainly for the X-band (Rast et al., 2000). Therefore, the 
spectra recorded at temperatures lower than 17 °C were not included in the 
fit. In a first adjustment, we fixed a4 = a6 =0 in order to reduce compensation 
effects between the parameters. In subsequent adjustments we let freely vary 
also a4 and a6, but their values remained negligible. The lower limit of the 
activation energy Ev was set to 6 kJ/mol. The quality of the adjustment of the 
spectra is almost as good as for [Gd(H2O)8]3+ as shown by the similar value 
of Fmin of FS. We neglected the fact that the m-[Gd(DOTA)(H2O)]- isomer 
exists in an approximately 4-fold lower quantity besides the 
M-[Gd(DOTA)(H2O)]- isomer (Aime et al., 1997b) in order to avoid the 
introduction of too many parameters. Nevertheless, the agreement with the 
experiments is good, without any spin rotation mechanism. 

The theoretical and experimental values for the peak-to-peak distances 
and the apparent g-factor gapp for the [Gd(DOTA)(H2O)]- complex are 
presented in figure 2b. It must be stressed that the so-called "experimental" 
peak-to-peak distances and apparent g-factors are less well defined as in the 
case of the aqua complex since the experimental line shapes are no more 
Lorentzian. The rotational correlation time τD

298 = 487 ps is very close to that 
6τR

298
 = 462 ps of NMR studies (Powell et al., 1996). The activation energy 

for the rotation of the complex is about the same as for the hydrated Gd(III) 
complex. This is expected in the framework of the Stokes-Einstein model for 
a Brownian rotation in a viscous medium. The rotational correlation time 
τD

298 is roughly proportional to the volumes of the complexes (Rast et al., 
2000). The ratio of the volumes of the [Gd(DOTA)(H2O)]- and [Gd(H2O)8]3+ 
complexes is estimated from the corresponding Connolly surfaces 
(Connolly, 1983) to be 2.3, while our fits lead to a ratio of 3.5, showing the 
correct tendency. 

In general a full knowledge of the Hamiltonian is not possible without 
further information because the EPR study does not give access to the 
coefficients Bkη in the static crystal field Hamiltonian (4), but only to the 
parameters ak which are the roots of the sums of (Bkη)2 according to 
equation (30). In the present case, B4η and B6η can be approximated to zero 
according to the very weak values of a4 and a6 obtained with our fitting 
procedure (see Table 2). The total static crystal field splitting of the S = 7/2 
multiplet was found to be 0.26 cm-1. For both [Gd(DOTA)(H2O)]- isomers, 
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the symmetry group is C4, leading to 3 invariant linear combinations, both 
for k = 4 and for k = 6. So, we need three coefficients B4η, η = 1, 2, 3 and 
three coefficients B6η, η = 1, 2, 3 in order to define the static crystal field 
Hamiltonian. 

As for the hydrated Gd(III) ion, the adjusted g-factor is in reasonable 
agreement with known g values for Gd(III) hydrated salts (Abragam and 
Bleaney, 1970). 

 

Table 1. Electron spin relaxation parameters obtained by least square fitting 
 [Gd(H2O)8]3+ [Gd(DOTA)(H2O)]- 
a2 [10-10 s-1] 0.38 0.35 
a4 [10-10 s-1] 0.024 0 
a6 [10-10 s-1] 0.021 0 
τR [ps] 23.3 81.8 
ER [kJ/mol] 18.9 16.4 
a2T [10-10 s-1] 0.65 0.43 
τv [ps] 0.63 0.54 
Ev [kJ/mol] 9.2 6.0 
g 1.99273 1.99252 
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Figure 7. aqua ion 291 X 

3.2 Combined analysis of NMR and EPR relaxation data 

We performed a non-linear least square fitting of the combined model of 
17O/1H NMR and EPR presented in the theoretical section against the 
extensive variable temperature data (Borel et al., 2000; Powell et al., 1996) 
available about the Gd(III) octa aqua ion and newly recorded NMRD 
profiles. The low field part of a given NMRD profile was calculated using 
one single average point at 0.14 MHz proton frequency with the electron 
spin relaxation rates obtained through a Monte Carlo simulation. The initial 
parameters in the fitting procedure were those of Powell (Powell et al., 
1996) (see Table 1) except for the following: the Gd-H relative diffusion 
constant was fixed to the sum of the water (22.36 × 1010 m2/s (1986)) and 
aqua ion (3.9 × 1010 m2/s (Vigouroux et al., 1998)) self-diffusion 
coefficients, and the electronic parameters  a2, a4, a6, a2T, τv and g of Rast et 
al. (Rast et al., 2001b) were used for the electronic part. The rotational 
correlation time τR was the one of Powell (41 ps), while its activation energy 
was restrained to reasonable values (16-19 kJ/mol) as discussed by Rast 
based on the temperature dependence of water viscosity. We emphasize 
again that τR reported here is the second order correlation time τ2 = 1/(6×DR) 
relevant for NMR. This convention is rather arbitrary from the EPR point of 
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view, since the fourth (τ4 = 1/(20×DR)) and sixth order (τ6 = 1/(42×DR)) 
correlation times are also used. However it allows an easier comparison with 
earlier simultaneous fitting studies such as Powell's. In general, care should 
be taken not to confuse the NMR definition (τR = τ2) and the more general, 
six times longer rotational diffusion correlation time (τD = 1/DR). 

The 14 free parameters in the model (room temperature water exchange 
rate kex

298, activation enthalpy ΔH≠, rotational correlation time τR and 
associated activation energy ER, transient zero field splitting correlation time 
τv and associated activation energy Ev, 17O scalar coupling constant A/h , 17O 
quadrupolar coupling constant χ(1+η2/3)1/2, activation energy for the relative 
1H-Gd(III) diffusion EGdH, Gd(III) electronic g-factor, static (a2, a4, a6) and 
transient (a2T) crystal field parameters) were simultaneously adjusted to the 
multiple temperature and magnetic field/frequency data (17O-NMR 1/T1, 1/T2 
and chemical shifts, EPR peak-to-peak width and resonance field, 1H-
NMRD above 10 MHz and an averaged low frequency point at 0.141 MHz). 
For the analysis of 1H NMRD, we fixed the inner-sphere Gd-H distance to 
3.05 Å instead of 3.1 Å. This shorter value was evaluated as the average 
between the experimental Sm-D (3.11 Å) and Dy-D (3.03 Å) obtained from 
neutron diffraction measurements, slightly biased towards the clearly 8-
coordinated [Dy(H2O)8]3+ value (Cossy et al., 1995). We reverted to the use 
of reduced values (peak-to-peak width ΔHpp and central field) instead of the 
full EPR spectra to simplify the parallel treatment of 17O-NMR and NMRD, 
although the analysis of the full line shape is in principle better (Rast et al., 
2001b). Since the deviation from the pure Lorentzian line shape was 
observed to be very small for [Gd(H2O)8]3+, the choice of method is mostly a 
matter of taste in this case. 

The fit function was included in the more general program 
VISUALISEUR (Yerly, 2001), running on the MATLAB (2000) 
environment. We used FORTRAN subroutines derived from the EPR 
program used for the analysis of the full EPR in order to calculate peak to 
peak widths, center fields, and the electronic relaxation rates within the 
Redfield approximation. For low-frequency NMRD, the Monte Carlo 
program described in the theoretical section was used to simulate the 
longitudinal and transverse electron spin correlation functions, from which 
the effective relaxation time was extracted by a linear regression. To reduce 
the computation time, only 1000 time steps were used to generate the spin 
dynamics instead of 16000 (Rast et al., 2001c). As shown in Fig. 1, this was 
sufficient to reproduce the relaxation times reported in the original paper, 
and allowed the calculation of one low-field relaxivity value in 5 minutes on 
a workstation (Linux on a 700 MHz AMD Duron CPU). 



 35 

3.3 Results and discussion 

The calculated parameters are reported in Table 1, together with the 
parameters obtained by Powell (Powell et al., 1996). The experimental 
results and theoretical curves are shown in Figure 2. The agreement between 
the experimental data and the simulated curves is very good, even for 
NMRD points between 1 and 10 MHz, which were not included in the fitting 
procedure. 

Table 2. parameters obtained through simultaneous fitting of EPR, 17O-NMR and NMRD 
data. Underlined values were either fixed or have reached their imposed limit. 
 This work 

(Borel et al., 
2002) 

NMR/EPR 
(Powell et al., 
1996) 

EPR only 
(Rast et al., 
2001b) 

ΔH≠ [kJ/mol] 18.2 ± 5 15.3 - 

kex
298 [106 s-1] 682 ± 140 804 - 

ER [kJ/mol] 19 15.0 18.9 

τR
298 [ps] 35.3 ± 1 41 23.3 

Ev [kJ/mol] 14.9 ± 2 - 9.2 

τv
298 [ps] 1.05 ± 0.3 - 0.63 

A/h  [106rad/s] -5.21 ± 0.04 -5.3 - 

DGdH
298 [10-10 m2s-1] 26 23 - 

EDGdH [kJ/mol] 22 22 - 

Gd-O [Å] 2.5 2.5 - 

Gd-H [Å] 3.05 3.1 - 

χ(1+η2/3)1/2 [MHz] 6.12 ± 1.4 7.58 - 

g 1.993 2 1.99273 

a2 [1010 s-1] 0.0946 ± 0.14 - 0.38 

a4 [1010 s-1] 0 - 0.024 

a6 [1010 s-1] 0.0232 ± 0.003 - 0.021 

a2T [1010 s-1] 0.687 ± 0.04 - 0.65 

 
In general, we observe that the parameters specific to NMR are left rather 

unchanged by the new model of EPR relaxation. The water exchange rate is 
somewhat decreased compared to the work of Powell, but within the 
calculated standard error. The exchange activation enthalpy is also similar to 
the earlier value. The scalar coupling constant is mostly unaffected by the 
simultaneous adjustment, since it is essentially determined by the 17O 
chemical shifts. As discussed by Powell et al., the calculated quadrupolar 
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coupling constant is very sensitive to the choice of  the Gd-O distance so 
only one of these parameters should be considered adjustable. By fixing the 
Gd-O distance to 2.5 Å, they obtained a coupling constant of 2.0 ± 2.3 MHz 
(compared to 7.58 MHz for acidified water), whereas fixing the coupling 
constant to 7.58 yielded a Gd-O distance of 2.76 Å. Since the distance has 
been determined both by experimental (Kurisaki et al., 1993) and theoretical 
methods (Hengrasmee and Probst, 1991; Schafer and Daul, 1997) to be in 
the 2.4-2.6 Å region, we preferred to use the fixed 2.5 Å value. Our result for 
χ(1+η2/3)1/2 is 6.12 ± 1.38 MHz, and thus closer to the value for free water. 
It is useful to compare this value to the one determined by Leyte and 
coworkers (Struis et al., 1987) for 17O in the first coordination shell of Mg2+ 
(χ = 5.7 ± 0.3 MHz, η = 0.93). A rough estimation based on the ratio of the 
radial electric field gradients (Mg2+-O ≈ 2.1 Å, Gd(III)-O  ≈ 2.5 Å) yields 
χ(Gd-O)/χ(Mg-O) = 0.889, or χ(Gd-O) = 5.1 MHz. Using the same 
asymmetry parameter, we obtain for [Gd(H2O)8]3+ the estimation that 
χ(1+η2/3)1/2 = 5.8 MHz, in very good agreement with our result. 

Since the influence of the rotational correlation time on the electron spin 
relaxation is part of the new theory, it is not surprising that the adjusted 
value should change compared with the earlier studies. Indeed the rotation 
and the electron spin relaxation are highly correlated in our simultaneous 
fitting approach, since the dipolar correlation time dominating the low field 
relaxivity is simply the reciprocal sum of the electron spin relaxation time 
and the rotational correlation time (see equation (41)). Therefore, the fitting 
procedure imposes rather strict constraints on this parameter, even more so 
since we have set boundaries compatible with the temperature dependence of 
the viscosity of water for the activation energy. The value we obtain (35.3 ± 
1.0 ps) is certainly compatible with the estimations based on the Stokes 
Einstein relation (22 ps if a microviscosity correction factor is included, 53 
ps if it is not (Rast et al., 2000)). 

The change in the rotation correlation time is reflected by a change in the 
crystal field parameters compared with the EPR-only analysis. In turn, this 
affects the Gd(III) g-factor since this parameters is essentially determined by 
the EPR resonance field, where the electron spin relaxation induces dynamic 
frequency shifts (Fraenkel, 1965; Poupko et al., 1974). These shifts become 
smaller at high frequencies, so HF EPR gives us a good estimation of the 
natural g-factor. Based on earlier studies in the solid (Abragam and Bleaney, 
1970) and in solution (Rast et al., 2001b), we set an upper boundary of 
1.9930 for g. Even if the calculated value has hit this limit, the final 
adjustment is very good as can be seen from temperature and spectrometer 
frequency dependence of the apparent g-factor, gapp (Fig. 2). 

The transient zero field splitting parameters a2T, τv and Ev are very close 
to those obtained  through EPR only. Thus their effect on the EPR line shape 
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(negligible at X-band, increasing contribution at higher frequencies) is 
essentially the same. This means that the crystal field parameters obtained by 
solution EPR only are not very precisely determined. In particular, error 
compensation between the 5 parameters in question (a2, a4, a6,τR, ER) during 
the fit seems to be a serious problem, that could be solved through the use of 
independent constraints (based either on NMR, or solid state EPR, or maybe 
taking advantage of the recently developed methods for the direct 
determination of T1e  (Atsarkin et al., 1995). 

With our parameters, the 4th order contribution vanishes, so there are only 
two possible combinations for the crystal field Hamiltonian (54). Either B2 
and  B6 have the same sign, with a total splitting of 0.37 cm-1, or their sign is 
different and the splitting is 0.38 cm-1. One of the terms is obviously 
dominant, and indeed we find that the 6th order contribution alone leads to a 
splitting of 0.36 cm-1. It is somewhat strange that the highest order term 
should contribute so much to the effect. There may be some compensation 
between the various orders, as it has been noted in the pure EPR studies 
(Rast et al., 2001b). Nevertheless the overall value is in reasonable 
agreement with the available direct experimental measurements (0.25 cm-1 
for Gd(III) in a solid lanthanum ethyl sulfate matrix (Abragam and Bleaney, 
1970)). 

Using our parameters, the low field limit of the electron relaxation time 
in the Redfield approximation is 89 ps at 298 K for both T1e and T2e, and 60 
ps at 283 K. The MC simulation yields longer values, with T1e = 122 ps, T2e 
= 117 ps at room temperature, and T1e = 95 ps and T2e = 90 ps at 283 K. 
These small apparent differences between T1e and T2e can be explained by 
numerical errors. The Redfield error can thus be estimated to 25 % at room 
temperature (similar to the result calculated from the parameter set obtained 
by EPR only (Rast et al., )) and 36 % at 283 K. In the NMRD profile, at low 
field (< 1 MHz), τR and T1,2e are strongly correlated. Since τR is usually well 
known from 17O and 1H-NMR experiments at higher fields, it is tempting to 
obtain microscopic electron spin parameters (τS0, Δ2 or ak and the respective 
correlation times depending on the model) based on these measurements. 
However, to extract either of these quantities using a simple Solomon-
Bloembergen-Morgan-like approach of the electron spin relaxation will 
probably yield results irrelevant at higher magnetic fields where the Redfield 
theory becomes applicable. Since the influence of T1,2e on NMR decreases at 
higher fields (rotation becoming the dominant term for dipolar relaxation), it 
is quite conceivable to obtain in this fashion electron spin parameters 
compatible with 17O-NMR and NMRD, but failing to describe EPR 
experiments. 
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Figure 8. EPR peak-to-peak width and apparent g-factor at X-band (n), 75 GHz (m), 150 
GHz (o) and 225 GHz (l); reduced 17O relaxtion rates and chemical shifts at 1.41 T (o), 4.7 
T (l) and 9.4 T (n). NMRD profiles at 283.2 K (n), 298.2 K (l), 310.4 K (# ), 323.0 K (♦) 

with the empty symbols corresponding to averaged values over the low-field part of the 
profile; comparison with the predictions of Redfield's theory using the same electronic 

parameters at 10 °C and room temperature (dotted lines). 

 

4. CONCLUSION AND PROSPECTIVE OUTLOOK 

The availability of HF EPR has tremendously increased the range of 
accessible frequencies for relaxation studies. In the field of Gd(III)-based 
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MRI contrast agents, it allowed a systematic study of the electron spin 
relaxation in solution up to the high magnetic fields commonly used for 
modern NMR (Powell et al., 1993; Powell et al., 1996). As the experimental 
data accumulated, the shortcomings of the accepted transient 2nd order ZFS 
(Hudson and Lewis, 1970; Poupko et al., 1974) relaxation mechanism 
became more visible (Aime et al., 1997a). Using increasingly high 
frequencies, various research groups (Borel et al., 2000; Smirnova et al., 
1998) probed the EPR line shape and found that another relaxation 
mechanism was required to account for the observed peak-to-peak width. 

A rigorous derivation of the relaxation rates for a S = 7/2 ion (Rast et al., 
2000) and its application to the analysis of the full EPR line shape at 
frequencies between X-band and 225 GHz (Rast et al., 2001b) showed that 
two qualitatively different contributions had to be taken into account. The 
static ZFS, modulated by the molecular tumbling in solution, has a greater 
contribution to the relaxation at low frequency (X-band). The transient ZFS, 
modulated by anharmonic vibrations and solvent collisions with a very short 
correlation time, becomes very significant at high frequency and/or magnetic 
field. With this improved physical model, it was finally possible to perform a 
rigorous simultaneous analysis of EPR and NMR data, where the physical 
meaning of all adjustable parameters was discussed (Borel et al., 2002). 

In the future, we hope that HF EPR will be a useful tool for a more 
precise determination of the molecular motions responsible for the transient 
ZFS modulation. Furthermore, the high frequency limit of the older theory 
has led to some very elegant analytical equations in the past (Clarkson et al., 
1998; Smirnova et al., 1998) and one may imagine that a similar 
development could be written for the modern theory. 
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