Complexes between lanthanide nitrates and a pro-mesogenic 18-membered diaza-substituted coronand are luminescent both as powders and liquid crystals (between 87 and 195 °C), and the phase transitions are detected by monitoring luminescence intensity and lifetime.

Liquid crystals are the main components of new-generation cost-saving colour displays and a great deal of research effort has been devoted to their development during the last two decades. One disadvantage of these devices is their relatively low brightness, due to the use of polarisers and colour filters, and one way to overcome this shortcoming is the design of luminescent liquid crystals. While it is rather easy to find either photoluminescent sheets acting as filters or, even, organic-based luminescent liquid crystals, these materials display a broad-band, and usually blue, emission which is of little use in this context. On the other hand cathode-ray tubes rely on trichromatic phosphors emitting narrow bands in three basic colours, blue, green, and red, and so do energy-saving luminescent lamps and tubes. Most of these phosphors contain rare-earth ions, EuIII (blue), TbIII (green) and EuII (red).

Henceforth the idea of introducing lanthanide ions in mesogenic phases. Metallo-mesogens are relatively new in the area of liquid crystals and they combine the properties of a liquid crystalline phase with the optical and magnetic properties of the metal ions they incorporate. The first liquid crystalline phase containing LnIII ions was reported by Piechowiak. Initially, it was thought that introducing bulky spherical ions in potentially mesogenic compounds could disrupt the required order to produce mesophases, but it turned out that many lanthanide-containing systems are amenable to form liquid crystalline phases, as reported in a recent comprehensive review article.

Basically, there are two ways of designing luminescent lanthanide-containing mesophases. The first, historical, one is the introduction of highly luminescent complexes into known liquid crystalline phases and successful attempts with β-diketonates have been reported. The other one is the synthesis of luminescent complexes displaying mesogenic properties. Metal-centred luminescent properties, particularly those of EuII, have been taken advantage of to probe, at very low temperature, the degree of disorder around the metal ion in metastable liquid crystals based on europium laurate, and to determine the second-rank crystal-field parameter through analysis of the 5D0 → 7F2 hypersensitive transition and to assess the magnetic anisotropy of europium-containing metallo-mesogens.

Here we present a new mesogenic class of luminescent complexes displaying mesogenic properties. Owing to the much better complexation ability of diaza-substituted crown ethers versus the all-ether ligands, we have chosen a diaza-18-crown-6, or (2,2), framework onto which mesogenic pendant arms have been grafted. Ligand L (see below) has been obtained according to a classical synthetic route in which the brominated arms are reacted with (2,2),.

Complexes with formula [Ln(NO3)3L]·solv (Eu: solv = 0.25 H2O; Tb: 1thf) are obtained by refluxing a solution of Ln(NO3)3·nH2O in acetonitrile or thf, to which is added a solution of L in methylene chloride.

Thermal (TG and DSC, see Table 1) and polarized light microscopy (PLM) analyses of the ligand reveal a standard non-mesogenic behaviour with isopropilation occurring at 85 °C. On the other hand, the EuIII complex is clearly mesogenic. The first heating reveals loss of 0.25 H2O per molecule and: (i) a Cr → LC first order transition at 87 °C with a 25 °C hysteresis, (ii) a second exothermic and irreversible transformation at 124 °C which could correspond to a second order transition with partial disorganisation of the mesogenic phase and, (iii) isopropilation at 195–198 °C, immediately followed by decomposition. When temperatures higher than 170 °C are avoided, the sample shows perfect reversibility, except for the transition at 124 °C which is no longer seen. PLM photographs (Fig. 1) display a birefringent fine texture with very small Schlieren’s patterns. The latter texture corresponds neither to a nematic nor to a smectic A phase and its detailed characterization by X-ray diffraction measurements is in progress.

The EuIII complex has been analysed at low temperature by high-resolution laser-excited luminescence to probe the metal ion environment. Excitation spectra of the non-degenerate 5D0 ← 7F2 transition at 10 K evidence two components at 17268 cm−1 (site I) and 17245 cm−1 (site II). Upon selective excitation, slightly different emission spectra are obtained which are dominated by the 5D0 ← 7F1 hypersensitive transition and which point, as expected, to a low symmetry around the EuIII ion. Population analysis performed on the magnetic dipole 5D0 ← 7F1 transition reveals a 5D0 lifetime of 50 000 ms. Population analysis performed on the magnetic dipole 5D0 ← 7F1 transition reveals a 5D0 lifetime of 50 000 ms. Population analysis performed on the magnetic dipole 5D0 ← 7F1 transition reveals a 5D0 lifetime of 50 000 ms. Population analysis performed on the magnetic dipole 5D0 ← 7F1 transition reveals a 5D0 lifetime of 50 000 ms.

Table 1 Thermodynamic data for the ligand and its complexes

<table>
<thead>
<tr>
<th>Compound</th>
<th>Transition</th>
<th>ΔH/ kJ mol−1</th>
<th>ΔS/J mol−1 K−1</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Cr → LC</td>
<td>85</td>
<td>99</td>
</tr>
<tr>
<td>EuL</td>
<td>Cr → LC</td>
<td>86</td>
<td>20</td>
</tr>
<tr>
<td>TBL</td>
<td>Cr → LC</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LC → I</td>
<td>199</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>LC → I</td>
<td>88</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

* Liquid crystalline phase (possibly columnar).
Fig. 1 Birefringent texture observed for [Eu(NO$_3$)$_3$L]·0.25H$_2$O at 110 °C (Leitz objective 20×/0.40, crossed polarizer and analyzer, Leica D3000 F camera).

→ 7F$_1$ transition shows site I representing 79 ± 6% of the total EuIII population. The lifetime, τ, of the Eu(1D$_0$) level amounts to about 1.1 ms for site I and 0.5 ms for site II. These data demonstrate that water interacts in the first coordination sphere of EuIII in site II and are in line with the loss of 0.25 H$_2$O evidenced in TG analysis. With the idea of testing how the luminescence properties of the EuIII ion vary during the phase transition, we have set up an experiment in which both the integrated intensity I of the 7D$_0$ → 7F$_2$ transition and the Eu(1D$_0$) lifetime are monitored versus temperature. Generally speaking, increasing the temperature induces more non-radiative deactivation of the excited state and consequently, both the luminescence intensity and lifetime are expected to decrease according to an exponential law of the type $y = y_0 e^{-\text{e}^{-CT}}$. We have accordingly reported $\ln(\tau/\tau_0)$ and $\ln(I/I_{0})$ versus the inverse of the absolute temperature on Fig. 2 to show that the phase transition intrinsically affects the luminescence parameters. Upon increasing the temperature, a sigmoidal variation of both ratios is obtained. Crude mathematical analysis of these variations gives a transition temperature of 83 °C, respectively. This opens the way to fascinating new developments in the field of lanthanide-containing liquid crystals.

Fig. 2 Phase transition of [Eu(NO$_3$)$_3$L]·0.25H$_2$O (Top) DSC traces at 5 °C min$^{-1}$. (Bottom) Integrated and corrected intensities of the Eu(1D$_0$ → 7F$_2$) transition (right scale; \bullet: from 298 to 403 K, \bigcirc: from 403 to 298 K, excitation at 465.8 nm); lifetimes of the Eu(1D$_0$) excited level, analyzing wavelength set on the maximum of the 7D$_0$ → 7F$_2$ transition (left scale; \bigcirc: from 298 to 403 K, \square: from 403 to 298 K, excitation at 355 nm).

Notes and references

1 Calculated for C$_{80}$H$_{126}$N$_5$O$_{21}$Eu: C, 73.5; H, 9.7; N, 2.1%. 1 H-NMR (400 MHz, CDCl$_3$): δ: 7.40 (d, 3J = 8 Hz, 2H), 7.13 (d, δ: 3J = 8 Hz, 4H), 7.28 (d, δ: 3J = 8 Hz, 4H), 6.92 (d, δ: 3J = 2 Hz, 2H), 7.80 (dd, δ: 3J = 8, 4J = 2 Hz, 2H). 1 C-NMR (CDCl$_3$): δ: 14.1 (primary C), 22.7–70.7 (secondary C), 111.9, 114.7, 121.4, 124.3, 129.7 (tertiary C), 121.7, 137.2, 148.6, 149.9, 153.7, 165.1 (quaternary C), ES1-MS (ESI1H): m/z 1307.86 [L + H]+. (calc. 1307.89) 30%, 654.87 [L + 2H]+: (calc. 654.95) 100%.

2 For C$_{80}$H$_{126}$N$_5$O$_{21}$Eu$_2$: C, 58.2; H, 7.7; N, 4.2. Found: C, 58.0; H, 7.6; N, 4.2%. Calculated for C$_{80}$H$_{126}$N$_5$O$_{21}$Eu$_2$: C, 58.5; H, 8.1; N, 4.1%. The $\frac{2-3}$ mg of the Eu complex were deposited between two quartz Suprasil® windows and a film was formed by slight friction. The sample was placed into a specially designed thermostatted cell holder operating in the range 20 to 250 °C (±1 °C). A permanent stream of argon was flushed onto the sample to avoid decomposition. The sample was allowed to equilibrate for 10–15 min before each measurement.

12 K. Binnemans and B. Gundogan, J. Rare Earths (China), 2002, 20, 249.