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AbstractWhen using random utility models for a route 
hoi
e problem,
hoi
e set generation and 
orrelation among alternatives are two issuesthat make the modeling 
omplex. In this paper we dis
uss di�erentmodels 
apturing path overlap. First, we analyze several formulationsof the Path Size Logit model proposed in the literature and show thatthe original formulation should be used. Se
ond, we propose a model-ing approa
h where the path overlap is 
aptured with a subnetwork.A subnetwork is a simpli�
ation of the road network only 
ontainingeasy identi�able and behaviorally relevant roads. In pra
ti
e, the sub-network 
an easily be de�ned based on the route network hierar
hy.We propose a model where the subnetwork is used for de�ning the
orrelation stru
ture of the 
hoi
e model. The motivation is to ex-pli
itly 
apture the most important 
orrelation without 
onsiderablyin
reasing the model 
omplexity.
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We present estimation results of a fa
tor analyti
 spe
i�
ation ofa mixture of Multinomial Logit model, where the 
orrelation amongpaths is 
aptured both by a Path Size attribute and error 
omponents.The estimation is based on a GPS dataset 
olle
ted in the Swedish
ity of Borl�ange. The results show a signi�
ant in
rease in model �tfor the Error Component model 
ompared to a Path Size Logit model.Moreover, the 
orrelation parameters are signi�
ant.
1 IntroductionThe route 
hoi
e problem 
on
erns the 
hoi
e of route between an origin-destination pair on a given transportation mode in a transportation net-work. The problem is 
riti
al in many 
ontexts, for example in intelligenttransport systems, GPS navigation and transportation planning. The eÆ-
ien
y of shortest path algorithms has been a strong motivation of manyresear
hers to assume that travelers use the shortest (with regard to anyarbitrary generalized 
ost) route among all. Clearly, the poor behavioralrealism of the shortest path assumption motivates the use of more sophis-ti
ated models su
h as dis
rete 
hoi
e models.Designed to fore
ast how individuals behave in a 
hoi
e 
ontext, dis
rete
hoi
e models (more spe
i�
ally, random utility models) have motivated atremendous amount of resear
h in re
ent years (Ben-Akiva and Lerman,1985). In the spe
i�
 
ontext of route 
hoi
e, the de�nition of the 
hoi
eset, and the signi�
ant 
orrelation among alternatives are the two maindiÆ
ulties (Ben-Akiva and Bierlaire, 2003).In this paper we dis
uss 
orrelation among alternatives in large 
hoi
esets. First, we present in Se
tion 2 a literature review and then analyze thePath Size Logit model (Se
tion 3). In Se
tion 4 we introdu
e a new mod-eling approa
h based on the 
on
ept of subnetworks. Finally, we presentestimation results for real data of Error Component models based on sub-networks and 
ompare the results with a Path Size Logit model.
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2 Literature ReviewSeveral di�erent models have been proposed in the literature. The Multi-nomial Logit (MNL) model, is simple but restri
ted by the Independen
efrom Irrelevant Alternatives (IIA) property, whi
h does not hold in the 
on-text of route 
hoi
e due to overlapping paths. E�orts have been made toover
ome this restri
tion by making a deterministi
 
orre
tion of the utilityfor overlapping paths. Cas
etta et al. (1996) were the �rst to propose su
ha deterministi
 
orre
tion. They in
luded an attribute, 
alled Commonal-ity Fa
tor (CF), in the deterministi
 part of the utility obtaining a model
alled C-Logit. The utility Uin asso
iated with path i by individual n is
Uin = Vin − βCFCFin + εin.The CFin value of a path i is dire
tly proportional to the overlap with otherpaths in the 
hoi
e set Cn. Cas
etta et al. (1996) present three di�erentformulations of the CF attribute. The �rst isCFin = ln ∑

j∈Cn

(

Lij√
Li

√

Lj

)γ

, (1)where Lij is the length of links 
ommon to paths i and j, Li and Lj are thelengths of paths i and j, and γ is a positive parameter (Cas
etta et al., 1996suggest the values 1 or 2). The other two formulations areCFin = ln∑

a∈Γi

(

la

Li

∑

j∈Cn

δaj

) and (2)CFin =
∑

a∈Γi

(

la

Li

ln ∑

j∈Cn

δaj

) , (3)where the fra
tion la
Li

is the proportional weight of link a for path i, hererepresented by their lengths. Γi is the set of all links of path i and δajequals 1 if link a is on path j and 0 otherwise. ∑
j∈Cn

δaj is therefore thenumber of paths in 
hoi
e set Cn sharing link a. Cas
etta et al. (1996)do not provide any guidan
e for whi
h CF formulation to use. They use3



formulation (2) when estimating models for heavy tru
k path 
hoi
e on theItalian national network.Cas
etta et al. (2002) present a route per
eption model. It is a twostep model, where the probability that a path belongs to a 
hoi
e set ismodeled with a Binary Logit model, and the 
hoi
e of path is modeledwith a C-Logit model using formulation (1).Ramming (2001) dis
usses a fourth CF formulationCFin = ln(1 +
∑

j∈Cn,j6=i

(

Lij
√

LiLj

)

(

Li − Lij

Lj − Lij

)

) (4)that is also analyzed by Hoogendoorn-Lanser et al. (2005).The la
k of theoreti
al guidan
e for the C-Logit model was the moti-vation for Ben-Akiva and Bierlaire (1999a) to propose the Path Size Logit(PSL) model. The idea is similar to the C-Logit model. A 
orre
tion ofthe utility for overlapping paths is obtained by adding an attribute to thedeterministi
 part of the utility. In this 
ase, the Path Size (PS) attribute.The original PS formulation is derived from dis
rete 
hoi
e theory for ag-gregate alternatives (see 
hapter 9, Ben-Akiva and Lerman, 1985). Theutility is Uin = Vin + βPS lnPSin + εin where the PS attribute is de�ned asPSin =
∑

a∈Γi

la

Li

1
∑

j∈Cn

δaj

. (5)Ben-Akiva and Bierlaire (1999b) present another version of this formulationin
luding the length of the shortest path in the 
hoi
e set, L∗
Cn
,PSin =

∑

a∈Γi

la

Li

1
∑

j∈Cn

L∗
Cn

Lj

δaj

. (6)Ramming (2001) introdu
es a third PS formulation, 
alled GeneralizedPS PSin =
∑

a∈Γi

la

Li

1
∑

j∈Cn

(

Li

Lj

)γ

δaj

, (7)4



where γ is a parameter greater or equal to zero. Note that when γ = 0the formulation 
orresponds to the original PS formulation (5). Ramming(2001) proposed this formulation in order to de
rease the impa
t of unre-alisti
ally long paths in the 
hoi
e set. In the original PS formulation (5)the 
ontribution of a link is de
reased by the number of paths that sharethe link. If there are very long paths that no traveler is likely to 
hoosesharing a link, then these long paths have a negative impa
t on the utilityof shorter, more reasonable paths.Ramming (2001) 
ompares the C-Logit and PSL models with the dif-ferent formulations but does not provide a theoreti
al 
omparison. Em-piri
ally he �nds an inappropriate sign of the estimated parameter βCFfor CF formulations (2) and (3). He also �nds that the PSL model withthe Generalized PS formulation (7) outperforms the C-Logit model withformulations (1) and (4).Note that the two CF formulations (2) and (3) are quite similar to oneanother and also to the original PS formulation (5). The di�eren
e liesin how the number of paths sharing a same link is taken into a

ount.For the original PS formulation, a link's 
ontribution to a path is redu
edproportionally to the number of paths sharing the link. Whereas in CFformulation (2) the links 
ontribution is multiplied with the number ofpaths sharing it, and in formulation (3) it is multiplied with the naturallogarithm of the number of paths.Hoogendoorn-Lanser et al. (2005) (see also Hoogendoorn-Lanser, 2005)study how to de�ne overlap in multi-modal networks. Based on the 
on
lu-sions of Ramming (2001), they do not further analyze the C-Logit modelsbut fo
us on PSL models. They investigate if the βPS parameter shouldbe estimated or set to one, and 
on
lude that it should be estimated sin
ethe PS attribute 
an 
apture behavioral per
eptions regarding overlappingpaths. Moreover, they 
ompare di�erent PS formulations in terms of model�t measures and �nds that the generalized formulation (7) with γ = 14shows best results. They also observe best model �t when overlap is ex-pressed in terms of number of legs1 
ompared to time and distan
e.1A leg is a part of a route between two nodes in whi
h a single mode or servi
e type isused. 5



Given the short
omings of the MNL model, more 
omplex models havebeen proposed in the literature to expli
itly 
apture path overlap withinthe error stru
ture. However, rather few of these models have been appliedto real size networks and large 
hoi
e sets.Vovsha and Bekhor (1998) propose the Link-Nested Logit model, whi
his a Cross-Nested Logit (CNL) formulation (see Bierlaire, forth
oming, foran analysis of the CNL model) where ea
h link of the network 
orrespondsto a nest, and ea
h path to an alternative. Ramming (2001) estimatedthe Link-Nested Logit model on route 
hoi
e data 
olle
ted on the Bostonnetwork (34 thousand links). The large number of links makes it impossibleto estimate the nest-spe
i�
 
oeÆ
ients. He 
on
ludes that the PSL modelwith the generalized formulation (7) outperforms the Link-Nested Logitmodel.The Multinomial Probit model (Daganzo, 1977) has a 
exible modelstru
ture that permits an arbitrary 
ovarian
e stru
ture spe
i�
ation. Butnumeri
al integration te
hniques must be used whi
h limits the appli
a-tion of the model to large-s
ale route 
hoi
e. Yai et al. (1997) propose aMultinomial Probit model with stru
tured 
ovarian
e matrix in the 
on-text of route 
hoi
e in the Tokyo rail network. The maximum number ofalternatives was however limited to four.An Error Component (EC) model is a Normal mixture of MNL (MMNL)model and was des
ribed namely by Boldu
 and Ben-Akiva (1991). Theutility fun
tion for individual n and alternative i is
Uin = Vin + ξin + νinwhere Vin are the deterministi
 utilities, ξin are normally distributed and
apture 
orrelation between alternatives, and νin are independent and iden-ti
ally distributed Extreme Value.The EC model 
an be 
ombined with a fa
tor analyti
 spe
i�
ationwhere some stru
ture is expli
itly spe
i�ed in the model to de
rease its
omplexity. Bekhor et al. (2002) estimate an EC model based on large-s
ale route 
hoi
e data 
olle
ted in Boston. The utility ve
tor Un (Jx1,where J is the number of paths) is de�ned by

Un = Vn + εn = Vn + FnTζn + νn, (8)6



where Vn (Jx1) is the ve
tor of deterministi
 utilities, Fn (JxM) is thelink-path in
iden
e matrix (M is the number of links), T (MxM) is thelink fa
tors varian
e matrix, and ζn (Mx1) is the ve
tor of i.i.d. normalvariables with zero mean and unit varian
e. Bekhor et al. (2002) assumethat link-spe
i�
 fa
tors are i.i.d. normal and that varian
e is proportionalto link length so that T = σ diag (√l1,
√

l2, . . . ,
√

lM

) where σ is the onlyparameter to be estimated. The 
ovarian
e matrix 
an then be de�ned asfollows:
FnTTTFT

n = σ2











L1 L1,2 . . . L1,J

L1,2 L2 . . . L2,J... ... . . . ...
L1,J L2,J . . . LJ









where Li,j is length by whi
h path i overlaps with path j.MMNL models have been used in several studies on real size networkswith Stated Preferen
es data. The size of the 
hoi
e set is then limited. Han(2001) (see also Han et al., 2001) use a MMNL model to investigate tasteheterogeneity a
ross drivers and the possible 
orrelation between repeated
hoi
es. Paag et al. (2002) and Nielsen et al. (2002) use a MMNL modelwith both a random 
oeÆ
ient and error 
omponent stru
ture to estimateroute 
hoi
e models for the harbor tunnel proje
t in Copenhagen.The Paired Combinatorial Logit model, developed by Chu (1989), hasbeen adapted to the route 
hoi
e problem by Prashker and Bekhor (1998).Re
ently, the Link-Based Path-Multilevel Logit model has spe
i�
ally beendeveloped for the route 
hoi
e problem by Marzano and Papola (2004).These models have been used for small-s
ale route 
hoi
e analysis on testnetworks.
3 Deterministic Correction of CorrelationIn this se
tion, we dis
uss the Path Size Logit model in detail. We showthat the original PS formulation (5) should be used for 
orre
ting utilitiesof overlapping paths. This is the formulation that both shows intuitiveresults and has a theoreti
al motivation. We start by deriving the original7



PS formulation from the theory on aggregation of alternatives (Ben-Akivaand Lerman, 1985).A nested stru
ture is assumed where ea
h nest 
orresponds to an aggre-gate alternative grouping elemental alternatives. In a route 
hoi
e 
ontextthe elemental alternatives 
orrespond to the paths and the aggregate al-ternatives to the links. For the derivation of the original PS formulationwe are interested in the 
hoi
e of elemental alternative (route 
hoi
e) aswell as the size of the aggregate alternatives, where the size of an aggregatealternative, a link, equals the number of paths using the link.We denote by Cn the set of paths 
onsidered by individual n, and wede�ne subsets, Can ⊆ Cn, a = 1, . . . , M, where Can is the set of paths usinglink a, and M is the number of links. The utilityUin individual n asso
iateswith path i is Uin = Vin + εin where Vin represents the deterministi
 partof the utility and εin the random part. The link utility Uan is de�ned by
Uan = maxj∈Can

(Vjn+εjn), a = 1, . . . , M. Uan 
an also be expressed as thesum of its expe
tation Van and its random term εan, that is, Uan = Van+εanwhere Van = E[maxj∈Can
(Vjn + εjn)]. The average deterministi
 utility ofpaths using link a is de�ned by Van = 1

Ma

∑
j∈Can

Vjn where Ma is thenumber of paths using link a (the size of link a). That is, Ma =
∑

j∈Cn
δaj,where δaj is the link-path in
iden
e variable that equals one if link a is onpath j and zero otherwise.A

ording to the theory, if we assume that the size of Can is large for alllinks, that the path utilities using a link have equal means and the randomterms εin are i.i.d., then the utility individual n asso
iates with link a isde�ned by

Uan = Van +
1

µ
lnMa + εan,where µ is a positive s
ale parameter.The original PS formulation, 
orre
ting the path utility Uin, is based onthe de�nition of the link utility Uan. A

ordingly, the positive 
orre
tionfor the size of an aggregate alternative, results in a negative 
orre
tion ofthe utility of an elemental alternative. Moreover, there is no 
orre
tion ofan elemental alternative whi
h belongs to a nest with size one. The size
orre
tion for an elemental alternative 
an therefore be de�ned as 1

µ
ln 1

Ma
.8



The 
ontribution of a link a is then 1
µ
ln 1∑

j∈Cn
δaj

where δaj is the link-path in
iden
e variable. Furthermore, we assume that the size of a path isproportional to the length of its links. If la denotes the length of link aand Li the length of path i, we have derived the original PS formulationPSin =
∑

a∈Γi

la

Li

1
∑

j∈Cn

δaj

.In
luding a PS 
orre
tion in the utility Uin gives
Uin = Vin + βPS lnPSin + εin, i ∈ Cn,where βPS = 1

µ
.Two questions regarding the original PS formulation that are dis
ussedin the literature 
an be answered based on how the PS formulation is de-rived. First, whether βPS should be �xed to one or estimated. Se
ond, towhi
h extent the PS attribute 
an 
apture 
orrelation.Ben-Akiva and Bierlaire (1999b) do not in
lude a βPS in their utilityspe
i�
ation. Ramming (2001) argues that a

ording to dis
rete 
hoi
e the-ory, βPS should be �xed to one. However, his βPS estimate is signi�
antlydi�erent from both zero and one. Hoogendoorn-Lanser et al. (2005) suggestthat the PS attribute 
an have a behavioral interpretation and thereforeargues that βPS should be estimated. They also get better empiri
al resultswhen estimating βPS. When deriving the original PS formulation, we showthat βPS = 1

µ
where µ is a positive s
ale parameter. βPS should therefore beestimated and be stri
tly positive in order to be 
onsistent with the theory.Both Ramming (2001) and Hoogendoorn-Lanser et al. (2005) 
on
ludethat the PS attribute only 
orre
ts the utility for a part of the 
orrelation.When deriving the PS attribute the error terms of paths using a same linkare assumed to be i.i.d. The 
ross-nested stru
ture and the 
orrelation dueto paths using more than one link is therefore negle
ted. This explains thePS attribute's limited 
apa
ity of 
apturing 
orrelation.Ben-Akiva and Bierlaire (1999b) present an alternative PS formulation(6) in
luding the length of the shortest path in the 
hoi
e set L*

Cn
. The9




orrelation of the utility lnPSin 
an be written as follows:lnPSin = − lnLi − lnL∗
Cn

+ ln∑

a∈Γi

la

∑

j∈Cn

1

Lj

δaj

.Note that, in
luding L*
Cn

adds a 
onstant lnL∗
Cn

to all path utilities in the
hoi
e set whi
h does not 
hange their relative utility.The Generalized PS formulation (7) was introdu
ed by Ramming (2001)in order to de
rease the in
uen
e of unrealisti
ally long paths on the utilityof shorter paths in the 
hoi
e set. The formulation is however diÆ
ult tointerpret for γ > 0. (Note that γ = 0 
orresponds to the original PSformulation.)In order to analyze the in
uen
e of the γ parameter, we write lnPSinas follows: lnPSin = −(γ + 1) lnLi + ln∑

a∈Γi

la

1
∑

j∈Cn

(

1

Lj

)γ

δaj

. (9)Independently of the value of the γ parameter, this formulation yields azero 
orre
tion when path i has no overlap with any other path in the
hoi
e set. However, it is theoreti
ally diÆ
ult to give an interpretation aswell as a motivation of the γ parameter, espe
ially for large values. Indeedwhen γ → +∞, if we assume that Li > 1 ∀ i ∈ Cn, the limits of the twoterms in equation (9) arelim
γ→+∞

−(γ + 1) lnLi = −∞ lim
γ→+∞

ln∑

a∈Γi

la

1
∑

j∈Cn

(

1

Lj

)γ

δaj

= +∞.This result 
an be explained by the fa
t that the sum in the denominatorof formulation (7) is 
omposed of terms (Li

Lj

)γ where Li

Lj

an be greateror equal to one, or less than one depending on the lengths Li and Lj.Sin
e Ramming (2001) 
onsidered an example with only two 
orrelatedalternatives this e�e
t was not illustrated in his thesis. Here we 
onsider10
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l3 = 4

l4

l5 = 6

1 2 3 4 5 LinksPaths1
L1 = 10

2
L2 = 10

3
L3

4
L4 = 12Figure 1: Example for Deterministi
 Corre
tion Formulationinstead an example with three 
orrelated alternatives (shown in Figure 1)where the length of path 3, L3, varies with the length of link 4, l4.In Figure 2 we 
ompare the values of the original PS formulation (5),

γ = 0 (thin lines), with the generalized formulation (7) using a high valueof γ (thi
k lines) as a fun
tion of l4. Only the PS values for the 
orrelatedalternatives are shown.The original PS formulation penalizes path 2 the most and path 4 theleast, whi
h is intuitive sin
e the 
orrelated part (link 2) has a higherproportion of the total length for path 2 than path 4. Moreover, path 3is penalized proportionally to the length of link 4. For a high value of γthe results are 
ounter intuitive sin
e path 2 is not penalized at all, ex
eptwhen the length of path 3 is 
lose to the length of path 2 (shortest path).In this 
ase, the 
orre
tion is highly unstable with respe
t to variations of
l4. We now 
onsider a 
hoi
e set where two alternatives have almost thesame length and one of those alternatives is the shortest path, that is
L1 = 10.0, L2 = 10.0,L3 = 10.1 and L4 = 12. A 
ase whi
h is 
ommonin pra
ti
e. In Figure 3 we show the PS values for this 
ase as γ varies.First of all, note that the ordering of the paths 
hanges. Path 4 is more11



penalized than path 3 for γ < 170 and then the order is inverted. Se
ond,even though path 3 is only 1% longer than path 2, its PS value de
reasesas γ in
reases.
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Figure 2: PS values (γ = 0 and γ = 3000) for 
orrelated alternatives inexample 1 as a fun
tion of l4We 
on
lude that the generalized formulationmay produ
e 
ounter intu-itive results and the original PS formulation should therefore be preferred.Moreover it has a theoreti
al support. However, as pointed out earlier, thePS attribute 
an only 
apture part of the 
orrelation. It is preferable to usea model that a

ounts expli
itly for 
orrelation within the error stru
ture,but without 
onsiderably in
reasing the 
omplexity. For this purpose, wepropose to use subnetworks whi
h are dis
ussed in the next se
tion.12
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Figure 3: PS values as a fun
tion of γ for 
orrelated alternatives
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4 SubnetworksWe are proposing a modeling approa
h whi
h is designed to be both be-haviorally realisti
 and 
onvenient for the analyst. We de�ne a subnetwork
omponent as a sequen
e of links 
orresponding to a part of the networkwhi
h 
an be easily labeled, and is behavioral meaningful in a
tual routedes
riptions (Champs-Elys�ees in Paris, Fifth Avenue in New York, MassPike in Boston, et
.) The analyst de�nes subnetwork 
omponents eitherby arbitrarily sele
ting motorways and main roads in the network hierar-
hy, or by 
ondu
ting simple interviews to identify the most frequently usednames when people des
ribe itineraries. Note that the a
tual relevan
e of agiven subnetwork 
omponent 
an be tested after model estimation, so thatvarious hypotheses 
an be tried.We hypothesize that paths sharing a subnetwork 
omponent are 
orre-lated, even if they are not physi
ally overlapping. We propose to expli
itly
apture this 
orrelation within a fa
tor analyti
 spe
i�
ation of a EC model.The model spe
i�
ation is 
ombined with a PS attribute that a

ounts forthe topologi
al 
orrelation on the 
omplete network. The LK model spe
i-�
ation builds on the model presented by Bekhor et al. (2002). We de�nethe utility as
Un = βTXn + FnTζn + νn (10)where Fn (JxQ) is the fa
tor loadings matrix (J is the number of paths and Qis the number of subnetwork 
omponents), T(QxQ) = diag (σ1, σ2, . . . , σQ)(σq is the 
ovarian
e parameter asso
iated with subnetwork 
omponent q,to be estimated), ζn (Qx1) is a ve
tor of i.i.d. N(0,1) variates, and ν(Jx1) isa ve
tor of i.i.d. Extreme Value distributed variates. An element (fn)iq of

Fn equals √lniq where lniq is the length by whi
h path i in 
hoi
e set Cnoverlaps with subnetwork 
omponent q.We illustrate the model spe
i�
ation with a small example presentedin Figure 4. We 
onsider one origin-destination pair, three paths and asubnetwork 
omposed of two subnetwork 
omponents (Sa and Sb). Path 1uses both subnetwork 
omponents whereas path 2 only uses Sa and path 3only Sb. Path 1 is assumed to be 
orrelated with both path 2 and path 3even though path 1 and path 2 do not physi
ally overlap. The path utilities14



for this example are 
onsequently
U1 = βTX1 +

√

l1aσaζa +
√

l1bσbζb + ν1

U2 = βTX2 +
√

l2aσaζa + ν2

U3 = βTX3 +
√

l3bσbζb + ν3,where ζa and ζb are distributed N(0,1), liq is the length path i uses sub-network 
omponent q. σa and σb are the 
ovarian
e parameters to beestimated.The varian
e-
ovarian
e matrix of ζ for this example is
FTTTFT =







l1aσ2
a + l1bσ

2
b

√
l1a

√
l2aσ2

a

√
l1b

√
l3bσ

2
b√

l1a

√
l2aσ2

a l2aσ2
a 0√

l3b

√
l1bσ

2
b 0 l3bσ

2
b






.

O
D

Sa

Sb

Path 1Path 2Path 3
Figure 4: Example of a Subnetwork

4.1 Empirical ResultsThe estimation results presented in this se
tion are based on a GPS dataset 
olle
ted during a traÆ
 safety study in the Swedish 
ity of Borl�ange.Nearly 200 vehi
les were equipped with a GPS devi
e and the vehi
leswere monitored within a radius of about 25 km around the 
ity 
enter.15



Sin
e the data set was not originally 
olle
ted for route 
hoi
e analysis, anextensive amount of data pro
essing has been performed in order to 
leanthe data and obtain 
oherent routes. The data pro
essing for obtaining datafor route 
hoi
e analysis was mainly performed by the 
ompany GeoStatsin Atlanta. Data of 24 vehi
les and a total of 16 035 observations areavailable for route 
hoi
e analysis. (See Axhausen et al., 2003, S
h�onfelderand Samaga, 2003 and S
h�onfelder et al., 2002 for more details on theBorl�ange GPS data set.) For the model estimations we 
onsider a totalof 2 978 observations 
orresponding to 2 244 observed simple routes of 24vehi
les and 2 179 origin-destination pairs. Note that we make a distin
tionbetween observations and observed routes sin
e a same route 
an have beenobserved several times.Borl�ange is situated in the middle of Sweden and has about 47 000 in-habitants. The road network 
ontains 3 077 nodes and 7 459 unidire
tionallinks. We have de�ned a subnetwork based on the main roads for travers-ing the 
ity 
enter. Two of the Swedish national roads (\riksv�ag") traverseBorl�ange. The subnetwork is 
omposed of these national roads (referredto as R.50 and R.70) and we have de�ned two subnetwork 
omponents forea
h national road (north and south dire
tions). In addition, we have de-�ned one subnetwork 
omponent for the road segment in the 
ity 
enterwhere R.50 and R.70 overlap (
alled R.C.). The Borl�ange route networkand the subnetwork are shown in Figure 5. In Table 1 we report for ea
hsubnetwork 
omponent its length and the number of observations that usethe 
omponent. Table 1 also reports the weighted number Nq, de�ned by
Nq =

∑
o∈O

loq

Lq
, where loq is the 
ommon length between the route 
orre-sponding to observation o and subnetwork 
omponent q, Lq is the lengthof q, and O is the set of all observations.For the 
hoi
e set generation we have used a link elimination approa
h(Azevedo et al., 1993). This algorithm 
omputes the shortest path andadds it to the 
hoi
e set. One link at a time is then removed from theoriginal shortest path, and a new shortest path in the modi�ed network is
omputed and added to the 
hoi
e set, if it is not already present.The main drawba
k of the link elimination approa
h is that it gener-ates similar routes. When one link is removed, there exists often a short16



R.50 S R.50 N R.70 S R.70 N R.C.Component length [m℄ 5255 4966 11362 7028 1733Nb. of Observations 173 153 261 366 209Weighted Nb. of 36 88 65 73 116Observations (Nq)Table 1: Statisti
s on Observations of Subnetwork Components

Figure 5: Overview of Borl�ange Road Network and Subnetwork De�nition17



deviation using roads next to the removed link. In order to address thisdrawba
k we have used two generalized 
osts for the shortest path 
ompu-tation. In addition to estimated travel time, we have also used link lengthdivided by the number of lanes. For ea
h origin-destination pair, the linkelimination algorithm is therefore applied to two shortest paths.The observed routes that were not found by the 
hoi
e set generationalgorithm were added afterwards. The algorithm found all the observedroutes for 80% of the origin-destinations pairs. However, for 20% of theorigin-destination pairs, none of the observed routes were identi�ed, whi
h
orresponds to 23% of the observed routes. Typi
ally, this is the 
ase whenthe observed routes make long detours 
ompared to the shortest path, forexample, in order to avoid the 
ity 
enter. These results are 
onsistent withthe �ndings of Ramming (2001) who at best found 84% of the observedroutes by 
ombining all the 
hoi
e set generation algorithms that he hadtested. The number of paths in the 
hoi
e sets varies between 2 and 43where a majority of the 
hoi
e sets (93%) in
lude less than 15 paths.
4.1.1 Model SpecificationWe 
ompare a PSL model with three di�erent spe
i�
ations of a EC modelbased on the subnetwork de�ned previously. One EC model (EC1) is spe
i-�ed with a simpli�ed 
orrelation stru
ture where the 
ovarian
e parametersare assumed to be equal. The se
ond and third EC models (EC2 and EC3)are spe
i�ed with one 
ovarian
e parameter per subnetwork 
omponent.Even though the number of individuals is small, we provide a model(EC3) where we take into a

ount that we have panel data. We assumethat the per
eption of 
orrelated alternatives on the subnetwork is indi-vidual spe
i�
 and that the taste is 
onstant over 
hoi
e situations. Therandom parameters in the 
orrelation stru
ture are therefore spe
i�ed tobe invariant a
ross the observations of a given individual.All models are spe
i�ed with the same linear in parameters formulationof the deterministi
 part of the utility fun
tion. The deterministi
 part Vi

18



for alternative i is
Vi = βPS ln(PSi) + βEstimatedTimeEstimatedTimei+

βNbSpeedBumpsNbSpeedBumpsi + βNbLeftTurnsNbLeftTurnsi+
βAvgLinkLengthAvgLinkLengthi.In addition to 
lassi
al attributes su
h as estimated travel time, number ofspeed bumps and number of left turns in un
ontrolled 
rossings, we havein
luded average link length whi
h is intended to 
apture an attra
tionfor routes with few 
rossings. The estimated travel time is 
omputed forea
h link in the network based on its length and an average speed. Wehave used one average speed for ea
h speed limit that 
orresponds to theobserved average speed. Statisti
s on all attributes in
luded in the modelspe
i�
ations are given in Table 2.A PS attribute, de�ned by the original formulation (5) based on length,is in
luded in all models in order to 
apture the topologi
al 
orrelationamong alternatives. PS based on length and estimated travel time showssimilar results, length was therefore preferred sin
e it is known with 
er-tainty. A high 
orrelation among the routes is expe
ted sin
e a link elimina-tion approa
h has been used for generating the 
hoi
e sets. In Figure 6 weshow the PS values for all routes and all 
hoi
e sets. The generated routesare shown with bla
k bars and the observed routes with gray bars. A ma-jority of the routes have a high overlap (low PS values). Only 5% of theroutes have no overlap (PS value that equals 1). Note however that almost50% of the routes that have no overlap are observed routes. This 
an beexplained by the poor performan
e of the 
hoi
e set generation algorithmdis
ussed in the previous se
tion. Namely, for 20% of the origin-destinationpairs, none of the observed routes were found by the algorithm. These ob-served routes are therefore expe
ted to have a low overlap with the otherroutes in the 
hoi
e set.We deal with heteros
edasti
ity by spe
ifying di�erent s
ale parametersfor di�erent individuals. After systemati
 testing of various spe
i�
ations,nine individuals have one s
ale parameter ea
h whi
h are estimated signi�-
antly di�erent from one. For the remaining individuals the s
ale parameter19
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Figure 6: Number of routes for PS valuesis �xed to one.
4.1.2 Model EstimationThe parameter estimates are given in Table 3. We have provided a s
aledparameter estimate in order to fa
ilitate the 
omparison of di�erent mod-els. The s
aling is based on the estimated travel time parameter in thePSL model. The magnitude of the s
aled estimate for this parameter is
onsequently the same for all the models.We start by 
omparing the models PSL, EC1 and EC2. The parameterestimates shown in Table 3 related to average link length, estimated traveltime, number of left turns and number of speed bumps are all signi�
antlydi�erent from zero. Moreover, the parameter values as well as the robustt-test statisti
s are very stable when 
omparing the di�erent models.The PS parameter estimate, βPS, is negative and signi�
antly di�erentfrom zero and fromminus one in models PSL, EC1 and EC2. As dis
ussed in20



Attribute Min Average MaxEstimated Travel Time [min℄ 0.5 4.2 37.5Number of Left Turns 0 3.2 27Average Link Length [m℄ 11 198.7 2947Number of Speed Bumps 0 0.3 5ln(PS) -3.7 -0.9 0Table 2: Statisti
s on AttributesSe
tion 3 a negative value of βPS is not 
onsistent with 
hoi
e theory sin
e it
orresponds to a s
ale parameter and 
onsequently should be positive. Thenegative estimate suggests that the PS attribute 
aptures an attra
tivenessfor overlapping paths. An in
rease in magnitude and signi�
an
e of thes
aled βPS estimates 
an be noted when 
omparing EC1 with PSL and EC2with EC1. More pre
isely, when the 
orrelation stru
ture on the subnetworkis expli
itly 
aptured by the error terms, the value of βPS in
reases inmagnitude and signi�
an
e. Based on these results, we draw the 
on
lusionthat the PS attribute as an ambiguous interpretation. On the one hand,it negatively 
orre
ts the utility for the independen
e assumption on therandom terms. On the other hand, it has a behavioral interpretation.Namely, it 
aptures an attra
tiveness for overlapping paths, for example,be
ause they provide de possibility of route swit
hing (this has also beensuggested by Hoogendoorn-Lanser et al., 2005 in the 
ontext of multi-modalroute 
hoi
e). Another possible explanation for the negative βPS estimateis based on the 
hoi
e set de�nition. A majority of the observed paths havea high overlap with other paths in the 
hoi
e set (see Figure 6). Hen
e, theutility is in
reased for overlapping paths.Based on the log-likelihood values reported in Table 4, and the χ2-testsshown in Table 5, the PSL model 
an be reje
ted when 
ompared with EC1and EC2. Moreover, EC2 is signi�
antly better than EC1. The hypothesisof equal 
ovarian
e parameters for all subnetwork 
omponents 
an thereforebe reje
ted although not as strongly as the PSL model.The estimate of σR50S in model EC2 (see Table 3) is not signi�
antlydi�erent from zero. This 
an be explained by the limited number of obser-21



vations using this subnetwork 
omponent. As shown in Table 1, there are173 observations that use R.50 S but sin
e the number of weighted obser-vations is only 36, the length by whi
h they overlap with the subnetwork
omponent is relatively short.Considering the signi�
ant improvement in model �t for the EC1 andEC2 models 
ompared to the PSL model, as well as the signi�
ant 
o-varian
e parameter estimates, we 
on
lude that the spe
i�
ation based onsubnetwork 
aptures an important 
orrelation stru
ture.Finally, we 
ompare EC2 with EC3 where EC3 explores the panel datastru
ture of the observations. Referring to the s
aled parameter estimatesin Table 3 for average link length, estimated travel time, number of leftturns and number of speed bumps, the value of the estimates are verystable. On the 
ontrary, the value βPS de
reases in magnitude, breaking atrend where it has been in
reasing in magnitude for the models EC1 andEC2 
ompared to the PSL model. It is possible that the EC3 model better
aptures individuals' per
eption of overlapping paths than EC1 and EC2.The behavioral aspe
t that the PS attribute 
aptures in models EC1 andEC2 is therefore 
aptured within the model stru
ture of EC3. This wouldexplain the de
reased magnitude of the βPS value.All the 
ovarian
e parameter estimates, ex
ept for σR50S, are signi�
antin the EC3 model. The assumption that the per
eption of 
orrelated al-ternatives on the subnetwork is individual spe
i�
 and that the taste is
onstant over 
hoi
e situations seems to 
orrespond to the observations.Due to the small number of individuals there is a systemati
 loss insigni�
an
e for all parameters in EC3 
ompared to EC2. In spite of this,there is a remarkable in
rease in model �t (see Table 4) 
ompared to EC2.
5 ConclusionIn this paper we justify the use of the original PS formulation among thedeterministi
 
orre
tions of the IIA assumption on the random terms in aMNL model. This is the formulation that both has a theoreti
al supportand shows intuitive results for the 
orre
tion of the independen
e assump-tion on the random terms. Moreover, we have presented estimation results22



Parameters PSL EC1 EC2 EC3

Path Size -0.28 -0.49 -0.53 -0.32S
aled estimate -0.28 -0.45 -0.48 -0.31(Std. Err.) Rob. t-test (0.07) -4.05 (0.09) -5.61 (0.09) -5.91 (0.19) -1.65
Avg. Link Length 4.15 4.98 5.06 4.754.15 4.58 4.61 4.53(0.55) 7.58 (0.60) 8.32 (0.61) 8.28 (1.21) 3.92
Estimated Time -0.40 -0.43 -0.44 -0.42-0.40 -0.40 -0.40 -0.40(0.05) -7.85 (0.06) -7.47 (0.06) -7.51 (0.10) -4.37
Nb. Left Turns -0.32 -0.33 -0.33 -0.33-0.32 -0.30 -0.30 -0.31(0.02) -15.73 (0.02) -15.62 (0.02) -15.59 (0.04) -9.16
Nb. Speed Bumps -0.23 -0.22 -0.23 -0.22-0.23 -0.20 -0.21 -0.21(0.07) -3.52 (0.07) -3.14 (0.07) -3.14 (0.19) -1.11
σ 1.441.32(0.19) 7.57
σR50N 1.07 1.780.97 1.70(0.32) 3.28 (0.67) 2.66
σR50S -0.27 -0.69-0.24 -0.66(0.69) -0.39 (0.60) -1.16
σR70N -2.04 0.65-1.85 0.62(0.39) -5.16 (0.26) 2.55
σR70S -1.52 -0.83-1.39 -0.79(0.22) -7.08 (0.20) -4.07
σRC 2.02 1.191.83 1.14(0.66) 3.05 (0.32) 3.75Table 3: Estimation Results
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Model Nb. σ Nb. Estimated Final AdjustedEstimates Parameters L-L Rho-SquarePSL - 13 -4174.72 0.154EC1 1 14 -4142.40 0.161EC2 5 18 -4136.92 0.161EC3 5 18 -4109.73 0.1661000 pseudo-random draws for Maximum Simulated Likelihood estimation2978 observationsNull Log-Likelihood: -4951.11BIOGEME (roso.ep
.
h/biogeme) has been used for all model estimations(Bierlaire, 2003, Bierlaire, 2005).Table 4: Model Fit MeasuresModel 1 Model 2 Test Threshold (95%)PSL EC1 64.64 3.84PSL EC2 75.60 11.07EC1 EC2 10.96 9.49Table 5: χ2-testthat suggest a behavioral interpretation of the Path Size attribute. Namely,overlap 
an be attra
tive for travelers sin
e it provides the possibility ofswit
hing between di�erent routes.We propose a novel modeling approa
h based on subnetworks designedto enhan
e the performan
e of simple models, su
h as the Path Size Logitmodel. Estimation results show that this approa
h is signi�
antly betterthan a simple Path Size Logit model. A subnetwork is a set of subnetwork
omponents. Alternatives are assumed to be 
orrelated if they use thesame subnetwork 
omponent even if they do not physi
ally overlap. This
orrelation is 
aptured within a fa
tor analyti
 spe
i�
ation of an ErrorComponent model 
ombined with a Path Size attribute. The estimationresults are promising and the estimates of the 
ovarian
e parameters sug-gest that the spe
i�
ation 
aptures an important 
orrelation stru
ture.We believe that this approa
h will open new perspe
tives for large-s
aleroute 
hoi
e modeling. It is a 
exible approa
h where the trade-o� between
omplexity and behavioral realism 
an be 
ontrolled by the analyst withthe de�nition of the subnetwork. Clearly, more analysis is required to assess24



the sensitivity of the results with regard to the de�nition of the subnetwork.Moreover, additional validity tests on other datasets would be desirable.
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