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AbstractWe propose an extension of seant methods for nonlinear equations us-ing a population of previous iterates. Contrarily to lassial seant meth-ods, where exat interpolation is used, we prefer a least squares approahto alibrate the linear model. We propose an expliit ontrol of the nu-merial stability of the method.We show that our approah an lead to an update formula. In thatase, we prove the loal onvergene of the orresponding undamped quasi-Newton method. Finally, omputational omparisons with lassial quasi-Newton methods highlight a signi�ant improvement in terms of robust-ness and number of funtion evaluations. We also present numerial testsshowing the robust behavior of our method in the presene of noise.

1 IntroductionWe onsider the standard problem of identifying the solution of a system ofnonlinear equations
F(x) = 0 (1)where F : R

n → R
n is a di�erentiable funtion. Sine Newton, this problemhas reeived a tremendous amount of attention. Newton's method and itsmany variations are still intensively analyzed and used in pratie. The idea ofNewton-like methods is to replae the nonlinear funtion F by a linear model,whih approximates F in the neighborhood of the urrent iterate. The originalNewton method invokes Taylor's theorem and uses the gradient matrix (thetranspose of whih is alled the Jaobian) to onstrut the linear model. Whenthe Jaobian is too expensive to evaluate, seant methods build the linear model
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based on the seant equation. Beause seant methods exhibit a q-superlinearrate of onvergene, they have been intensively analyzed in the literature.The seant equation imposes that the linear model exatly mathes thenonlinear funtion F at two suessive iterates. If the number of unknowns
n is stritly greater than 1, an in�nite number of linear models verify theseant equation. Therefore, eah seant method derives a spei� update for-mula whih arbitrarily piks one linear model among them. The most ommonstrategies are alled \least-hange updates" and selet the linear model whihminimizes the di�erene between two suessive models.In this paper, we provide a lass of algorithms generalizing these ideas.Instead of using only two suessive iterates to determine this linear model,we maintain a \population" of previous iterates. This approah allows all theavailable information olleted through the iterations to be expliitly used foralibrating the model.An important feature of our method is that we do not impose an exat mathbetween the model and the funtion. Instead, we use a least squares approahto request that the model �ts the funtion \as well as possible". In this paper,we present the lass of algorithms based on our method (Setion 2.2) and provethat they are loally onvergent (Setion 3). This lass of algorithms exhibitsa faster onvergene and a greater robustness than quasi-Newton methods formost numerial tests that we have performed (Setion 4) at a ost of substantiallinear algebra omputation. Therefore it is valuable when the ost of evaluating
F is high in omparison with the numerial algebra overhead.
2 Quasi-Newton methodsQuasi-Newton methods onsider at eah iteration the linear model

Lk(x; Bk) = F(xk) + Bk(x − xk) (2)whih approximates F(x) in the neighborhood of xk and omputes xk+1 as asolution of the linear system Lk(x; Bk) = 0. Consistently with most of the pub-liations on this topi, quasi-Newton methods an be summarized as methodsbased on the following iterations:
xk+1 = xk − B−1

k F(xk), (3)followed by the omputation of Bk+1. The pure Newton method is obtainedwith Bk = J(xk) = ∇F(xk)T, the Jaobian of F evaluated at xk, that is a
n × n matrix suh that entry (i, j) is ∂Fi/∂xj. We refer the reader to Dennisand Shnabel (1996) for an extensive analysis of Newton and quasi-Newtonmethods.
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2.1 Secant methodsBroyden (1965) proposes a quasi-Newton method based on the seant equa-tions, imposing the linear model Lk+1 to exatly math the nonlinear funtionat iterates xk and xk+1, that is
Lk+1(xk; Bk+1) = F(xk),

Lk+1(xk+1, Bk+1) = F(xk+1).
(4)Subtrating these two equations and de�ning yk = F(xk+1) − F(xk) and sk =

xk+1 − xk we obtain the lassial seant equation:
Bk+1sk = yk. (5)Clearly, if the dimension n is stritly greater than 1, there is an in�nite num-ber of matries Bk+1 satisfying (5). An arbitrary deision must onsequently bemade. The \least-hange seant update" strategy, proposed by Broyden (1965),onsists in seleting among the matries verifying (5) the one minimizing vari-ations (in Frobenius norm) between two suessive matries Bk and Bk+1. Itleads to the following update formula

Bk+1 = Bk +
(yk − Bksk) sT

k

sT
ksk

. (6)This method has been very suessful, and has been widely adopted in the�eld. However, we believe that the idea of interpolating the linear model at onlytwo iterates and ignoring previous iterates ould be too restritive. Therefore,we propose to use more than two iterates to build the linear model.This idea has already been onsidered. Dennis and Shnabel (1996) say that\Perhaps the most obvious strategy is to require the model to interpolate F(x)at other past points... One problem is that the diretions tend to be linearlydependent or lose to it, making the omputation of (the approximation matrix)a poorly posed numerial problem". Later, they write \In fat, multivariablegeneralizations of the seant method have been proposed ... but none of themseem robust enough for general use."There are few attempts to generalize this approah in the literature. A �rstgeneralization of the seant method is the sequential seant method proposedby Wolfe (1959) and disussed by Ortega and Rheinboldt (1970). The idea isto impose exat interpolation of the linear model on n+ 1 iterates instead of 2:
Lk+1(xk+1−j; Bk+1) = F(xk+1−j), j = 0, 1, . . . , n. (7)or, equivalently,

Bk+1sk−j = yk−j, j = 0, 1, . . . , n − 1, (8)where si = xk+1 − xi, and yi = F(xk+1) − F(xi), for all i. If the vetors
sk, sk−1, . . . , sk−n+1 are linearly independent, there exists exatly one matrix
Bk+1 satisfying (8), whih is

Bk+1 = Yk+1S
−1
k+1 (9)3



where Yk+1 = (yk, yk−1, . . . , yk−n+1) and Sk+1 = (sk, sk−1, . . . , sk−n+1).Quoting Ortega and Rheinboldt (1970) \...(sequantial methods) are proneto unstable behavior and ... no satisfatory onvergene results an be given".Nevertheless Gragg and Stewart (1976) propose a method whih avoids in-stabilities by working with orthogonal fatorizations of the involved matries.Martinez (1979) gives three implementations of the idea proposed by Graggand Stewart (1976) and some numerial experiments.Multi-step quasi-Newton methods have been proposed by Moghrabi (1993),Ford and Moghrabi (1997) and Ford (1999) in the ontext of nonlinear pro-gramming. An interpolating path is built based on previous iterates, and usedto produe an alternative seant equation. Interestingly, the best numerialresults were obtained with no more than two steps.We believe that the omments about the poor numerial stability of thosemethods found in major referene texts suh as Dennis and Shnabel (1996)and Ortega and Rheinboldt (1970) have not enouraged researhers to pursuethese investigatations. We provide here a suessful multi-iterates appoahwith robust onvergene properties and exhibiting an exellent behavior onnumerial examples. The idea of using a least squares approah is similarto an idea proposed in the physis litterature by Vanderbilt and Louie (1984),whih has inspired other authors in the same �eld (Johnson, 1988, Eyert, 1996).Bierlaire and Crittin (forthoming) have used a similar approah for solvingnoisy large sale transportation problems.
2.2 Population-based approachWe propose a lass of methods alibrating a linear model based on severalprevious iterates. The di�erene with existing approahes is that we do notimpose the linear model to interpolate the funtion. Instead, we prefer toidentify the linear model whih is as lose as possible to the nonlinear funtion,in the least squares sense.At eah iteration, we maintain a �nite population of previous iterates. With-out loss of generality, we present the method assuming that all previous iter-ates x0, . . . , xk+1 are onsidered. Our method belongs also to the quasi-Newtonframework de�ned by (3), where Bk+1 is omputed as follows.
Bk+1 = argmin

J

(

k∑

i=0

∥

∥

∥
ωi

k+1F(xi) − ωi
k+1Lk+1(xi; J)

∥

∥

∥
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+
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∥
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JΓ − B0

k+1Γ
∥

∥

∥

2

F

) (10)where Lk+1 is de�ned by (2) and B0
k+1 ∈ R

n×n is an a priori approximation of
Bk+1. The role of the seond term is to overome the under-determination ofthe least squares problem based on the �rst term and also ontrol the numerialstability of the method. The matrix Γ ontains weights assoiated with the ar-bitrary term B0

k+1, and the weights ωi
k+1 ∈ R

+ are assoiated with the previous4



iterates. Equation (10) an be written in matrix form as follows: Bk+1 =argmin
J

∥

∥

∥

∥

J
(

Sk+1 In×n

)

(

Ω 0k×n

0n×k Γ

)

−
(

Yk+1 B0
k+1

)

(

Ω 0

0 Γ

)
∥

∥

∥

∥

2

Fwhere Ω ∈ R
k+1 is a diagonal matrix with weights ωi

k+1 on the diagonal for
i = 0, · · · , k. The normal equations of this least squares problem lead to thefollowing formula:

Bk+1 = B0
k+1 +

(

Yk+1 − B0
k+1Sk+1

)

Ω2ST
k+1

(

ΓΓT + Sk+1Ω
2ST

k+1

)−1

, (11)where Yk+1 = (yk, yk−1, . . . , y0) and Sk+1 = (sk, sk−1, . . . , s0).The role of the a priori matrix B0
k+1 is to overome the possible under-determination of problem (10). For example, hoosing B0

k+1 = Bk (similarly tolassial Broyden-like methods) exhibits good properties. In that ase, (11) be-omes an update formula, and loal onvergene an be proved (see Setion 3).The weights ωi
k+1 apture the relative importane of eah iterate in thepopulation. Roughly speaking, they should be designed in the lines of theassumptions of Taylor's theorem, that is assigning more weight to points loseto xk+1, and less weight to points whih are faraway. The matrix Γ apturesthe importane of the arbitrary terms de�ned by B0

k+1 for the identi�ation ofthe linear model. The weights have to be �nite, and Γ must be suh that
ΓΓT + Sk+1Ω

2ST
k+1 (12)is safely positive de�nite. To ensure this property we desribe below three pos-sible approahes for hoosing ΓΓT: the geometrial approah, based on spei�geometri properties of the population, the subspae deomposition approah,deomposing R

n into the subspae spanned by the olumns of Sk+1 and itsorthogonal omplement, and the numerial approah, designed to guaranteea numerially safe positive de�niteness of (12).The geometrial approah assumes that n + 1 members of the populationform a simplex, so that the olumns of Sk+1 span R
n, and (12) is positivede�nite with ΓΓT = 0. In that ase, (11) beomes

Bk+1 = Yk+1Ω
2ST

k+1

(

Sk+1Ω
2ST

k+1

)−1

. (13)If there are exatly n + 1 iterates forming a simplex, the geometrial approahis equivalent to the interpolation method proposed by Wolfe (1959), and (13) isexatly (9), as Sk+1 is square and non singular in that ase. This approah havenot shown good numerial behavior in pratie as mentioned in Setion 2. Also,it requires at least n + 1 iterates, and may not be appropriate for large-saleproblems.The subspae deomposition approah is based on the QR deompositionof Sk+1. We denote by r the rank of Sk+1, with r ≤ n, and we have Sk+1 = QR,where
Q =

(

Q1 Q2

) (14)5



with Q1 is (n × r), Q2 is (n × n − r), and R is (n × k + 1). The r olumns of
Q1 form an orthogonal basis of the range of Sk+1. We de�ne now Γ suh that

Γ =
(

0n×r Q2

) (15)that is Q where Q1 has been replaed by a null matrix. With this onstrution
ΓΓT + Sk+1Ω

2ST
k+1 is invertible and Sk+1ΓΓ

T = 0. In the ase where Sk+1 spansthe entire spae then r = n, Γ is a null matrix and (11) is equivalent to (13).With the subspae deomposition approah, the hanges of F predited by
Bk+1 in a diretion orthogonal to the range of Sk+1 is the same as the onepredited by the arbitrary matrix B0

k+1. This idea is exatly the same as theone used by Broyden (1965) to onstrut his so alled Broyden's Good method.Numerial problems may happen when the olumns of Sk+1 are lose tolinear dependene. These are the problems already mentioned in the introdu-tion, and reported namely by Ortega and Rheinboldt (1970) and Dennis andShnabel (1996). Clearly, suh problems do not our when Sk+1 has exatlyone olumn, whih leads to the lassial Broyden method.The numerial approah is designed to address both the problem of over-oming the under-determination, and of guaranteeing numerial stability. It isdiretly inspired by the modi�ed Cholesky fatorization proposed by Shnabeland Eskow (1991). The modi�ed Cholesky fatorization of a square matrix Areates a matrix E suh that A+E is safely positive de�nite, while omputing itsCholesky fatorization. It may namely happen that A has full rank, but withsmallest eigenvalue very small with regard to mahine preision. In that ase,
E is non zero despite the fat that A is non singular. We apply this tehniquewith A = Sk+1Ω

2ST
k+1 and E = ΓΓT. So, if the matrix Sk+1Ω

2ST
k+1 is safely pos-itive de�nite, ΓΓT = 0 and (11) redues to (13). If not, the modi�ed Choleskyfatorization guarantees that the role of the arbitrary term Γ is minimal.We now emphasize important advantages of our generalization ombinedwith the numerial approah. Firstly, ontrarily to interpolation methods,our least squares model allows to use more than p points to identify a modelin a subspae of dimension p (where p ≤ n). This is very important whenthe objetive funtion is expensive to evaluate. Indeed, we make an eÆientuse of all the available information about the funtion to alibrate the seantmodel. It is namely advantageous ompared to Broyden's method, where onlytwo iterates are expliitly used to build the model, while previous iterates onlyplay an impliit role due to the \least-hange" priniple. Seondly, the nu-merial approah proposed above ontrols the numerial stability of the modelonstrution proess, when a sequene of iterates may be linearly dependent.Finally, the fat that existing methods are speial ases of our approah allowsto generalize the theoretial and pratial properties already published in theliterature, and simpli�es their extension to our ontext. We apply this prini-ple to the loal onvergene analysis in setion 3. The main drawbak is theinrease in numerial linear algebra as the least squares problem (10) must be6



solved at eah iteration. Therefore, it is partiularly appropriate for problemswhere F is very expensive to ompute.We onlude this setion by showing that our population-based update for-mula is a generalization of Broyden update. Atually, the lassial Broydenupdate (6) is a speial ase of our update formula (11), if B0
k+1 = Bk, the popu-lation ontains just two iterates xk and xk+1, and the subspae deompositionapproah is used. The seant equation (5) ompletely de�nes the linear modelin the one-dimensional subspae spanned by sk = xk+1−xk, while an arbitrarydeision is made for the rest of the model. If we de�ne ωk

k+1 = 1 and Γ is givenby (15) with r = 1, we an write (11) as
Bk+1 = Bk + (yk − Bksk) sT

k

(

ΓΓT + sksT
k

)−1

. (16)The equivalene with (6) is due to the following equality
sT
k

(

ΓΓT + sksT
k

)−1

= sT
k

1

sT
ksk

, (17)obtained from the fat that sT
kΓΓT = 0, by (15).

3 Local convergence analysisWe show that if ΓΓT is determined by the numerial approah desribed in Se-tion 2.2, then the undamped algorithm desribed in Setion 3.1, where Bk+1 isde�ned by (11) in its update form (i.e. B0
k+1 = Bk), loally onverges to a solu-tion of (1) if the following assumptions are veri�ed. Note that the assumptionsmade on the problem are similar to those given by Broyden (1965).

Assumptions on the problem:(P1) F : R
n → R

n is ontinuously di�erentiable in an open onvex set D.(P2) The system of equations has a solution, that is ∃ x∗ ∈ D suh that F(x∗) =

0.(P3) J(x) is Lipshitz ontinuous at x∗ with onstant Klip, that is
‖J(x) − J(x∗)‖ ≤ Klip‖x − x∗‖ ∀x ∈ D. (18)in the neighborhood D.(P4) J(x∗) is non-singular and there exists γ > 0 suh that ‖J(x∗)−1‖ < γ.

Assumptions on the algorithm:(A1) The algorithm is based on the iteration (3) with x0 and B0 as initial guess.(A2) Bk is generated by (11) with B0
k+1 = Bk.7



(A3) ΓΓT is omputed using the numerial approah.(A4) ∀i ≤ k, we have ωi
k+1 ≤ Mω for all k and some onstant Mω > 0.(A5) The size of the population P is bounded above by MP where MP > 0 isa onstant.The notation ‖ · ‖ is used for the l2 vetor norm ‖x‖ = (xTx)

1
2 as well as forthe Frobenius matrix norm ‖A‖. The notation ‖ · ‖2 is used for the l2 matrixnorm ‖A‖2. For the sake of simpli�ation, we denote ωi

k+1 = ωi, S = Sk+1,
Y = Yk+1 and Ip = {0, 1, . . . , p}. The proof uses some lemmas. Lemma 1 and2 are lassial results from the literature. Lemmas 3{5 are tehnial lemmasrelated to our method. Their proofs are provided in the appendix.
Lemma 1 Let F : R

n −→ R
n be ontinuously di�erentiable in the openonvex D ⊂ R

n, x ∈ D, and let J be Lipshitz ontinuous at x in theneighborhood D with onstant Klip. Then for any u, v ∈ D,

‖F(v) − F(u) − J(x)(v − u)‖ ≤ Klip

‖v − x‖ + ‖u − x‖
2

‖v − u‖ . (19)
Proof. See, for example, Dennis and Shnabel, 1996. �

Lemma 2 Let A,C ∈ R
n×n and assume that A is invertible, with ∥∥A−1

∥

∥ ≤
µ. If ‖A − C‖ ≤ β and βµ < 1, then C is also invertible and

∥

∥

∥
C−1

∥

∥

∥
≤ µ

1 − βµ
. (20)

Proof. This lemma is known as the Banah Perturbation Lemma. (See, forexample, Ortega and Rheinboldt, 1970). �

Lemma 3 If assumptions (A4)-(A5) are veri�ed, then
‖SΩ2ST‖ ≤ 2MPM2

ω max
i∈Ik+1

‖xi − x∗‖2, (21)
‖Ω2ST‖ ≤

√

2MPM2
ω max

i∈Ik+1

‖xi − x∗‖. (22)where x∗ is solution of (1).
Lemma 4 If assumptions (P1),(P2) and (P3) are veri�ed then:

‖(Y − J(x∗)S)‖ ≤
√

2MPKlip max
i∈Ik+1

(

‖xi − x∗‖2
) (23)where x∗ is solution of (1).
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Lemma 5 If assumption (A3) is veri�ed, then
∥

∥

∥

∥

(

ΓΓT + SΩ2ST
)−1

∥

∥

∥

∥

2

≤ 1

τ
(24)where τ > 0.The parameter τ in Lemma 5 ontrols the way we perturb SΩ2ST. It guaranteesthat the smallest eigenvalue of (ΓΓT + SΩ2ST

) is stritly greater than τ and,therefore, safely positive in a �nite arithmeti ontext if τ is properly hosen.Shnabel and Eskow (1991) suggest to hoose τ = (maheps) 1
3 where mahepsis the mahine epsilon.

Theorem 6 Let assumptions (P1) to (P4) hold for the problem and as-sumptions (A1) to (A5) hold for the algorithm. Then there exists twonon-negative onstants α1 and α2 suh that for eah xk and Bk:
‖Bk+1 − J(x∗)‖ ≤

(

1 + α1maxi∈Ik+1
‖xi − x∗‖2

)

‖Bk − J(x∗)‖
+ α2maxi∈Ik+1

‖xi − x∗‖3 .
(25)

Proof. From the update formula (11), and de�ning
T1 = I − SΩ2ST(ΓΓT + SΩ2ST)−1

T2 = (Y − J(x∗)S)Ω2ST(ΓΓT + SΩ2ST)−1,we obtain
‖Bk+1 − J(x∗)‖ = ‖Bk − J(x∗) + [(J(x∗)S − J(x∗)S) + (Y − BkS)]Ω2ST(ΓΓT + SΩ2ST)−1‖

≤ ‖T1‖‖Bk − J(x∗)‖ + ‖T2‖.From Lemmas 3 and 5 we obtain
‖T1‖ ≤ ‖I‖ + ‖SΩ2ST‖‖(ΓΓT + SΩ2ST)−1‖ (26)

≤ 1 + α1 max
i∈Ik+1

‖xi − x∗‖2, (27)with
α1 =

2
√

n

τ
MPM2

ω > 0.We onlude the proof using Lemmas 3, 4 and 5 to show that:
‖T2‖ ≤ ‖(Y − J(x∗)S)‖‖Ω2ST‖‖(ΓΓT + SΩ2ST)−1‖ (28)

≤ α2 max
i∈Ik+1

‖xi − x∗‖3, (29)with
α2 =

2
√

n

τ
KlipMPM2

ω > 0.
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Theorem 7 Let assumptions (P1) to (P3) hold for the problem and as-sumptions (A1) to (A5) hold for the algorithm. Then for eah r ∈]0, 1[,there exists ε(r) and δ(r) suh that for
‖x0 − x∗‖ ≤ ε(r) (30)and

‖B0 − J(x∗)‖ ≤ δ(r) (31)the sequene xk+1 = xk − B−1
k F(xk) is well de�ned and onverges q-linearlyto x∗ with q-fator at most r. Furthermore, the sequenes {‖Bk‖}k and

{
‖B−1

k ‖
}

k
are uniformly bounded.

Proof. The struture of the demonstration is similar to the proof of The-orem 3.2 in Broyden et al. (1973). We have purposedly skipped some identialtehnial details.First hoose ε(r) = ε and δ(r) = δ suh that
γ(1 + r) (Klipε + 2δ) ≤ r (32)and

(

2α1 + α2

ε

1 − r

)

ε2

1 − r2
≤ δ. (33)We invoke Lemma 2 with µ = γ and β = 2δ to prove that B0 is non-singularand

‖B−1
0 ‖ < γ(1 + r). (34)Note that assumption 2δγ < 1 for Lemma 2 is diretly dedued from (32).The improvement after the �rst iteration, that is

‖x1 − x∗‖ ≤ r‖x0 − x∗‖ (35)is independent of the spei� update formula and, therefore, is proven in Broy-den et al. (1973).The result for iteration k is proven with an indution argument based onthe following reurrene assumptions:
‖Bm − J∗‖ ≤ 2δ (36)

‖xm+1 − x∗‖ ≤ r‖xm − x∗‖ (37)for all m = 1, . . . , k − 1.We �rst prove that ‖Bk − J∗‖ ≤ 2δ using Theorem 6. From (25) we dedue
‖Bm+1 − J(x∗)‖ − ‖Bm − J(x∗)‖

≤ α1 max
i∈Im+1

‖xi − x∗‖2‖Bm − J(x∗)‖ + α2 max
i∈Im+1

‖xi − x∗‖3

≤ α1r
2(m+1)ε22δ + α2r

3(m+1)ε3. (38)10



Summing both sides of (38) for m ranging from 0 to k − 1, we dedue that
‖Bk − J(x∗)‖ ≤ ‖B0 − J(x∗)‖ +

(

2α1δ + α2

ε

1 − r

)

ε2

1 − r2
(39)

≤ 2δ, (40)where (40) derives from (31) and (33).The fat that Bk is invertible and ‖B−1
k ‖ ≤ γ(1 + r) is again a diret appli-ation of the Banah Perturbation Lemma 2. Following again Broyden et al.(1973), we an now obtain (37) for m = k, onluding the indution proof. �

3.1 Undamped and damped quasi-Newton methodsAll the algorithms presented in Setion 2.1 and 2.2 are based on the followingstruture.� Given F : R
n → R

n, x0 ∈ R
n and B0 ∈ R

n×n� While stopping riteria is not veri�ed:
– Find s solving Bks = −F(xk),
– Evaluate F(xk+1) where xk+1 = xk + s,
– Compute Bk+1.This general algorithm is often alled undamped quasi-Newton method, i.e.without any step ontrol or globalization methods. It allows to ompare dif-ferent type of algorithms, in term of number of funtion evaluations, and theirrobustness without introduing a bias due to the step ontrol or the globaliza-tion method. Consequently, the algorithms di�er only by the method used toompute Bk+1.The main drawbak of undamped methods is that we annot ensure on-vergene from remote starting points. Moreover, Newton-like methods withoutany ontrol on the step lengths may enounter several other soures of failure.For instane, the omponents of the unknown vetor (x) or the funtion vetor(F) or the Jaobian approximate (Bk) may beome arbitrarily large.Globalization strategies an be grouped into two distint frameworks: line-searh and trust-region. Linesearh approahes are applied to a merit funtionbased on F, used to measure progress toward a solution of F(x) = 0 (see for in-stane Noedal and Wright, 1999). Trust-region methods and �lter-trust-regionmethods (see Gould et al., 2005) an be used to solve the assoiated nonlinearleast squares problem: min

x∈Rn

1

2
‖F(x)‖2

2 (41)The main disadvantage of the seond type of globalization is that the iteratesan be stuked in a loal minimum of (41), whih is not a solution of F(x) = 0.11



As we want to keep solving the original problem F(x) = 0, we adopt in thispaper the linesearh approah.When integrating a linesearh strategy to the previous undamped quasi-Newton framework, we obtain the following struture.� Given F : R
n → R

n, x0 ∈ R
n and B0 ∈ R

n×n� While stopping riteria is not veri�ed:
– Find s solving Bks = −F(xk);
– Determine a step length αk > 0;
– Evaluate F(xk+1) where xk+1 = xk + αks;
– Compute Bk+1.This general method is alled damped quasi-Newton method. In the follow-ing, we desribe how we determine the step αk at eah iteration of the algorithmusing the lassial sum-of-squares merit funtion

m(xk) =
1

2
‖F(xk)‖2

2 =
1

2

n∑

i=1

F2
i(xk)to measure progress toward a solution of the system F. We hoose a step αksatisfying the following Armijo-type ondition with β ∈ (0, 1):

m(xk + αks) ≤ m(xk) + αkβ∇m(xk)Ts. (42)Note that β is a parameter whih de�nes the quality of the derease we want toobtain. Condition (42) is valid only if the quasi-Newton diretion s is a desentdiretion for m in xk, that is:
∇m(xk)Ts < 0. (43)If ondition (43) holds, we �nd a step αk satisfying (42) using a baktrakingstrategy. Unfortunately, we do not have the guarantee that our quasi-Newtondiretion s = −B−1

k F(xk) is a desent diretion for m, unless Bk is lose enoughto the real Jaobian at xk, J(xk) = ∇F(xk)T, and ∇m(xk)Ts is bounded be-low. Consequently, we use the following sequential proedure to �nd a desentdiretion for the merit funtion in the urrent iterate xk:� Chek whether the quasi-Newton diretion s = −B−1
k F(xk) is a desentdiretion for m in xk;� If not, ompute using the modi�ed Cholesky fatorization (see Shnabeland Eskow, 1999) an auxiliary diretion �s

−(BT
kBk + τI)−1BT

kF(xk)where τ > 0 and I is the identity matrix in dimension n. Aordingto Noedal and Wright (1999), we an always hoose τ to ensure that
∇m(xk)Ts is bounded below. 12



� Chek whether the quasi-Newton diretion �s is a desent diretion for min xk;� If not, do the following:
– Update the urrent approximation of the Jaobian Bk with a newpoint lose to xk to get B+

k . More preisely, we take a step of length
1e − 4 in the diretion s. The goal is to try to get a good loalapproximation of J(xk);

– Compute the diretion s+ = −(B+
k)−1F(xk);and restart the proess with s+.Note that we ompute the diretional derivative of the merit funtion m ina diretion s, ∇m(x)Ts, using a �nite di�erenes proedure.

4 Numerical Results

4.1 General behaviorWe present here an analysis of the performane of our method, in omparison tolassial algorithms. All algorithms and test funtions have been implementedwith the pakage Otave (Eaton, 1997) and omputations have been done on adesktop equipped with 3GHz CPU in double preision. The mahine epsilon isabout 2.2e-16.The numerial experiments were arried out on a set of 43 test funtions.For 37 of them, we onsider �ve instanes of dimension n = 6, 10, 20, 50, 100. Weobtain a total of 191 problems. This set is omposed of the four standard nonlin-ear systems of equations proposed by Dennis and Shnabel (1996) (that is, Ex-tended Rosenbrok Funtion, Extended Powell Singular Funtion, Trigono-metri Funtion, Helial Valley Funtion), three funtions from Broyden(1965), �ve funtions proposed by Kelley (2003) in his book on Newton'smethod (that is, Artangent Funtion, a Simple Two-dimensional Funtion,Chandrasekhar H-equation, Ornstein -Zernike Equations, Right Preondi-tioned Convetion-Di�usion Equation), three linear systems of equations (seeAppendix), the test funtions given by Spediato and Huang (1997) and sometest funtions of the olletion proposed by Mor�e et al. (1981). For eah prob-lem, we have used the starting point proposed in the original paper. Note thatthe results inlude all these problems.The algorithms are based on both the damped and undamped quasi-Newtonframework given in Setion 3.1 with the following harateristis: the initialJaobian approximation B0 is the same for all algorithms and equal to theidentity matrix. The stopping riterion is a omposition of three onditions:small residual, that is ‖F(xk)‖/‖F(x0)‖ ≤ 10e−6, maximum number of iterations(k ≥ 200 for problems of size n ≤ 20 and k ≥ 500 for problems of size n > 20),13



and divergene, diagnosed if ‖F(xk)‖ ≥ 10e10 or if a desent diretion has notbeen found after several updates of the approximate Jaobian in the linesearhproedure (meaning that we have not been able to �nd a suÆiently goodapproximation of the Jaobian).We onsider four quasi-Newton methods:1. Broyden's Good Method (BGM), using the update (6).2. Broyden's Bad Method (BBM), also proposed by Broyden (1965). It isbased on the following seant equation:
sk = B−1

k+1yk. (44)and diretly omputes the inverse of Bk:
B−1

k+1 = B−1
k +

(

sk − B−1
k yk

)

yT
k

yT
kyk

. (45)Broyden (1965) desribes this method as \bad", that is numerially un-stable. However, we have deided to inlude it in our tests for the sake ofompleteness. Moreover, as disussed below, it does not always deserveits name.3. The Hybrid Method (HMM) proposed by Martinez (1982). At eah it-eration, the algorithm deides to apply either BGM or BBM. Martinez(2000) observes a systemati improvement of the Hybrid approah withrespet to eah individual approah. As disussed below, we reah similaronlusions.4. Our population-based approah, alled Generalized Seant Method (GSM),de�ned by (11) in its update form with B0
k+1 = Bk using the numerialapproah desribed in Setion 2.2, with τ = (maheps) 1

3 and a maximumof p = max(n, 10) previous iterates in the population. Indeed, inludingall previous iterates, as proposed in the theoretial analysis, may generatememory management problems, and anyway does not signi�antly a�etthe behavior of the algorithm. The weights are de�ned as
ωi

k+1 =
1

‖xk+1 − xi‖2
∀i ∈ Ip (46)The measure of performane is the number of funtion evaluations to reahonvergene. Indeed we are interested in applying the method on omputation-nally expensive systems, where the running time is dominated by the funtionevaluations. We are presenting the results following the performane pro�lesanalysis method proposed by Dolan and Mor�e (2002).If fp,a is the performane index (the number of funtion evaluations in ourase) of algorithm a on problem p, then the performane ratio is de�ned by

rp,a =
fp,amina{fp,a}

, (47)14



if algorithm a has onverged for problem p, and rp,a = rfail otherwise, where
rfail must be stritly larger than any performane ratio (47). For any giventhreshold π, the overall performane of algorithm a is given by

ρa(π) =
1

np

Φa(π) (48)where np is the number of problems onsidered, and Φa(π) is the number ofproblems for whih rp,a ≤ π.In partiular, the value ρa(1) gives the probability that algorithm a winsover all other algorithms. The value limπ→rfail ρa(π) gives the probability thatalgorithm a solves a problem and, onsequently, provides a measure of therobustness of eah method.

Figure 1: Performane Pro�leWe �rst analyze the performane pro�le of all algorithms desribed abovewithout globalization strategy on all problems. The performane pro�le isreported on Figure 1. A zoom on π between 1 and 5 is provided in Figure 2.The results are very satisfatory for our method. Indeed, we observe thatGSM is the most eÆient and the most robust algorithm among the hallengedquasi-Newton methods.We also on�rm results by Martinez (2000) showing that the Hybrid methodis more reliable than BGM and BBM. Indeed, it onverges on almost 50% ofthe problems, while eah Broyden method onverges only on less than 40% ofthe ases. Moreover, HMM wins more often than BGM and BBM does, andis also more robust, as its performane pro�le grows faster than the pro�le forBGM and BBM. The relative robustness of BGM and BBM is omparable.15



Figure 2: Performane Pro�le on (1,5)Even if GSM is the most reliable algorithm, note that it only onvergeson 55% of the 191 runs. We now present the performane pro�le for all algo-rithms in their damped version, that is making use of the linesearh strategypresented in Setion 3.1, on Figure 3. A zoom for π between 1 and 3 is providedin Figure 4. Firstly we observe that the globalization tehnique signi�antlyimproves the robustness of all four presented algorithms as expeted. Seondlyand most importantly, GSM remains the best algorithm in terms of eÆienyand robustness. More preisely, GSM is the best algorithm on more than 60%of the problems and is able to solve more than 80% of the 191 onsidered prob-lems. From Figure 4, we note also that when GSM is not the best method, itonverges within a fator of 2 of the best algorithm for most problems.The performane pro�le analysis depends on the number of methods that arebeing ompared. Therefore, we like to present a omparison between BGM andGSM only, as BGM is probably the most widely used method. The signi�antimprovement provided by our method over Broyden's method is illustrated byFigure 5 onsidering the undamped version of both algorithms. Figure 6 showsthe superiority of GSM as well, when both algorithms are globalized using thelinesearh strategy.In this paper, in the ontext of solving systems of nonlinear equations,we foused on quasi-Newton methods whih do not use information about thederivative of the system to be solved. We have already shown that GSM is a veryompetitive derivative-free algorithm. To onlude our numerial experiments,we like to ompare our method with an algorithm using derivative information.We onsider a method belonging to the family of inexat Newton methods16



Figure 3: Performane Pro�le with linesearhwhih identify a diretion dk satisfying the inexat Newton ondition:
‖F(xk) + J(xk)dk‖ ≤ ηk‖F(xk)‖ (49)for some ηk ∈ [0, 1). The most onventional inexat Newton method uses it-erative tehniques to ompute the Newton step dk using (49) as a stoppingriterion. Among these iteratives tehniques, Krylov-based linear solvers aregenerally hosen. Newton-Krylov methods need to estimate Jaobian-vetorproduts using �nite di�erenes approximations in the appropriate Krylov sub-spae.We now hallenge GSM against the Newton-Krylov method presented byKelley (2003). The onsidered version of this method uses the iterative linearGMRES (proposed by Saad and Shultz, 1986) and a paraboli linesearh viathree interpolation points. Similarly to the Newton-Krylov algorithm, we allowGSM to use a �nite di�erenes approximation of the initial Jaobian. FromFigure 7, we observe that GSM is ompetitive with Newton-Krylov both interms of eÆieny and robustness. This result is very satisfatory as Newton-Krylov methods have been proven to be very eÆient methods to solve systemsof nonlinear equations.

4.2 Behavior in presence of noiseIn pratie the evaluation of systems of nonlinear equations often returns aresult that is a�eted by noise, in partiular if the evaluation is the outomeof simulator runs. For example Bierlaire and Crittin (forthoming) desribesuh a problem in the ontext of transportation appliations. Therefore, we17
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GSM METHODFigure 4: Performane Pro�le on (1,3) with linesearhonlude this setion by an empirial analysis of the behavior of our methodin the presene of noise in the funtion. Indeed, we speulate that the use of alarger sample of iterates within a least squares framework smooths the impatof noise on the method.We onsider a random funtion desribed by:

G(x) = Fs(x) + φ(x) (50)where Fs : R
n → R

n is deterministi and φ(x) is a random perturbation. Wewant to identify x suh that Fs(x) = 0, but we are not able to ompute Fs(x)aurately.We onsider two types of random noise:1. Similarly to Choi and Kelley (2000), we �rst assume that the noise de-reases near the solution, more preisely:
φ(x) ∼ N(0, α2‖x − x∗‖2) and G(x0) = Fs(x0) = 0. (51)In this ase, the noise is named proportional.2. We then assume that the noise is onstant, more preisely:

φ(x) ∼ N(0, α2). (52)In this ase, the noise is named absolute.We have seleted two problems where the behavior of BGM and GSM intheir undamped version are almost similar in the deterministi ase. Please18



Figure 5: Performane pro�le { Broyden's Good Method and GSM {note that we do not perform tests using the damped quasi-Newton frameworkas the underlying globalization strategy makes use of �nite di�erenes, whih isnot ompatible with the stohastiity present in the problems onsidered in thissubsetion. For eah funtion and eah type of noise the results are presentedfor 4 levels of stohastiity, i.e. for four di�erent values of the parameter αde�ned in equations (51) and (52). We plot the relative nonlinear residual,that is ‖G(xk)‖/‖G(x0)‖, against the number of funtion evaluations.First we onsider a problem given by Spediato and Huang (1997) andfully desribed in Setion 6.4 in the Appendix. The results obtained withthe proportional noise are presented in Figure 8. Figure 8(a) illustrates thedeterministi ase, with φ(x) = 0, where BGM is slightly better than GSM.When a noise with small variane (α = 0.001, Figure 8(b)) is present, GSMdereases the value of the residual pretty quikly, while the desent rate ofBGM is muh slower. When the variane of the noise inreases (α = 0.01 inFigure 8(), and α = 1 in Figure 8(d)), the BGM is trapped in higher values ofthe residual, while GSM ahieves a signi�ant derease. The results obtainedwith the absolute noise are presented in Figure 9. The values of α are thesame as above. The behavior of the two methods is almost the same as for theproportional noise. GSM reahes a lower level than BGM of the residual forsmall (α = 0.001, Figure 9(b)) and medium (α = 0.01, Figure 9()) varianes.When the variane is higher (α = 1, Figure 9(d)) none of the two methods isable to signi�antly derease the relative residual.The same tests have been aomplished with the Extended RosenbrokFuntion given by Dennis and Shnabel (1996) and fully desribed in Setion 6.5in the Appendix. Figure 10 reports the behavior of GSM and BGM applied to19



Figure 6: Performane pro�le with linesearh { Broyden's Good Method andGSM {this problem perturbated with a proportional noise. Figure 10(a) reports therelative residual of the smooth system (α = 0). In the presene of the smallnoise (α = 0.0001, Figure 10(b)) both methods onverge but BGM needs morethan twie the number of iterations needed by GSM. When the noise inreases(α = 0.01, Figure 10()) BGM is totally disrupted and diverges, while GSM stillonverges in less than 20 iterations. With the higher value of the noise (α = 1,Figure 10()) both methods are stalled, but GSM ahieves lower values for therelative residual. Figure 11 reports the behavior of GSM and BGM appliedto this problem perturbated with absolute noise. Again Figure 11(a) reportsthe relative residual of the smooth system (α = 0). For small (α = 0.0001,Figure 11(b)) and medium (α = 0.01, Figure 11()) value of the noise bothmethods reah the same value of relative residual with GSM using learly lessevaluations of F than BGM. With a larger noise (α = 1, Figure 11()), as forthe proportional ase, BGM is stalled at a higher value than GSM.We have performed the same analysis on other problems, and observed asimilar behavior, that is a systematially better robustness of GSM omparedto the lassi BGM when solving a noisy system of equations.In summary, our method is more robust than BGM in the sense that it ansolve noisy problems that BGM annot. When both fail, GSM exhibits betterdereases, whih may be advantageous in pratie.
20



Figure 7: Performane pro�le { GSM and Newton-Krylov {
4.3 Large-scale problemsThe main drawbak of our approah is the relatively high ost in numerial lin-ear algebra. Therefore it is partiularly appropriate for medium-sale problemswhere F is very expensive to ompute. Bierlaire and Crittin (forthoming) pro-pose an instane of this lass of methods, designed to solve very large-sale sys-tems of nonlinear equations without any assumption about the struture of theproblem. The numerial experiments on standard large-sale problems showsimilar results: the algorithm outperforms lassial large-sale quasi-Newtonmethods in terms of eÆieny and robustness, its numerial performanes aresimilar to the Newton-Krylov methods, and it is robust in presene of noise.The omplexity (both in time and memory) is linear in the size of theproblem. Therefore, we were able to solve very large instanes of a problemgiven by Spediato and Huang (1997). The algorithm has been able to onvergeon a problem of size 2'000'000 in four hours and 158 iterations.We are strongly interested in globalizing the large-sale version of our method.However, it requires future researh to adapt our linesearh framework and toget an eÆient globalization strategy in term of omputational time.
5 Conclusion and perspectivesWe have proposed a new lass of generalized seant methods, based on the useof more than two iterates to identify the seant model. Contrarily to previousattempts for multi-iterate seant methods, the key ideas of this paper are (i)to use a least squares approah instead of an interpolation method to derive21
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(b) Small variane noise
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(d) Large variane noiseFigure 8: Behavior with proportional stohastiitythe seant model, and (ii) to expliitly ontrol the numerial stability of themethod.A spei� sub-lass of this family of methods provides an update formula.We have proven the loal onvergene of an undamped quasi-Newton methodbased on this update formula. Moreover, we have performed extensive numer-ial experiments with several algorithms. The results show that our methodprodues signi�ant improvement in term of robustness and number of funtionevaluations ompared to lassial methods. We have also shown that the glob-alization strategy presented in this paper signi�antly improves the robustnessof quasi-Newton methods. Eventually, we have provided preliminary evidenesthat our method is more robust in the presene of noise in the funtion.A theoretial analysis of a globally onvergent version of our method mustalso be performed. We also onjeture that the loal onvergene rate is super-linear. And most importantly, the general behavior of the algorithm for solvingnoisy funtions requires further analysis.There are several variants of our methods that we plan to analyze in thefuture. Firstly, following Broyden's idea to derive BBM from (44), an updateformula for B−1
k+1 an easily be derived in the ontext of our method:

B−1
k+1 = B−1

k +
(

ΓΓT + Yk+1Ω
2YT

k+1

)−1

YT
k+1Ω

2
(

Sk+1 − B−1
k Yk+1

)

. (53)22
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(d) Large variane noiseFigure 9: Behavior with absolute stohastiityFrom preliminary tests that we have performed, the \Good" and \Bad" versionsof our method ompare in a similar way as BGM and BBM. Seondly, non-update instanes of our lass of methods an be onsidered. In that ase, thearbitrary matrix B0
k+1 in (10) may be di�erent from Bk. Choosing a matrixindependent from k allows to use iterative sheme designed to solve large-sale least squares. In that ase, hoosing a matrix independent from k wouldallow to apply Kalman �ltering (Kalman, 1960) to inrementally solve (10) and,onsequently, improve the numerial eÆieny of the method. For large saleproblems, an iterative sheme suh as LSQR (Paige and Saunders, 1982) anbe onsidered. LSQR an also improve the eÆieny of Kalman �lter for theinremental algorithm (see Bierlaire and Crittin, 2004).Finally, the ideas proposed in this paper an be tailored to optimizationproblems.
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(d) Large variane noiseFigure 10: Behavior with proportional stohastiity
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(d) Large variane noiseFigure 11: Behavior with absolute stohastiity
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6 Appendix

6.1 Proof of Lemma 3

‖SΩ2ST‖ ≤ ‖SΩ‖2 (54)
≤

k∑

i=0

‖ωisi‖2 (55)
≤ (k + 1)max

i∈Ik

(|ωi|‖si‖)2 (56)
≤ (k + 1)max

i∈Ik

(|ωi|‖xk+1 − ~x + ~x − xi‖)2 (57)
≤ 2(k + 1)max

i∈Ik

|ωi|
2 max

i∈Ik+1

‖xi − ~x‖2 (58)
≤ 2MPM2

ω max
i∈Ik+1

‖xi − ~x‖2 (59)for all ~x ∈ R
n×n, in partiular with ~x = x∗ whih proves (21).

‖Ω2ST‖2 ≤
k∑

i=0

‖ω2
isi‖2 (60)

≤ (k + 1)max
i∈Ik

(

|ωi|
2‖si‖

)2 (61)
≤ (k + 1)max

i∈Ik

|ωi|
4max

i∈Ik

‖xk+1 − ~x + ~x − xi‖2 (62)
≤ 2(k + 1)max

i∈Ik

|ωi|
4 max

i∈Ik+1

‖xi − ~x‖2 (63)for all ~x ∈ R
n×n. We obtain (22) with ~x = x∗:

‖Ω2ST‖ ≤
√

2MPM2
ω max

i∈Ik+1

‖xi − x∗‖ (64)
6.2 Proof of Lemma 4Writing expliitly a olumn of the matrix A = Y − J(x∗)S

a·j = F(xk+1) − F(xi) − J(x∗)(xk+1 − xk−j+1) (65)with a·j de�ning the olumn j of A = (aij).Using (65) and Lemma 1 we an write:
‖Y − J(x∗)S‖2

≤
k+1∑

j=1

‖a·j‖2

≤ (k + 1)max
i∈Ik

‖F(xk+1) − F(xi) − J(x∗)(xk+1 − xi)‖2

≤ (k + 1)K2
lipmax

i∈Ik

(

‖xi−x∗‖−‖xk+1−x∗‖
2

‖xk+1 − xi‖
)2

≤ 2(k + 1)K2
lip max

i∈Ik+1

‖xi − x∗‖2 max
i∈Ik+1

‖xi − x∗‖226



Taking the square root on both sides:
‖Y − J(x∗)S‖ ≤

√

2MPKlip max
i∈Ik+1

‖xi − x∗‖2 (66)
6.3 Proof of the Lemma 5Let A ∈ R

n×n, we denote by λm(A) and λM(A) its smallest and largest eigen-values, respetively. So we an write using the de�nition of the l2 norm:
‖(ΓΓT + SΩ2ST)−1‖2 = λM((ΓΓT + SΩ2ST)−1) (67)

=
1

λm(ΓΓT + SΩ2ST)
. (68)From assumption (A3), Γ2 is omputed using the modi�ed Cholesky fatoriza-tion, proposed by Shnabel and Eskow (1991), with parameter τ. Therefore,

λm(ΓΓT + SΩ2ST) ≥ τ, (69)whih onludes the proof.
6.4 Description of the problem analyzed in Figures 8 and 9The onsidered problem is the following system of equations:

fi = xi −

∑4
j=1 x3

j + 1

8
i = 1, . . . , 4 (70)with initial point x0 = (1.5, . . . , 1.5). The solution of this system is x∗ =

(0.20432, . . . , 0.20432).
6.5 Description of the problem analyzed in Figures 10 and 11The onsidered problem is the following system of equations of dimension n,where n is a positive multiple of 2.For i = 1, . . . , n/2

{
f2i−1 = 10(x2i − x2

2i−1)

f2i = 1 − x2i−1

(71)with initial point x0 = (−1.2, 1, . . . ,−1.2, 1). The solution of this system is
x∗ = (1, . . . , 1).
6.6 Linear problems in the tests setWe have tested three linear problems of the form Ax = b. They have beendesigned to hallenge the tested algorithms.1. For the �rst, the matrix A is the Hilbert matrix, and vetor b is omposedof all ones. 27



2. The seond problem is based on the matrix A suh that aij = j if i +

j = n + 1, and aij = 0 otherwise. All entries of the right-hand side bare -10. Its struture is designed so that the identitiy matrix is a poorapproximation.3. The third problem is based on a Vandermond matrix A(v) with v =

(−1,−2, . . . ,−n). All entries of the right-hand side b are -1.The starting point for all those problems is x = (1, . . . , 1)T .
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