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Abstract

We propose a discrete choice framework for pedestrian dynamics, model-
ing short term behavior of individuals as a response to the presence of other
pedestrians. We use a dynamic and individual-based spatial discretization,
representing the physical space. We develop a model predicting where the
next step of a walking pedestrian will be, at a given point in time. The use
of the discrete choice framework is justified by its flexibility, the capacity
to deal with individuals and the compatibility with agent-based simulation.
The model is calibrated using data from actual pedestrian movements, man-
ually taken from video sequences. We present two different formulations: a
cross nested logit and a mixed nested logit. In order to verify the qual-
ity of the calibrated model, we have designed and developed a pedestrians
simulator.

1 Introduction

The ability of predicting the movements of pedestrians is valuable in many con-
texts. The panic situation analysis is probably the one which has motivated the
large majority of research activities in the field (e.g. Helbing et al., 2000, Kliipfel
et al., 2000, Helbing et al., 2002). However, it is a specific situation. Not only the
range of applications is small, but also the behavior of individuals is dictated by
a unique objective (save their own life) and may become irrational (Schultz, 1964,
Quarantelli, 2001). Capturing the behavior of pedestrians in “normal” situations is
also important in architecture (Okazaki, 1979), urban planning (Jiang, 1999), land
use (Parker et al., forthcoming), marketing (Borgers and Timmermans, 1986b) or
traffic operations (Nagel, 2004).

A major challenge is the actual calibration of the models. Indeed, we have no-
ticed that few models presented in the literature have been calibrated and validated
on real data. Data collection for pedestrian dynamics is indeed particularly dif-
ficult. Even calibrating a speed-concentration relationship is not straightforward
(AlGadhi et al., 2002). In this paper we use data produced by video recordings,
similarly to Teknomo et al. (2000) and Teknomo et al. (2001).
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The complexity of pedestrian behavior comes from the presence of collective
behavioral patterns (as clustering, lanes and queues) evolving from the interactions
among a large number of individuals. This empirical evidence leads to consider two
different approaches: pedestrians as a flow and pedestrians as a set of individuals
or agents. In the first case, the crowd is described with fluid-like properties,
describing how density and velocity change over time using partial differential
equations (Navier-Stokes or Boltzmann-like equations). This approach is based
on some analogies observed at medium and high densities. For example, the
footprints of pedestrians in snow look similar to streamlines of fluids or, again,
the streams of pedestrians through standing crowds are analogous to river beds
(Helbing et al., 2002).

Nevertheless these analogies, the fluid-dynamic equation is difficult and not
flexible. As a consequence, current research focuses on the pedestrian as a set
of individuals paradigm. This means microscopic models, where collective phe-
nomena emerge from the complex interactions between many individuals (self-
organizing effects). One example of such models is the social forces model of
Helbing and Molnar (1995) where an individual is subject to long-ranged forces
and his dynamics follow the equation of motion, similar to Newtonian mechan-
ics. Another example is the Cellular Automaton (CA) model. In this case the
local movements of the pedestrian are modeled with a matriz of preferences which
contains the probabilities for a move, related to the preferred walking direction
and speed, toward the adjacent directions (Blue and Adler, 2001). Schadschneider
(2002) introduces the interesting concept of floor field to model the long-ranged
forces. This field has its own dynamic (diffusion and decay), is modified by pedes-
trians and in turn modifies the matrix of preferences, simulating interactions be-
tween individuals and the geometry of the system. All the agent-based models are
also microscopic models and are based on some elementary form of intelligence for
each agent (attempts to provide a vision and/or cognition capabilities). Simple
behavioral rules are implemented (turning directions, obstacle avoidance) in order
to reproduce more complex collective phenomena (Penn and Turner, 2002).

The representation of the physical space plays a central role in the simulation.
The Cellular Automata model (Schadschneider, 2002) uses a discrete structure of
space. A grid of 40x40 cm? cells is overlapped to the area available for pedestri-
ans. This is the typical space for each individual in a dense crowd. The same
grid structure is used by Kessel et al. (2002). Helbing et al. (2002), in their so-
cial force model, use the equation of motion to describe the change of location
x;(t) of the pedestrian 4, assuming a continuous treatment of space. Similarly, the
multi-level subjective utility maximization approach proposed by Hoogendoorn
et al. (2002) and the model for pedestrian travel behavior in Hoogendoorn (2003)
use a continuous space model. In all these approaches the pedestrian is seen as a
point or a particle in a 2D environment. With the recent development in render-
ing techniques and Virtual Reality simulations, other models are based on a 3D
representation. In the agent-based approaches, the agent moves through a virtual
environment where the movements can be discrete or continuous (Thalmann and
Bandi, 1998, Penn and Turner, 2002).

A completely different approach is proposed by Borgers and Timmermans
(1986b). They use a network representation, where each node corresponds to
a city-center entry point or a departure point and each link denotes a different



shopping street. In this case, the network topology represents the walkable space
and any movement occurs along the links between two consecutive nodes.

Important behavioral models in the context of pedestrian movements include
a destination choice model, a route choice model, and a collision avoidance model.

The destination choice problem is tricky in the context of pedestrian simula-
tion. Indeed, some individuals may not have a destination at all if, for instance,
they are walking around waiting for a bus. In shopping areas, the destination may
change rapidly depending on the environment or on the attractors (see Whynes
et al., 1996, Dellaert et al., 1998). Borgers and Timmermans (1986b) propose a
simulation of pedestrians in the shopping streets of the city centers. Another im-
portant work, from a procedural point of view, is that of Hoogendoorn et al. (2002)
and Daamen (2004). The principle is that an individual chooses her destination
based on the activities she wants to perform. Hence, the problem of destination
selection becomes a problem of activity planning and scheduling as well as the
activity area choice. Finally, Kopp (1999) uses in the EVACSIM simulator the so
called Primary/Secondary destination selection. A shortest path algorithm, using
a sub-goal system, was developed for this simulator to allow people to effectively
navigate around obstacles.

The route choice problem is addressed by Borgers and Timmermans (1986a) as
utility maximization problem. Hoogendoorn et al. (2002) addresses the problem
of route choice in the tactical level of their hierarchical model. After the activity
scheduling (which activities and in which order are performed), the authors con-
sider the combined route choice and activity area choice of a pedestrian. Blue and
Adler (2001) analyze the problem from a self-organizing point of view. They use
a CA model, with a limited rule-set for the pedestrian behavior and look at the
emergent collective behaviors. Their route-choice is lane-based.

Addressing the destination and/or route choice problems in a pedestrian be-
havior context stems from previous research activities, namely in the Intelligent
Transportation System context. Among the route choice literature, we refer the
reader to Ben-Akiva et al. (1984), Charlesworth and Gunawan (1987), Bovy and
Stern (1990), Cascetta et al. (1992), Ben-Akiva and Bierlaire (2003) and Ram-
ming (2001). As already mentioned above, several new models capturing driver
behavior and traveler behavior, as well as traffic simulators have been extended
to the pedestrian behavior and way-finding problems (Muramatsu et al., 1999).

In this paper, we assume that the destination and the route are known, gener-
ated by one of the many models listed above. We are interested in modeling the
short range behavior of a pedestrian, as a response to her immediate environment
and to the presence of other pedestrians.

2 The pedestrian movement model

At a given point in time, we model where the pedestrian will decide to be in a
time horizon t. Typically, ¢ is of the order of 1 second. The representation of the
physical space plays an important role in the definition of the behavioral model.
In our approach, we use a dynamic and individual-based spatial discretization
representing the physical space. The basic elements that we use to define our
spatial structure are illustrated in figure 1.
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Figure 1: The basic geometrical elements of the space structure

The current position of the decision maker n is p,, her current speed v,, € IR,
her current direction is d,, € IR? (normalized, so that ||d,|| = 1) and her visual
angle is #,,. The region of interest is situated in front of the pedestrian, within her
visual field represented by the shaded area in Figure 1.

We have adopted a discrete choice methodology. The use of this approach is
justified by the fact that discrete choice models are disaggregate, being therefore
well compatible with the microscopic approach. Moreover, aggregate forecasting
techniques allow the computation of macroscopic measurements from disaggregate
models.

We need to appropriately define the universal choice set C, the choice set C,, for
a given individual n, the specification of the utility functions and the distribution
of the random terms.

The choice set consists of a combination of speed regimes and directions. With
regard to speed regimes, the decision-maker has three possibilities: keep the same
speed v, slow down to vz, = (1 —")v, or accelerate up to vgee = (1+7)v,, where
vy, is the current speed of the decision maker and v an acceleration/deceleration
factor. In our model, we have selected v = 0.5. With regard to direction, the
visual angle 6,, = 170° is segmented into 11 radial cones, one cone capturing the
decision not to change the direction (assumed to have an angle of 10°), and 10
cones capturing the decision to change direction, 5 at the left of the central cone,
and 5 symmetrically defined at the right, as illustrated in Figure 2. Note that
the apertures of those cones are not equal. Cones far from the central one have
larger angles, as mentioned in Figure 2. Each cone is characterized in the model
by its bisecting direction, denoted by d and assumed to be normalized, that is
|d|| = 1. The central cone is obviously characterized by the current direction
d,. Each alternative with speed v and direction d is characterized by the physical
center of the corresponding cell in the space discretization, that is

Cvq = Pn + vtd.

It is important to emphasize that this conceptual universal choice set, com-
posed of N = 33 alternatives, is associated with different physical locations in
space, depending on the current position and speed of the decision-maker. We



refer to it as a dynamic and individual-based spatial discretization. This modeling
idea enables to keep a choice set of reduced size, while allowing to account for the
wide variability of possibilities depending on the location. A universal choice set
derived from a simple static discretization of the space, similar to the model used
by CA approaches, would have been too cumbersome and not sufficiently flexible
in a discrete choice context.

Figure 2: Choice set

For each individual, some cells can be declared unavailable because there is a
physical obstacle blocking the corresponding space. Also, a maximum speed can
be assigned to each individual (it can be fixed for the entire population, or drawn
from a distribution). If the pedestrian is already walking at maximum speed, the
cells corresponding to acceleration are not available.

We denote by c,q4, the alternative of individual n corresponding to speed regime
v € {Vn, Vdec, Vacc }, and direction d. The utility associated with this alternative is
a random variable, for which the deterministic part is defined as

Voan = Bocc  OCcupation,, +
Bair  directiong, +
Baest  destinationg,, + "
ﬁangle angledn +
5a,cc [V,a,CC('Un/'UmaX)Aacc +

ﬁdec ]v,dec (Un/vmax))\dec

where ﬁocc; ﬁdir; ﬂdesta ﬁanglea ﬁacc; >\acca Bdec; and )\dec are unknown parameters
to be estimated. The attributes describe the environment of the decision-maker.
Namely, the position and direction of other pedestrians are important. We assume
that there are N pedestrians potentially influencing the decision-maker. Each
pedestrian k is at a position p;, and walks toward a direction dj. The attributes
are defined as follows:

occupation,; It is defined as the weighted number of pedestrians being in the
cone characterized by d, that is

N
occupation,; = Z Tyge™ v IPe=cuanl (2)

k=1
where NN is the total number of pedestrians in the environment, [, is one
if pedestrian k£ belongs to the cone characterized by d and 0 otherwise,



lPk — Cuan || is the distance between pedestrian k and the physical center of the
alternative c,q,. The role of 7, is to weight the importance of the distance
in the formula. Tt is designed to capture the influence of the proximity of
other pedestrians in the movements decisions as illustrated in Figure 3. We
fix the value of v; equal to 1.

Figure 3: Occupation and angle

directiony, It is defined as the angle in degrees between direction d and direction
d,, corresponding to the central cone, as shown in Figure 4. It is designed to
capture the propension of pedestrians to prefer their current direction, and
not to erratically modify it.

destinationg, If we denote by D, the direction pointing toward the actual des-
tination of decision-maker n, this attribute is defined as the angle in degrees
between D, and d, as shown in Figure 4. It is designed to capture the
propension of pedestrians to move toward their destination.

Figure 4: Destination and direction



angle,, It is defined as the weighted sum of angles between direction d,, and the
walking directions of other pedestrians, that is

N
angle; = E Lgouye 12 IPx=cvanll (3)
k=1

where «y, is the angle between d,, and dj, (Figure 3). The role of v, is similar
to the role of v; in (2) (see Figure 3). This attribute is designed to capture the
influence of the other pedestrians dynamics. Indeed, if a pedestrian k£ walks
in the same direction (angle=0) or in the opposite direction (angle=m) with
respect to the decision maker, we expect a different influence on the choice
of the decision-maker. Note that, similarly to the definition of occupation,q,
close pedestrians play a more important influence than those who are further
away. In our tests, we have fixed v, to 1.

We finally comment on the last two terms of the utility function (1). The at-
tribute Iy acc is 1 if v = vy, that is, if the alternative corresponds to an acceleration
and 0 otherwise. I gec is similarly defined. If we write

@acc = ﬁacc (Un/vmax)/\uwa
ﬁdec = 6dec (Un/vmax))\deca

the parameters Bacc and Bdec are simple dummies for the acceleration and de-
celeration alternatives, respectively, capturing the attractiveness of acceleration,
respectively deceleration. We postulate that these dummies vary with the current
speed of the decision-maker v,,. Indeed, someone who is already walking fast has
less incentive to accelerate than someone who is walking slowly. The value of the
parameter v,y is arbitrary. We have set it to the maximum speed observed in the
data, for numerical convenience. (... is the value of the dummy associated with
Up = Umax and Ay is the elasticity of the dummy with respect to speed, that is

aBacc 'U_n

)\acc =
av” 5acc

(4)

3 The random variable

In discrete choice models the utility of each alternative is a latent variable com-
posed by a systematic part and a random part. Different assumptions about the
random term give rise to different models. In this paper we present two different
model formulations: a cross nested logit model and a mixed nested logit model.

3.1 Cross nested logit formulation

This model allows flexible correlation structures in the choice set keeping a closed
form solution. The general formulation of the CNL model (see Bierlaire, 2001)
is derived from the Generalized Extreme Value model (McFadden, 1978). The
probability of choosing alternative ¢ within the choice set C' of a given choice
maker is:
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where o, > 0 V5, m; i > 05 p, > 0 Vm; o < py, Ym. We assume a correlation
structure depending on the speed and direction and we identify five nests: accel-
erated, constant, decelerated, central and not central. This correlation structure
is illustrated in figure 5. We fix the degrees of membership to the different nests
(ajm) to the constant value 0.5.

ACC

(accelerated)

CONST

(constant speed)

DEC

(decelerated)

NOC

(not central)

NOC

(not central)

Figure 5: left: Nesting based on direction right: Nesting based on speed

3.2 Mixed nested logit formulation

The family of mixed models (logit kernel) is an hybrid between logit and probit
and represents an effort to incorporate the advantages of each (Ben-Akiva and
Bolduc, 1996, Walker, 2001). In our model we specify an error components for-
mulation, where the correlation between alternatives still depends on speed and
direction. The Gumbel terms capture the correlation in the speed related nests
( accelerated, constant and decelerated ), while 11 error components capture the
correlation between alternatives along the 11 radial directions, one component
for each direction. We show this structure in figure 6. The utility function as
perceived by the individual n will have the following vector form:

Up,=V,+& + Vs + Ensk (6)

where n = 1, ..., N is the index of alternatives, k = 1, ..., 11 the index of directions
and s € S = {accelerated, constant, decelerated} the index for the accelerated,
constant and decelerated nests. The & are normally distributed with zero mean
and variance oy, the vy are the Gumbel terms and ¢, represent the remaining
unobserved components of the utility function. If the & are known, the model
corresponds to a NL formulation:

Al = — U
Zjesm O D e e
where .
V, = —anexp,uSV; (8)



and A(i|¢;) is the probability that the choice is ¢ conditional to &. The index s
refers to the nest s containing the alternative i. Since the &, are unknown, the
unconditional choice probability is given by:

P(i) = /£ A(l€)n(0, 2)de (9)

where n(0, ) is the joint density function of  (a product of £ standard univariate
normals) such that ¥ is a 11 x 11 diagonal matrix.

Correlation based on the speed

Correlation based on the direction

Acefeated

Not-accelerated

Decelerated

i

U Gumbel distributed

4

NL

:

4

(C; Normal distributed

J

Error structure

—

Mixed Nested Logit

Figure 6: Correlation structure in the Mixed Nested Logit formulation

4 Data

The data set has been collected from digital video sequences of actual pedestrians.
The scene used for data collection was filmed in the city of Lausanne, next to an
entrance of a metro station. One frame from the video sequence is reported in
Figure 7.

The fundamental condition for our data collection process is the calibration of
the video camera used to make the video sequences in order to match the image
with the walking plane. The theoretical formulation of the calibration problem
consists in a system of non-linear equations where the variables are the camera
parameters: height, focal distance and angles of the camera with respect to the
horizon and the vertical axes. In order to simplify the problem, we have performed
a direct measurement of the camera’s height and we have fixed the angle with the



Figure 7: A frame from the test video sequence

vertical axes to 0°. The other two parameters have been computed using two
reference points on the walking plane and using the correspondence between their
real-world coordinates and pizel-based coordinates on the image plane, to obtain
a unique correspondence between a point on the image plane and the same point
on the walking plane.
The video sequences have been converted to AVI format with a frame rate equal to
10 frames/second. Globally, we have collected data for 36 pedestrians for a total of
1675 position observations, with a time interval of 3 frames (0.3 seconds). At each
step, the observed choice made by the current decision maker has been measured
3 steps forward in time, i.e. 0.9 seconds. As a consequence, the last four positions
of each trajectory are not used. Moreover, those observations corresponding to a
static pedestrians (v, = 0) and those corresponding to an observed choice out of
the choice set, globally 107 observations, have been discarded. As a consequence,
the actual number of observations used for the estimation is 1424.

At each step, we project the pixel-based coordinates of pedestrian k& on the
walking plane and we store the projected real-world coordinates. From the posi-
tions we derive the speed data:

t+1
Vil — pk+ - PZ (10)

k At
where pi represent the position vector for pedestrian k at time ¢. The motion
direction information is the vector:

( arccos (v, /[ Vi) )

arccos(v,iy/HVZH)

normalized; vy, and v}, are the observed speed vector components at time . Table
1 shows some data statistics. For each pedestrian we report the trajectory length
and the average values of the speed module, the angle between two consecutive
directions and the angle between the current direction and the destination (taken
as the last point in the pedestrian’s trajectory). The speed values are expressed
in m/s and all the angles are in degrees.

The average of the speed module over all the pedestrians is equal to 1.587
m/s, in line with other studies conducted in Singapore, USA and Britain (see
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Tanaboriboon et al., 1986). The maximum observed value for the speed module
is equal t0 Ve, = 7 m/s. This unrealistic value is due to errors introduced by
the approximated calibration of the camera, the manual collection process and the
limited image resolution (for far pedestrians, few pixels on the image correspond
to some meters on the real walking plane). The average, over all the pedestrians,
of the angle between two consecutive directions is equal to 12.31°.

Finally, as an example, we report in Figure 4 the whole trajectories relative to
two pedestrians (those labeled as 1 and 7, Figures 8(a),8(b)). We report also the
related current directions (Figures 8(c),8(d)) and the angles between the current
direction and the destination (Figures 8(e),8(f)).

5 Estimation results

All the models have been estimated using the Biogeme package (Bierlaire, 2003).
We report in table 2 the results for the CNL formulation and in table 3 those for the
mixed NL formulation. For both models, the signs of the estimated coefficients are
consistent with our expectations. Indeed, the negative signs of the direction and
destination coefficients reflect the tendency of an individual to keep her current
direction and to move, if it is possible, toward the actual destination. The negative
sign of the occupation coefficient reflects the fact that pedestrians will tend to
prefer nearby spatial zones less crowded by other pedestrians. The speed related
coefficients show that acceleration and deceleration are two distinct behavioral
patterns. The negative sign of their coefficients reflect the intuitive fact that
an individual will tend to keep her current speed value. The angle coefficient is
not significant in the data set. Finally, the two elasticities parameters show that
the tendency to accelerate reduces with higher speed values and the tendency to
decelerate reduces with lower speed values. The interpretation of the parameters
Bace and A, is illustrated in Figure 8.

In the CNL model, only ficonst, capturing the correlation among alternatives
with constant speed, and finot_central, capturing the correlation among alternatives
not in the central cone, were significantly different from 1. In the Mixed Nested
Logit model, not all o parameters appear to be significantly different from 0.
Moreover, the nest parameter for accelerating alternatives was not significantly
different from 1. Although the pgec could have been rejected due to a 1.5329
t-test, we have preferred to keep it in the model.

The two models exhibit a similar efficiency, although the Mixed NL model is
associated with a better likelihood. The p? is about 0.48 for both of them, which
is a pretty satisfactory goodness-of-fit.
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Pedestrian Length Av. speed Av. direction Av. dest/dir

module changes angle
1 80 1.3121 17.2134 49.7448
2 76 1.3973 24.4686 50.7964
3 58 1.0791 12.7428 34.8595
4 67 1.1017 25.7278 41.4868
5 30 1.5074 12.3864 18.2588
6 31 1.4097 12.3808 23.8275
7 98 2.6599 4.76504 8.20303
8 78 1.4754 10.6729 8.47179
9 76 1.5056 7.66405 7.76997
10 74 1.5124 6.55338 6.54456
11 65 1.1749 15.7968 15.0215
12 64 1.2116 11.6047 14.6915
13 64 1.1829 10.6402 17.7533
14 64 1.2156 22.9867 25.7398
15 41 1.3720 19.3176 14.2739
16 44 1.4458 10.6938 10.3034
17 93 1.8020 6.11557 10.1469
18 26 1.3625 11.3140 9.86719
19 27 1.3936 7.43540 8.30740
20 31 1.4812 8.02392 7.06980
21 27 2.0810 5.45850 11.6286
22 26 2.2353 5.20697 5.66592
23 23 1.5080 15.0251 15.0056
24 21 1.6733 21.9325 21.7590
25 10 3.1347 8.78586 8.27878
26 8 3.1359 14.9502 11.7297
27 52 1.3508 16.9178 15.2413
28 48 1.4116 10.0380 9.23156
29 51 1.3118 10.7480 9.49111
30 50 1.3264 9.98961 12.2776
31 27 1.9956 6.48260 5.72725
32 33 2.0948 11.0510 9.17329
33 37 1.6379 13.1802 14.7109
34 29 1.2140 11.3827 9.26407
35 23 1.1076 9.48709 8.90465
36 23 1.3266 14.1527 17.8886

global average speed module: 1.587 m/s
global average direction difference: 12.31 degrees

Table 1: Data statistics
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Acceleration and deceleration dummies

— Acc dummy
— Dec dummy
Speed
Figure 8: The parameters Bacc and Bdec.
Variable Coefficient ¢ test 0 ¢ test 1
name estimate
Boccupation -1.7334  -3.0709
Birection -0.0921 -11.5816
Baestination -0.0615 -11.8487
Bace -33.6467  -4.3929
Baec -0.5036  -6.2308
Aace 1.8327  12.6680
Adec -0.8650  -8.9834
Heonst 1.7956 5.7499 2.5477
Unot central 1.2867 8.8300 1.9676
Sample size = 1424
Number of estimated parameters = 9
Init log-likelihood = -4979.03
Final log-likelihood = -2579.25
Likelihood ratio test =  4799.55
Rho-square = 0.4819

Table 2: CNL estimation results
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Variable Coefficient ¢ test 0 ¢ test 1
name estimate
Boceupation -1.5031  -2.7973
Birection -0.1170 -10.5978
Bestination -0.0737  -9.3415
Bace -32.7867  -4.4996
Baee -0.4495  -5.4054
Aace 1.7677 12.1902
Adec -0.8987  -8.7415
o1 -1.4875  -2.3527
oL 0.6850 3.7304
o7 -0.9284  -5.3723
o 1.2338 5.9258
09 1.6298 5.7021
010 -2.3415  -4.8001
Hnoace 1.4067  10.5971 3.0636
Hdec 1.3164 6.3777 1.5329
Sample size = 1424
Number of estimated parameters = 15
Number of Halton draws = 2000
Init log-likelihood = -4979.03
Final log-likelihood = -2559.97
Likelihood ratio test =  4838.11
Rho-square = 0.4858

Table 3: Mixed NL estimation results

15



6 Simulation

In order to validate our model, we needed a way to “play” it so that we could verify
if it represented realistic human behavior. We did indeed discover quite a few
problems in earlier models by using the simulator — problems that we probably
would not have seen without its help. For instance, initial versions of the model
were instable with regard to speed: the pedestrians were either accelerating or
decelerating to unreasonable speeds, which led us to introduce the speed elasticity
parameters, which solved the problem by giving the pedestrians a stronger “will”
to maintain a constant speed.

As shown in figure 9 the addition of the simulator to our system creates a
feedback loop that results in an enhanced model.

Behavior
Measurements Biogeme Model Simulator

B Bd B
t

Figure 9: Model /simulator feedback

Other potential uses of simulation include capacity analysis, evacuation scenar-
ios, incident scenarios, analysis of flow organization. Many developments exist in
this area (see for instance Helbing et al., 2000, Kopp, 1999 and Gwynne et al., 1997)
but to our knowledge, none of them uses a behavior model calibrated on actual
data.

6.1 Design

There are essentially two approaches to simulation: time-based and event-based.
In the time-based approach, the simulation proceeds in fixed time steps and all
actors of the simulation are updated at each of these steps. In the event-based
approach, events (e.g. collisions) are generated and inserted into a priority queue
and are then executed in increasing time order. For now, we have chosen a time-
based approach because the model is simpler, but we might move to an event-
based approach later if the evolution of our model requires each footstep to be
controlled precisely. We currently use a time step of At = 0.9s in our simulations,
consistently with the model assumption.

The simulator was developed using object oriented design techniques and writ-
ten in standard C++. As input, it accepts a description of the cross nested logit
model given as follows:

e the [3; coefficients in (1),
e the 1 and p,, coefficients in (5),

e the o, coefficients in (5).
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As output it produces images in a scene description language. We have suc-
cessfully used POVRay for that purpose (http://www.povray.org/).
Following is a brief description of the algorithm inside our simulator:

e Initialization

The input to our simulator is a time-dependent origin-destination matrix,
where each cell corresponds to an origin o, a destination d and a time interval
AT, exactly like the OD matrices used for transportation applications. The
cells contain the number of individuals departing from o, targeting d during
the time interval AT.

From the time-dependent OD matrix, we create a population of pedestrians.
Each pedestrian can be associated with a list of characteristics which can
be adapted to specific model requirements. This approach is consistent with
the concept of demand simulation proposed by Antoniou et al. (1997) and
Bierlaire et al. (2000). Our CNL model does not contain socio-economic
characteristics. Also, we associate an itinerary with each pedestrian. An
itinerary is defined as a sequence of intermediate targets, such that target k
in the itinerary is visible from the position of target k£ — 1, consistently with
the network presentation presented in Bierlaire et al. (2003).

e Moving decisions

First, new pedestrians are loaded in the system, with an initial speed cor-
responding to their desired speed, and an initial direction corresponding to
the next target in their itinerary.

Then, at each time step (At), the utility value of each possible move is calcu-
lated for each pedestrian. These values are then transformed into probabili-
ties consistent with the discrete choice model (see (5)) and each pedestrian’s
move is randomly selected according to these probabilities.

Then, the speed and direction of all individuals in the system are updated to
reflect the chosen move, using the model described previously in the paper.

Then the position of all individuals in the system are updated using the
formula z;,; = z; + At v;, where x is the position, ¢ the time step and v the
speed.

Figure 10: Pedestrian with choice set
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Figure 10 shows a pedestrian as depicted by our simulator. Here the choice
set is shown with a coloring based on the choice’s probability, from blue = low-
est probability to red = highest probability. In this example, the probability of
accelerating is low (outer cells) and the choice with highest probability is the one
straight ahead keeping the speed constant.

6.2 Results

The videos generated by the simulator can be found at
http://ltswww.epfl.ch/1tsftp/antonini/

Three different views can be generated by the simulator. In Figure 11 we illustrate
the normal view. Pedestrians move on a real background (in front of the metro
station in Lausanne) according to the calibrated CNL model. The model view
is reported in Figure 12. The choice set is displayed using a color-based coding
schema for the utilities (blue-red tones for low-high utility values, respectively).
Finally, in Figure 13 we illustrate the top view obtained assuming to look at
pedestrians from the top of the scene.

Figure 11: Normal view

7 Conclusion and future research

In this paper we have presented a discrete choice framework for pedestrian dynam-
ics as an alternative to other existing models for pedestrian modeling. Our results
show that the flexible and disaggregate nature of discrete choice models is well
adapted to pedestrian behavior. The alternatives in the choice set show a strong
spatial correlation. The cross nested logit and mixed nested logit formulations
succeed in capturing these interdependencies in the choice set. The estimation
results confirm our expectations. Explanatory variables related to the movement
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Figure 12: Model view

of pedestrian and to the presence of other individuals in the surrounding environ-
ment influence the short term behavior. The video sequences generated by the
simulator show a rational behavior of the agents in the scene. They do not diverge
in terms of speed and do not change erratically their direction.

With regard to applications, we have integrated the calibrated CNL formula-
tion into a visual pedestrian tracking system, for automatic video surveillance. A
promising new track of research is in fact the combination of tracking methods
with mathematical models of the content of the image. In this spirit, the objective
of this application is to combine tracking tools with a model simulating the content
of the image, that is pedestrian movements. The obtained results show substantial
improvements in detection and tracking of pedestrians in real complex scenarios,
where standard image processing techniques can fail because of bad illumination
conditions and image quality (see Venegas et al., 2004, Antonini et al., 2004 and
S.Venegas et al., 2004).

We are currently working to extend the model to high density scenarios and
to add an explicit model for obstacles. Another important issue is the calibration
of the models using other larger data sets.
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Figure 13: Top view
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