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Abstract

Generalised Extreme Value models provide an interesting theoret-
ical framework to develop closed-form random utility models. Unfor-
tunately, few instances of this family are to be found as operational
models in practice. The form of the model, based on a generating
function G which must satisfy speci�c properties, is rather compli-
cated. Fundamentally, it is not an easy task to translate an intuitive
perception of the correlation structure by the modeller into a concrete
G function. And even if the modeller succeeds in proposing a new G

function, the task of proving that it indeed satis�es the properties is
cumbersome.

The main objectives of this paper are (i) to provide a general theo-
retical foundation, so that the development of new GEVmodels will be
easier in the future, and (ii) to propose an easy way of generating new
GEV models without a need for complicated proofs. Our technique
requires only a network structure capturing the underlying correlation
of the choice situation under consideration. If the network complies
with some simple conditions, we show how to build an associated
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model. We prove that it is indeed a GEV model and, therefore, com-
plies with random utility theory. The Multinomial Logit, the Nested
Logit and the Cross-Nested Logit models are speci�c instances of our
class of models. So are the recent GenL model, combining choice set
generation and choice model and some specialised compound mod-
els used in recent work. Probability, expected maximum utility and
elasticity formulae for the class of models are provided.
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1 Introduction

Discrete choice models play a major role in many �elds involving a human

dimension, including econometrics, marketing research and transportation

demand analysis. Their attractive and �rmly based theoretical properties,

and their 
exibility to capture a wide range of situations, provide a vast area

of interest for both researchers and practitioners, of which only a limited

part has yet been exploited. The theory on Generalised Extreme Value

(GEV) models was introduced by McFadden (1978) (see also McFadden,

1981). It provides tremendous potential, as it de�nes a whole family of

models, consistent with random utility theory. It appears that only a few

members of this family have been exploited so far, the Multinomial Logit

model and the Nested Logit model being the most popular (Ben-Akiva and

Lerman, 1985). Recent research on the Cross-Nested logit model (Small,

1987, Vovsha, 1997, Vovsha and Bekhor, 1998, Ben-Akiva and Bierlaire,

1999, Papola, 2000, Bierlaire, 2001, Wen and Koppelman, 2001, Swait,

2001) has slightly extended the number of GEV models used in practice.

Specialised compound GEV models (Bhat, 1998, Whelan et al., 2002) have

further extended the GEV forms used.

Dagsvik (1994) indicates that there is a huge variety of GEV models,

�tting e�ectively every possible random utility model structure. However,

neither Dagsvik nor McFadden indicate how GEV models should be con-

structed to meet speci�c requirements.
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Recent research appears to be moving away from further exploitation

of the GEV family, focussing instead on hybrid choice models, which are in

many cases easier to construct (McFadden, 2000, and Ben-Akiva et al., 2002

are examples of a burgeoning literature). However, GEV models still o�er

considerable advantages. Indeed, their closed form formulation simpli�es

the computation of the model and its derivatives both for estimation and

applications. The GEV function itself, a summary of the total utility en-

joyed by consumers, is a convenient and theoretically sound measure which

can be applied in further modelling or evaluation. Moreover, several of the

GEV models can be proved to converge in tranport planning applications

with conventional assignment procedures (Prashker and Bekhor, 2000).

Finally, the hybrid models, currently based on the combination of logit

models and multinomial probit models, can be easily extended to hybrid

GEV models, combining a GEV model with a probit model or other mixing

distribution.

The complexity of the assumptions associated with the GEV models

(see Section 2) is probably the cause of the few concrete instances from the

GEV model family proposed in the literature.

In this paper, we propose a general and operational representation, pro-

viding an intuitive way of generating a wide class of concrete GEV mod-

els. This representation is based on the Recursive Nested Extreme Value

(RNEV) model proposed by Daly (2001b), and the network GEV model

proposed by Bierlaire (2002). The RNEV was originally designed as a gen-

eralisation of the Cross-Nested logit model, in which multiple layers of nests

are allowed. The Network GEV model generalises the use of trees to repre-

sent Nested Logit models (Ben-Akiva and Lerman, 1985, Daly, 1987) to a

network representation. The advantages of our approach are the following.

� The GEV inheritance results allow the generation of new GEV models

from existing ones.

� The GEV Network representation allows complex correlation struc-

tures of actual modelling situations to be captured intuitively. This

feature, intensively exploited with trees for the Nested Logit models

in the literature, can now be extended to a wide class of GEV models.
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� The recursive de�nition of the model, based on the network structure,

greatly simpli�es its formulation.

� Properties established for the network model automatically apply to

its many special cases.

The main objective of the paper is to provide a general theoretical

foundation, making the development of new GEV models easier in the

future. Indeed, in addition to the intuitive approach based on the network

structure, any instance of that class of models is proven to be a GEV

model and therefore, no further theoretical justi�cation is required for such

models.

After a short presentation of GEV models in Section 2, the GEV inher-

itance results are presented in Section 3. The modelling framework based

on a network structure is formally de�ned in Section 4, where we prove

that it belongs to the GEV family under weak conditions. Demand re-

sponses and elasticities are derived in Section 5. In Section 6, we describe

some concrete instances, while estimation issues are discussed in Section 7.

Finally, Appendix A provides a formal proof of the main GEV inheritance

theorem, and Appendix B provides the derivatives of the G function as

required by optimisation packages for model estimation. Appendix C pro-

vides some de�nitions, notations and examples about set partioning useful

in the proofs. Finally, Appendix D provides the derivation of some classical

results related to GEV models.

2 The GEV model

The Generalised Extreme Value (GEV) model has been derived from the

random utility paradigm by McFadden (1978). This general model consists

of a large family of models that include the Multinomial Logit, the Nested

Logit and the Cross-Nested Logit models. The probability of choosing

alternative i within the choice set C of a given choice maker is

P(i|C) =
yi

∂G
∂yi

(y1, . . . , yJ)

µG(y1, . . . , yJ)
(1)
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where J is the number of available alternatives, yi = eVi, Vi is the deter-

ministic part of the utility function associated with alternative i, and G is

a µ-GEV function. A µ-GEV function is a di�erentiable function de�ned

on RJ
+ with the following properties:

1. G(y) ≥ 0 for all y ∈ RJ
+,

2. G is homogeneous of degree µ > 0, that is G(λy) = λµG(y), for λ > 0,

3. limyi→+∞ G(y1, . . . , yi, . . . , yJ) = +∞, for each i = 1, . . . , J,

4. The mixed partial derivatives of G exist and are continuous. More-

over, the kth partial derivative with respect to k distinct yi is non-

negative if k is odd and non-positive if k is even that is, for any

distinct indices i1, . . . , ik ∈ J = {1, . . . , J}, we have

(−1)kDK(x) ≤ 0, ∀x ∈ RJ
+, (2)

where K = {i1, . . . , ik} ⊆ J

DK(x) =
∂kG

∂xi1 . . . ∂xik

(x). (3)

For future reference, we say that a function satisfying this property

is GEV-di�erentiable.

Although this condition is never stated in the literature, it is also required

that G(x) 6= 0.

Euler's formula and the homogeneity of G can be invoked to transform

(1) into a form similar to the multinomial logit model (see McFadden, 1978

and Ben-Akiva and Lerman, 1985):

P(i|C) =
eVi+logGi(...)∑J
j=1 eVj+logGj(...)

, (4)

where Gi = ∂G/∂yi. Also, the expected maximum utility corresponding to

choice in the model generated by G is

�U =
logG(x) + γ

µ
(5)
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where γ is Euler's constant, and

P(i|C) =
∂�U

∂Vi

. (6)

Note that, in general, GEV properties 1, 2 and 3 are easily veri�ed in

practice. GEV-di�erentiability can be cumbersome to verify, so that many

authors avoid doing so explicitly. Statement like \it is easy to prove that"

are regularly found in the literature. In the case of the Cross-Nested Logit

model, for example, the proof is de�nitely not trivial (see Bierlaire, 2001).

3 GEV inheritance

In this section, we provide some theoretical results enabling the derivation

of GEV functions from other GEV functions. Such results are designed

to facilitate the derivation of new GEV functions and, therefore, new GEV

models. Theorem 1 deals with the GEV-inheritance by linear combinations

of GEV functions. Theorem 4 deals with the GEV-inheritance when a GEV

function is raised to a power. The combination of these two results yields

Theorem 7, the main GEV Inheritance Theorem. Corollaries 2, 5 and 8

deal with the expected maximum utility for each case respectively, while

Corollaries 3, 6 and 9 give the probability models.

Theorem 1 Let RJi be p subspaces spanning RJ. For any vector x ∈ RJ,

[x]i denotes the projection of x on RJi. Let Gi : RJi
+ −→ R, i = 1, . . . , p

be µ-GEV functions. Then, the function

G : RJ
+ −→ R : x G(x) =

p∑
i=1

αiG
i([x]i) (7)

is also a µ-GEV function if αi > 0, i = 1, . . . , p.

Proof. All four properties are obviously veri�ed, as αi > 0. �

Corollary 2 Under the hypotheses of Theorem 1, the expected maxi-

mum utility corresponding to G is

�U =
log

∑p
i=1 αie

µ�Ui

µ
, (8)
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where �Ui is the expected maximum utility corresponding to each Gi.

Proof. From (5), we have

Gi([x]i) = eµ�Ui−γ

so that

G(x) =

p∑
i=1

αie
µ�Ui−γ = e−γ

p∑
i=1

αie
µ�Ui. (9)

From (5), we obtain (8). �

Corollary 3 Under the hypotheses of Theorem 1, we have

P(k) =

p∑
i=1

αie
µ�Ui∑

j αje
µ�Uj

Pi(k) (10)

where P(k) is the probability of choosing alternative k based on the

model generated by G and Pi(k) the probability based on the model

generated by Gi.

Proof. From (6), we have

P(k) =
∂�U

∂Vk

=

p∑
i=1

∂�U

∂�Ui

∂�Ui

∂Vk

=

p∑
i=1

∂�U

∂�Ui

Pi(k). (11)

We use Corollary 2 to complete the proof by di�erentiating (8).

�

Theorem 4 Let G : RJ
+ −→ R be a µ-GEV function. Then Gβ is a

(µβ)-GEV function if 0 < β ≤ 1.

Proof.

1. Gβ is obviously non negative.

2. From the µ-homogeneity of G, we have G(λy)β = (λµG(y))β = λµβG(y)β

and, therefore, Gβ is homogeneous of degree µβ.

3. The limit property holds as a consequence of β > 0.
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4. We provide here a short indication of the validity of the Theorem.

A detailed proof is given in Appendix A. Using basic calculus and

induction on the order of di�erentiation, it is easy to show that D∗
J (x),

de�ned similarly to (3) for G∗ = Gβ, is composed of terms of the form

kG(x)q
∏
K

GK(x),

where k is a numerical constant, q ≤ 0, and K ⊆ J . For the �rst

derivative, we have

D∗
{1}(x) = ∂

∂x1
G(x)β

= βG(x)β−1 ∂G
∂x1

(x)

= βG(x)β−1G{1}(x)

(12)

This is non-negative because β and G are positive by assumption and

G{1} is non-negative because G is a GEV function. Note also that

β−1 ≤ 0, so that the term is of the form speci�ed. Moreover, when a

term of the speci�ed form is di�erentiated, we obtain a further series

of terms of the required form.

It is now su�cient to show that di�erentiation of each of these terms

leads to a change of sign. The di�erentiation of the component in

G(x)q yields a term

kqG(x)q−1
∏
K

GK(x),

which is zero or of opposite sign to the original because G is positive

while q is non-positive. Di�erentiation of the terms within the prod-

uct leads to a change in sign because one of the terms in the product

is increased by one in its order of di�erentiation, causing a change in

sign because of the GEV-di�erentiability of G.

The fact that the �rst derivative has the correct sign and subsequent

derivatives alternate in sign completes the proof.

�
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Corollary 5 Under the hypotheses of Theorem 4, we have

�U∗ = �U +
γ

µ
(
1

β
− 1) (13)

where �U∗ is the expected maximum utility for the model generated by

Gβ, and �U for the model generated by G.

Proof. Let �U∗ be the exected maximum utility for the model based on

Gβ. We have

�U∗ =
logGβ + γ

µβ
=

β logG + γ

µβ
=

logG

µ
+

γ

µβ
+

γ

µ
−

γ

µ
, (14)

and the result follows directly. �

Corollary 6 Under the hypotheses of Theorem 4, the probability of

choosing an alternative given by the model based on Gβ is the same as

the probability given by the model based on G.

Proof. Denoting by P∗(k) the probability given by the model based on

Gβ, we use (6) to obtain

P∗(k) =
∂�U∗

∂Vk

=
∂�U∗

∂�U

∂�U

∂Vk

= P(k), (15)

where P(k) is the probability given by the model based on G. The result

is obtained by di�erentiating (13). �
Theorems 1 and 4 can be combined into a more general result, formalised

in the next theorem.

Theorem 7 GEV Inheritance Let RJi be p subspaces spanning RJ.

For any vector x ∈ RJ, denote by [x]i the projection of x on RJi. Let

Gi : RJi
+ −→ R, i = 1, . . . , p be µi-GEV functions. Then, the function

G : RJ
+ −→ R : x G(x) =

p∑
i=1

αiG
i([x]i)

µ
µi (16)

is a µ-GEV function if αi > 0 and 0 < µ ≤ µi, i = 1, . . . , p.
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Proof. It is a direct consequence of Theorems 1 and 4. �

Corollary 8 Under the hypotheses of Theorem 7, we have

�U =
γ + log

∑p
i=1 αie

µ
(
�Ui−

γ
µi

)
µ

, (17)

where �U is the expected maximum utility for the model generated by

G, and �Ui for the model generated by Gi.

Proof. Using Corollary 5, the expected maximum utility for the

model based on (Gi)µ/µi is

�Ui +
γ

µi

(
µi

µ
− 1) = �Ui +

γ

µ
−

γ

µi

. (18)

The result is a direct consequence of Corollary 2. �

Corollary 9 Under the hypotheses of Theorem 7, we have

P(k) =

p∑
i=1

ΩiPi(k) (19)

where

Ωi =
αie

µ(�Ui−γ/µi)∑
j αje

µ(�Uj−γ/µj)
, (20)

P(k) is the probability of choosing alternative k based on the model

generated by G and Pi(k) the probability based on the model generated

by Gi.

Proof. It is a direct consequence of Corollaries 3, 5 and 6. �
Theorem 7 is an extension of a property mentioned by McFadden (2000):

If HA(wA) and HB(wB) are GEV generating functions in wA and wB,

respectively, and if s ≥ 1, then HC(wC) = HA(wA)1/s+HB(wB) is a GEV

generating function in wC. Daly (2001b) developed the Recursive Nested

Extreme Value (RNEV) model based on recursive application of (16), also

giving a di�erent but less elegant proof of Theorem 7.
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4 GEV network

We now exploit the theoretical results presented above to propose an op-

erational representation of the RNEV model (Daly, 2001b) based on the

network structure proposed by Bierlaire (2002).

Let (N,E) be a �nite non-empty directed graph, where N is the set of

vertices, or nodes, and E the set of arcs (N and E are �nite). Each arc (i, j)

is associated with a non-negative parameter αij > 0, so that the directed

graph is a network. We assume that the network does not contain any

circuit.

We consider two special subsets of nodes:

1. R is the set of nodes with no predecessor,

2. C is the set of J nodes with no successor.

Because the network is non-empty and circuit-free, both R and C are non-

empty.

Our objective is to de�ne a family of GEV models based on such a net-

work, where each node in C is associated with an alternative and therefore,

C represents the choice set. All other nodes represent nests. Nodes in R
are called roots, and can be either alternatives or nests. For most practical

purposes, most models will be de�ned by a network with a single root. Ac-

tually, such a network can be trivially derived from a multi-root network

by adding a node and connecting it to all nodes in R. The additional node

is the only root of the new network, and is a nest.

We associate with each node vi a parameter µi > 0, and we recursively

de�ne a subspace RJi of RJ, and a function Gi : RJi
+ −→ R. If vi ∈ C, then

the subspace is R and

Gi : R −→ R : Gi(xi) = x
µi

i , (21)

with µi > 0. If vi 6∈ C, then the subspace is

RJi = spanvj∈S(vi)
< RJj >, (22)
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where S(vi) is the set of successors of vi, and

Gi : RJi −→ R : Gi(x) =
∑

vj∈S(vi)

αijG
j(x)

µi
µj . (23)

Theorem 10 The function Gi associated with any node vi of a GEV

network is a µi-GEV function if, for all vj 6∈ C,

µj ≤ µk ∀k such that vk ∈ S(vj). (24)

Proof. The proof is by induction. At each step of the induction, we

consider a set of nodes N̂k and show that the theorem is veri�ed for all

nodes in that set. At the last step, we show that all nodes of the network

are in N̂k.

For k = 0, we de�ne N̂0 = C. The Gi functions de�ned by (21) are

clearly GEV-functions. Let N̂k be a set of nodes vi such that the associated

function Gi is a µi-GEV function. If N̂k = N, the result is proven. If not,

we build N̂k+1 by adding to N̂k all immediate predecessors of its elements,

not already in the set, that is

N̂k+1 = N̂k ∪
{
v ∈ N \ N̂k | w ∈ S(v) =⇒ w ∈ N̂k

}
.

For all nodes that have been added, Theorem 7 applies to the de�nition

of Gi in (23), as condition (24) is veri�ed. Consequently, the GEV property

for the added nodes is a direct consequence of the GEV property for their

successors in N̂k.

The induction terminates when N̂k = N̂k+1, that is when no node can

be added anymore. Consider the set N∗ = N \ N̂k of remaining nodes.

Any node in N∗ must have successors, because they are not members of C,
which is a subset of N̂k. Not all the successors can be in N̂k, because the

induction has terminated. Consequently, all the nodes in N∗ have some

of their successors in N∗ and therefore cycles exist in N∗, contrary to the

speci�cation of the network itself. Therefore, N∗ must be empty, N̂k = N,

and the theorem is proven.

�
Thus for any node of a GEV network, the GEV model of choice given by

(1) applies, and this model is consistent with McFadden's GEV theory and
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hence with utility maximisation. This result has been proven by Bierlaire

(2002) in a di�erent way. The function �Ui = (logGi + γ)/µi at each node

vi is a measure of the average utility at that node derived from the relevant

alternatives. For vi ∈ C, we obviously have

�Ui =
log eµiVi + γ

µi

= Vi +
γ

µi

, (25)

and

Pi(k) =

{
1 if i = k

0 otherwise.
(26)

It is important to emphasise that the conditions required on the network

(�nite, non-empty, circuit-free) are easily veri�ed in practice. The role of

the modeller is now to design a network structure that adequately repre-

sents the underlying correlation structure of the model. No more proof is

necessary.

Also, the network representation can always be used to generalise any

GEV model, as the GEV properties propagate across the network, accord-

ing to the GEV inheritance theorems. It su�ces to rede�ne the role of the

nodes with no successor, and to assign a GEV model to each of them.

We now analyse the probabilities given by a single-root Network GEV

model. We generalise (19) to obtain the recursive de�nition of the condi-

tional probability model corresponding to a node j in the network

Pj(i) =
∑
k∈Sj

ΩjkPk(i), (27)

where

Ωjk =
αjke

µj
�Uk− γ

µk∑
`∈Sj

αj`e
µj

�U`−
γ
µ`

=
αjkG

k∑
`∈Sj

αj`G`
. (28)

If there is one path Kij = {(k1, k2), (k2, k3), . . . , (kKij
, kKij+1)} connecting j

to i that is, such that k1 = j and kKij+1 = i, then we can write

Pj(i) =

Kij∏
k=1

Pk(k + 1) =

Kij∏
k=1

∂�Uk

∂�Uk+1

. (29)
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If there are multiple paths, the probability is

Pj(i) =
∑
Kij

Kij∏
k=1

Pk(k + 1) =
∑
Kij

Kij∏
k=1

∂�Uk

∂�Uk+1

, (30)

where Pk(k + 1) is the probability of choosing the composite alternative

k + 1 given by the model associated with node k, and is given by (27).

5 Demand responses and elasticities

The standard formula for the (point) elasticity of demand for alternative i

with respect to an attribute xj of alternative j can be stated as

ηi,xj
=

∂P(i)

∂xj

xj

P(i)
=

∂P(i)

∂Vj

∂Vj

∂xj

xj

P(i)
. (31)

When the utility function is linear in x, ∂Vj/∂xj is constant and is equal to

the coe�cient of xj, βxj
.

The value P(i) would usually be taken to be the population average, i.e.

the market share for alternative i. For xj, the population average is often

taken, but it would also be possible to use the speci�c value facing each

individual, i.e. to analyse the elasticity as a constant proportional change

in the relevant attribute for each individual; the latter approach may not

be appropriate if the value zero is possible.

Because the confusions relating to βxj
, xj and P(i), it is much clearer to

analyse model structures in terms of the responses of demand to changes

in the utility of alternatives, i.e. ∂P(i)/∂Vj. Eq. (31) can always be used

to obtain elasticities.

We analyse demand responses within the context of the GEV inheri-

tance theorems. Actually, it is relevant only for Theorems 1 and 7. Indeed,

the inheritance addressed by Theorem 4 does not a�ect the probability and,

consequently, the demand response. We �rst establish a simple technical

lemma, easy to verify.

Lemma 11 If we consider

Ta
i = αie

µ�Ui (32)
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or

Tb
i = αie

µ�Ui−
γ
µi , (33)

in both cases we have

∂T ∗i
∂�Um

=

{
µT ∗i if i = m,

0 otherwise,
(34)

where the symbol ∗ represents either a or b.

Theorem 12 Under the hypotheses of Theorem 1, the inheritance of

demand responses is given by

∂P(k)

∂V`

=

p∑
i=1

{
Ωi

∂Pi(k)

∂V`

+ µPi(k)Ωi

(
Pi(`) −

p∑
m=1

Pm(`)Ωm

)}
, (35)

where Ωi = Ta
i /S, S =

∑
j T

a
j , and Ta

i is de�ned by (32).

Proof. We write the probability (10) as

P(k) =
∑

i

ΩiPi(k), (36)

We have that
∂P(k)

∂V`

=

p∑
i=1

∂Ωi

∂V`

Pi(k) + Ωi
∂Pi(k)

∂V`

. (37)

Then,

∂Ωi

∂V`

=

p∑
m=1

∂Ωi

∂�Um

∂�Um

∂V`

=

p∑
m=1

∂Ωi

∂�Um

Pm(`).

As Ωi = Ta
i /S, we have

∂Ωi

∂�Um

=
∂Ta

i

∂�Um

1

S
−

1

S2

∂S

∂�Um

.

Using Lemma 11 and simplifying the expression, we obtain that

∂Ωi

∂�Um

=

{
µΩm(1 − Ωm) if i = m

−µΩiΩm otherwise.
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Therefore,

∂Ωi

∂V`

= µΩi

(
Pi(`) −

p∑
m=1

ΩmPm(`)

)
,

and (35) follows from (37). �

Corollary 13 Under the hypotheses of Theorem 7, the inheritance of

demand responses is given by (35) where Ωi = Tb
i /S, S =

∑
j T

b
j , and

Tb
i is de�ned by (33).

Proof. The proof is exactly the same as for Theorem 12, with Tb instead

of Ta, because of Lemma 11. �

6 Specific instances

The framework combining the RNEV model and the GEV Network repre-

sentation generalises many models proposed in the literature. For exam-

ple, the tree representation of Nested Logit models is obviously a network,

where each node has exactly one predecessor and the α parameters asso-

ciated with the edges are all 1. Clearly, an arbitrary (�nite) number of

levels can be used. The Multinomial Logit Model being a special case of

the Nested Logit, it also �ts in this framework. The Cross-Nested model is

a GEV model generated by

G(x1, . . . , xJ) =
∑
m

(∑
j∈C

αjmx
µm

j

) µ
µm

. (38)

Eq. (38) has been proposed by Ben-Akiva and Bierlaire (1999). The deriva-

tion of the model and the elasticity computation have been described by

Wen and Koppelman (2001), with a slightly di�erent model formulation.

They call it the Generalised Nested Logit model.

This model can also be represented in our framework. The network

is composed of a root v0 (associated with a parameter µ), a list of nodes

w1, . . . , wM for the nests (with parameters µm such that µ ≤ µm, m =

1, . . . ,M) and a list of nodes for the alternatives v1, . . . , vJ (with parameters

17



µj, j = 1, . . . , J). There is an edge between the root and each nest wm, with a

parameter α0m = 1, and an edge between each nest wm and each alternative

vi, with a parameter αim. We assume that µm ≤ µi if αim 6= 0. A simple

example is illustrated in Figure 1. We derive the associated Network GEV

model using the GEV-inheritance formulae.

From (21), the G function associated with each alternative is

Gi(x) = x
µi

i , (39)

the expected maximum utility is

�Ui = Vi +
γ

µi

, (40)

and the probability is

Pi(k) =

{
1 if i = k,

0 otherwise.
(41)

The GEV-function Gm associated with each nest is given by

Gm(x) =
∑
j∈C

αjm(Gj(x))
µm
µj =

∑
j∈C

αjmx
µm

j . (42)

The expected maximum utility is

�Um =
γ

µm

+
1

µm

log
∑
j∈C

αjmeµmVj . (43)

The probability of choosing alternative i given by the model associated

with node m is

Pm(i) =
αimeµmVi∑
j∈C αjmeµmVj

. (44)

Finally, the GEV-function associated with the root is

G(x) =

M∑
m=1

(Gm(x))
µ

µm =

M∑
m=1

(∑
j∈C

αjmx
µm

j

) µ
µm

, (45)
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which is exactly (38). The expected maximum utility is

�U =
γ

µ
+

1

µ
log

M∑
m=1

eµ(�Um− γ
µm

). (46)

From (46), we have

µ

(
�Um −

γ

µm

)
= log

(∑
i∈C

αimeµmVi

) µ
µm

, (47)

and we obtain

�U =
γ

µ
+

1

µ

M∑
m=1

(∑
i∈C

αimeµmVi

) µ
µm

. (48)

The probability of choosing a nest m is

P(m) =
eµ(�Um− γ

µm
)∑

n eµ(�Un− γ
µn

)
=

(∑
i∈C αimeµmVi

) µ
µm∑

n

(∑
i∈C αineµnVi

) µ
µn

, (49)

where the second equality derives from (47).

Finally, the probability of choosing an alternative k is

P(k) =

M∑
m=1

P(m)Pm(k) =

(∑
i∈C αimeµmVi

) µ
µm∑

n

(∑
i∈C αineµnVi

) µ
µn

αkmeµmVk∑
j∈C αjmeµmVj

. (50)

The Nested-Logit formula can be derived from the above equations by

setting αim = 1 if alternative i belongs to nest m, and 0 otherwise.

Of course, this applies automatically to all special instances of the CNL,

such as the Paired Combinatorial Logit model (Koppelman andWen, 2000),

the Generalised Nested Logit model (Wen and Koppelman, 2001), the Or-

dered GEV model (Small, 1987), the Link-Nested Logit model (Vovsha

and Bekhor, 1998), the GenL model (Swait, 2001) or specialised compound

GEV models (Bhat, 1998, Whelan et al., 2002).
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Figure 1: A simple network

7 Estimation

The model inherits the closed form advantage of the GEV family. E�cient

nonlinear programming techniques can therefore be used to identify the

maximum likelihood estimator of the parameters. To achieve this goal, the

analytical derivatives of the log-likelihood function with respect to each

unknown parameter are required. They are provided in Appendix B.

The freeware package BIOGEME (Bierlaire, 2003b, Bierlaire, 2003a),

available at

http://roso.epfl.ch/biogeme

allows the estimation of Network GEV models. As input, the user must

de�ne the vertices and edges of the network, and choose which parameters

are �xed and which must be estimated.

An alternative approach to estimating the model is to note that it can be

re-formulated as a tree logit model with each path from root to alternative

being represented as an alternative in the tree logit model (Daly, 1987,

Daly, 2001a). Then the choice probability given by the network model is
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identical to the probability of choice of any of a set of alternatives in a tree

(nested) logit model. This transformation means that the Network GEV

model can also be estimated by a suitable adaptation of software designed

for the estimation of tree logit models.

It is important to note that the estimation process may happen to force

some parameters αij to 0 and, consequently, to produce a model that vio-

lates the assumptions of the GEV Network (see Section 4). In this case, all

arcs (i, j) such that αij = 0 must be removed from the model, in order to

obtain a valid Network GEV model. It is then the analyst's responsibility

to decide if the resulting model still captures the choice situation under

analysis.

The Network representation generates models with many parameters.

Indeed, there is one parameter per node in the network and one parameter

per arc. Not all of them are identi�able from data. A thorough analysis

of the identi�ability issues has not yet been performed. Some preliminary

comments can be made though. Firstly, the homogeneity parameters are

relevant only in terms of their ratio, exactly like for Nested Logit models.

Therefore, a similar normalisation (from the top or the bottom) is required.

Also, not all parameters α associated with the edges of the network can

be identi�ed. Indeed, multiplying all parameters α in (23) by a constant

is equivalent to multiply the Gi function by the constant, resulting in a

modi�cation of the scale of the utilities (due to the homogeneity of Gi)

which does not a�ect the probability. A normalisation is also required

there.

8 Conclusions and future research

The two main contributions of this paper are the GEV inheritance the-

orems and the GEV Network representation. They allow the design of

GEV models based on intuitive interpretation of the application, similar

to the development of trees for Nested Logit models, with no additional

theoretical analysis required from the analyst. The Multinomial logit, the

Nested logit and the Cross Nested logit models can all be represented by a

GEV Network. The probability, expected maximum utility and elasticity
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formula have been derived. In the special case of the Cross-Nested Logit

model, our results match those presented by Wen and Koppelman (2001).

The framework we propose is operational in two ways. Firstly, the

model speci�cation is simpli�ed thanks to the network structure. Secondly,

the estimation of the models is possible with BIOGEME and may become

possible with other packages. We believe that the results proposed in this

paper will provide more research opportunities, as the investigation of new

GEV models will not be subject any more to heavy mathematical proofs.

The RNEV or Network GEV model is more general than any GEV

model presented in previous literature known to the authors. It allows

the analyst the freedom to construct networks consistent with an intuitive

view of the structure of the choice situation being represented and should

form an attractive basis for applications and the development of further

theoretical understanding of GEV framework.
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A Detailed proof for Theorem 4

In this Appendix, we extend the proof of GEV-di�erentiability in Theo-

rem 4 by explicitly using the exact derivatives of the function. We start

with two technical lemmas1. The �rst lemma provides a formula for the

derivative of the function Gβ.

Lemma 14 We denote by Pk the set of partitions of the indices set

{1, . . . , k}. Given a partition P belonging to Pk, composed of p sets of

indices, we de�ne

Sp(x) = G(x)β−p

p−1∏
i=0

(β − i). (51)

Given a set R containing r indices, we de�ne

DR =
∂rG(x)

(∂xi)i∈R

, (52)

similarly to (3). Then, we have

∂k

∂x1 . . . ∂xk

G(x)β =
∑
P∈Pk

Sp
∏
R∈P

DR. (53)

Proof. The proof is by induction. The cases k = 1, 2, 3 are obtained

by simple calculus.

The case k = 1 is derived in (12). For the second derivative, we have

D∗
{1,2}(x) = ∂2

∂x1∂x2
G(x)β

= β(β − 1)G(x)β−2 ∂G
∂x1

(x) ∂G
∂x2

(x) + βG(x)β−1 ∂2G
∂x1∂x2

(x)

= β(β − 1)G(x)β−2G{1}(x)G{2}(x) + βG(x)β−1G{1,2}(x).

(54)

For k = 3, we have

∂3

∂x1∂x2∂x3
= β(β − 1)(β − 2)G(x)β−3 ∂G

∂x1

∂G
∂x2

∂G
∂x3

+ β(β − 1)G(x)β−2
(

∂G
∂x1

∂2G
∂x2∂x3

+ ∂G
∂x2

∂2G
∂x1∂x3

+ ∂G
∂x3

∂2G
∂x1∂x2

)
+ βG(x)β−1 ∂3G

∂x1∂x2∂x3

(55)

1The authors would like to thank Jean-Albert Ferrez and Alain Prodon for their help
with set partitioning.
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We assume now that the result is true for k, and we prove it is true also

for k + 1. We �rst compute

∂k+1

∂x1 . . . ∂xk+1

G(x)β =
∂

∂xk+1

(
∂k

∂x1 . . . ∂xk

G(x)β

)
(56)

that is

∂k+1

∂x1 . . . ∂xk+1

G(x)β

=
∂

∂xk+1

(∑
P∈Pk

Sp
∏
R∈P

DR

)

=
∑
P∈Pk

[(
∂

∂xk+1

Sp

)∏
R∈P

DR + Sp ∂

∂xk+1

∏
R∈P

DR

]
,

(57)

where

∂

∂xk+1

Sp =

p−1∏
i=0

(β − i)(β − p)G(x)β−(p+1) ∂G

∂xk+1

= Sp+1 ∂G

∂xk+1

(58)

and
∂

∂xk+1

∏
R∈P

DR =
∑
R∈P

∂

∂xk+1

DR

∏
T∈P,T 6=R

DT . (59)

Consequently,

∂k+1

∂x1 . . . ∂xk+1

G(x)β =

∑
P∈Pk

[(
Sp+1 ∂G

∂xk+1

)∏
R∈P

DR + Sp
∑
R∈P

DR∪{k+1}

∏
T∈P,T 6=R

DT

]
.

(60)

Then, we prove the result by obtaining (60) directly from (53). Using
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(69) in (53), we have

∂k+1

∂x1 . . . ∂xk+1

G(x)β =

p∑
i=1

Sp+1
∏

R∈P∪{k+1}

DR +

ni∑
`=1

Sp
∏

R∈Pk+1
i,`

DR


p∑

i=1

Sp+1 ∂G

∂xk+1

∏
R∈P

DR + Sp

ni∑
`=1

∏
R∈Pk+1

i,`

DR

 .

(61)

We �nally use the de�nition (70) of Pk+1
i,` to obtain (60) and prove the

result. �
The second lemma analyses the sign of each term of (53).

Lemma 15 For an arbitrary k, we consider one term of (53) with

0 < β ≤ 1. Let P be a partition belonging to Pk, composed of p sets

of indices, p ≥ 1. Then, the sign of Sp(x)
∏

R∈P DR and the sign of its

derivative
∂

∂xk+1

Sp(x)
∏
R∈P

DR (62)

are opposite.

Proof. We have

∂

∂xk+1

Sp(x)
∏
R∈P

DR (63)

=

(
∂

∂xk+1

Sp(x)

)∏
R∈P

DR (64)

+ Sp(x)
∂

∂xk+1

∏
R∈P

DR. (65)

The sign of (58) is entirely determined by
∏p−1

i=0 (β − i)(β − p), as both

G(x) and ∂G/∂xk+1 are non-negative. From (51), the sign of Sp is entirely
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determined by
∏p−1

i=0 (β−i). As β−p ≤ 0, the sign of (64) is consequently

opposite to the sign of Sp
∏

R∈P DR.

The modi�cation of the sign of (65) is a direct consequence of the de�-

nition (52) of DR and property 4 of GEV models. �
We are now able to provide a formal proof for item 4 of Theorem 4.

Indeed, from Lemma 14, we have

∂k

∂x1 . . . ∂xk

G(x)β =
∑
P∈Pk

Sp
∏
R∈P

DR, (66)

where Sp(x) is de�ned by (51) and DR is de�ned by (52). The sign al-

ternance is proved recursively. For k = 1, the derivative (12) is trivially

non-negative. For k = 2, the derivative (54) is non-positive, as β ≤ 1,

and ∂2G/∂x1∂x2 is non-positive from property 4 of GEV models. Then,

Lemma 15 is applied for further iterates of the recursion, showing that Gβ

is GEV-di�erentiable.

B Derivatives of the model

In this section, we provide the derivatives of the model (16) with regard

to speci�c parameters, which must be provided to optimisation packages.

The derivative of G with regard to a variable xk is

∂Gi(x)

∂xk

=
∑

j

αij
µi

µj

Gj(x)
µi
µj

−1 ∂Gj(x)

∂xk

.

The derivative with regard to αij is simply

∂Gi(x)

αij

= Gj(x)
µi
µj ,

and the derivative with regard to µi

∂Gi(x)

∂µi

=
∑

j

αij

µj

Gj(x)
µi
µj logGj(x).
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If node k is a successor of node i, then

∂Gi(x)

µk

= αikG
k(x)

µi
µk

−1 µi

µk

(
∂Gk(x)

∂µk

−
1

µk

Gk(x) logGk(x)

)
If not,

∂Gi(x)

µk

=
∑

j

αij
µi

µj

Gj(x)
µi
µj

−1 ∂Gj(x)

∂µk

.

C Set partitions

The set Pk of partitions of an index set {1, . . . , k} is constructed recursively.

By de�nition, we impose that P0 = ∅. We have also that P1 = {{{1}}}. In

general, assume that

Pk =

p⋃
i=1

Pk
i (67)

where

Pk
i =

ni⋃
j=1

Ri
j (68)

and Rj is a subset of {1, . . . , k}. For each partition Pk
i in Pk, we build ni + 1

partitions of Pk+1. The �rst is obtained simply by adding the singleton

{k + 1} to Pk
i . All the other partitions are obtained by replacing each index

set Ri
j, one at a time, by Ri

j ∪ (k + 1). Consequently, we have

Pk+1 =

p⋃
i=1

[(
Pk

i ∪ {k + 1}
) ni⋃

`=1

Pk+1
i,`

]
, (69)

where

Pk+1
i,` = {Ri

` ∪ (k + 1)} ∪
ni⋃
j=1

j6=`

Ri
j. (70)

For example, as P1 contains one partition P1
1 = {R1

1}, where R1
1 = {1}, we

have
P2 =

⋃1
i=1

[(
P1

i ∪ {2}
)⋃1

`=1 P2
i,`

]
,

= P1
1 ∪ {2} ∪ P2

1,1

= {{1}{2}} ∪ P2
1,1

(71)
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where

P2
1,1 = {R1

1 ∪ 2} ∪
1⋃

j=1

j6=1

R1
j = {{1, 2}}. (72)

Therefore, P2 = {{{1}{2}} , {{1, 2}}}. Denoting P2
1 =

{
R1

1, R
1
2

}
, with R1

1 = {1}

and R1
2 = {2} and P2

2 = {R2
1},where R2

1 = {1, 2}, we can compute P3.

P3 =
⋃2

i=1

[(
P2

i ∪ {3}
)⋃ni

`=1 P3
i,`

]
,

=
[(

P2
1 ∪ {3}

)⋃2
`=1 P3

1,`

]⋃[(
P2

2 ∪ {3}
)⋃1

`=1 P3
2,`

]
=

[(
P2

1 ∪ {3}
)
∪ P3

1,1 ∪ P3
1,2

]⋃ [(
P2

2 ∪ {3}
)
∪ P3

2,1

] (73)

where
P3

1,1 = {R1
1 ∪ 3} ∪

⋃2
j=1

j6=1
R1

j

= {R1
1 ∪ 3} ∪ R1

2

= {{1} ∪ 3} ∪ {2},

= {{1, 3}{2}}

P3
1,2 = {{2, 3}{1}}

P3
2,1 = {{1, 2, 3}}

(74)

Consequently,
P3 = {

{{1}{2}{3}},

{{1, 3}{2}},

{{2, 3}{1}},

{{1, 2}{3}},

{{1, 2, 3}}

}

(75)

D Some results

D.1 Derivation of (4)

Euler's formula states that

µG =
∑

j

yjGj.
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Therefore, (1) reads
yiGi∑
j yjGj

. (76)

To obtain (4), we note that

yiGi = eViGi = elog(eViGi) = eVi+logGi.

D.2 Derivation of (5) and (6)

We rewrite here McFadden's proof (p. 82). Using the µ-homogeneity of G,

we have

Fi(〈Vi + εi − Vj〉) = e−ae−µ(Vi+εi)
e(−Vi−εi)(µ−1)Gi(〈eVj〉)e−εi

= e−ae−µw
e−w(µ−1)Gi(〈eVj〉)eVie−w

(77)

and Eq. (16) becomes

�U =
∑

i

∫
w

we−ae−µw
e−w(µ−1)Gi(〈eVj〉)eVie−wdw

=
∫

w
we−ae−µw

e−w(µ−1)µae−wdw

=
∫

w
we−ae−µw

µae−µwdw

(78)

Let t = µw and dt = µdw to obtain

�U =
1

µ

∫
t

te−ae−t

ae−tdt =
logG(x) + γ

µ
. (79)

Eq. (6) results directly from (1).
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