STABILITY AND CONTROLLABILITY OF
BATCH PROCESSES

B. Srinivasan' and D. Bonvin

2

L Department of Chemical Engineering
Ecole Polytechnique Montreal, Montreal, Canada H3C 3A7
2 Laboratoire d’Automatique
Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

Abstract: Improving the performance of batch processes requires tools that are
tailored to the specificities of batch operations. These include a mathematical
representation that explicitly shows the two independent time variables (the run
time ¢ and the run index k) as well as the two types of outputs (the run-time and
run-end outputs). Furthermore, corrective action can be taken via both on-line
and run-to-run control. This paper investigates the important notions of stability
and controllability for batch processes, where it is shown that a value rather than
a yes-no answer needs to be considered. The tools required for evaluating these
properties are readily adapted from the literature. Finally, the various control
strategies are illustrated via the simulation of a semi-batch reactor, and references
are made to the appropriate tools for evaluating stability and controllability.
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1. INTRODUCTION

The majority of control studies in the literature
have dealt with continuous processes operating
around around an equilibrium point. In recent
years, however, the class of systems where the
process terminates in finite time has received
increasing attention. An interesting feature is the
fact that most of these processes are repeated over
time. Many industrial operations, especially in the
areas of batch chemical production, mechanical
machining, and semiconductor manufacturing do
fall under this category.

In a batch process, operations proceed from an
initial state to a very different final state. Hence,
there exists no single operating point around
which the control system can be designed (Bonvin
1998). Also, since batch processing is character-

ized by the frequent repetition of batch runs, it is
appealing to use the results from previous runs to
improve the operation of subsequent ones. This
has generated the industrially relevant topic of
run-to-run control and optimization (Campbell et
al. 2002, Francois et al. 2005). Repetition provides
additional degrees of freedom for meeting the con-
trol objectives since the work does not necessarily
have to be completed in a single run but can
be distributed over several runs. This brings into
picture an additional type of outputs that need
to be controlled, the run-end outputs. The main
difficulty is that these outputs are typically only
available at the end of the run.

Though a lot of work has been reported recently
in the literature on batch process control and
optimization (Abel et al. 2000, Srinivasan et al.
2003, Flores-Cerrillo and MacGregor 2003, Chin



et al. 2004), there is still a lack of understanding
of their system-theoretical properties. Due to the
finite-time nature of batch processes, the standard
definitions of properties such as stability, control-
lability and observability cannot be used.

This paper presents definitions and analysis tools
for the two important properties of stability and
controllability for batch processes. It is important
to emphasize that the contribution of this paper
is in discussing the various notions of stability and
controllability and choosing the right notions for
the analysis of batch processes. The analysis tools
are then readily adapted from those existing in
the literature.

The paper is organized as follows. Section 2 intro-
duces a brief mathematical description of batch
processes and discusses the implications of two
time scales and two types of output for control.
Stability and controllability are analyzed in Sec-
tions 3 and 4, respectively. An illustrative example
is presented in Section 5, and conclusions are
drawn in Section 6.

2. CONTROL OF BATCH PROCESSES

A batch process can be seen as a repetitive dynam-
ical process that is characterized by the presence
of a finite terminal time and thus the possibility
of having several sequential runs, with each run
being dynamic. Batch processes have the follow-
ing main characteristics: (i) There are two time
scales, i.e. the continuous time ¢ within the run
and the discrete run index k, (ii) the time of a
run is limited (finite), (iii) there is no steady-state
operating point with respect to ¢, i.e. the analysis
has to be performed around trajectories rather
than an equilibrium point, and (iv) two types of
measurements are available, i.e. during the run
and at the end of the run.

2.1 Terminology and notations

Let R be used for the space of real numbers and L.
for that of functions, and let Z, represent the set
of positive integers excluding zero. The various
elements of a batch process can be defined as
follows:

(1) Run: One realization of a repetitive process.
(2) Run time: The time within a run, t € [0,7] C
R4, where T is the finite terminal time.

(3) Run index: The number of a run, k € Z.

(4) Inputs: The inputs, ux(t) € U C R™, evolve
with ¢ during run k. The input trajectories
for run k are denoted by wug[0,T] € L™.

(5) States: The states, zx(t) € X C R™, evolve
with t during run k. x}f are the initial condi-

tions at time ¢ = 0. The corresponding state
trajectories are denoted by x4[0,T] € L™.
(6) Outputs: The outputs are of two types: (i)
The run-time outputs, yi(t) € RP, corre-
spond to the on-line measurements during
run k; (ii) the run-end outputs, z; € RY,
include the measurements that become avail-
able at the end of run k. The latter might
also depend on the state evolution during the
entire run, e.g. the average value of a state.
(7) System dynamics: They describe the state
and output evolutions for a single run. For
example, the nonlinear time-invariant model
describing the process behavior during run &

reads:
i (t) = F(ar(t),us(t), zx(0) =zi (1)
Yr(t) = H (zi(t), ur(t)) (2)
Zk =H(xk[O,T],uk[O,T]) (3)

The dynamics over several runs stem from
the possibility to update the initial condi-
tions and the inputs on a run-to-run basis.

The system properties will be analyzed around se-
lected reference trajectories, for which the accent
(+) will be used. For example, the reference state
trajectories will be denoted by z[0,T], with Z(t)
being the corresponding state values at time t.
Perturbations denoted by A(-) will be considered,

e.g. AZ[0,T] is a perturbation of Z[0,T].

2.2 Control strategies

There are two types of control objectives (run-
time outputs yx(t) or yx[0,7T], and run-end out-
puts zr), and also different ways of reaching
them (on-line with u("(¢f) and run-to-run with
uyt"[0,T]). Each objective can be met either on-
line or on a run-to-run basis, this choice being
dependent on the type of measurements available.
The control strategies are classified in Figure 1
and discussed next.
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Fig. 1. Control strategies resulting from consid-
eration of the control objectives (run-time
or run-end outputs) and the implementation
aspect (on-line or run-to-run).
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Fig. 2. Batch process with the inputs being updated both on-line (intra-run, use of the run-time
measurements yi(t)) and on a run-to-run basis (inter-run, use of the run-end measurements zy).
The symbol V is used to indicate a change in viewing the time argument, e.g. from a trajectory to
an instantaneous value when going downward and conversely when going upward.

e On-line control of run-time outputs. The ap-
proach is similar to that used in the tradi-
tional control literature. Control is typically
done using PID techniques or more sophis-
ticated alternatives whenever necessary. For-
mally, this controller can be written as

ug" (t) = K(yr(t), ysp(t)) (4)

where K is the on-line controller for the run-
time outputs yx(¢), and ysp,(t) the setpoint.

e On-line control of run-end outputs. It is nec-
essary here to predict the run-end outputs
based on measurement of the run-time out-
puts. Model predictive control (MPC) is well
suited to that task (Nagy and Braatz 2003).
The controller can be written as

up" (t) = P(2prea,k(t), 2sp) (5)

where P is the on-line controller for the run-
end outputs zg, and Zpreq,x(t) the prediction
of z;, available at time instant ¢.

e Run-to-run control of run-time outputs. In
batch processing, key process characteristics
such as process gain and time constants can
vary considerably. Hence, the need to pro-
vide adaptation in a run-to-run manner to
compensate the effect of these variations.

The run-to-run part of the manipulated
variable profiles can be generated using Itera-
tive Learning Control (ILC) that exploits in-
formation from previous runs (Moore 1993).
The controller has the structure

uztr[oa T] = I(yk—l [Oa T]7 ysp[oa T]) (6)

where 7 is the iterative learning controller
for the run-time outputs y;[0, T]. It processes

the entire profile of the previous run to gen-
erate the entire manipulated profile for the
current run.

e Run-to-run control of run-end outputs. The
input profiles are parameterized using the
input parameters m, u"[0,T] = U(my).
Control is then implemented using simple
discrete integral control laws, that is m, =
-1 + K (zsp — z1—1) (Francois et al. 2005).
Formally, the controller can be written as

w0, T) = U(my), Tk = R(2k—1, 2sp)(7)

where R is the run-to-run controller for
the run-end outputs zp, and U the input
parametrization.

Note that, except for predictive control that in-
volves prediction, all the other control schemes use
only measurements and thus do not necessitate a
process model for implementation, i.e. a very nice
feature for batch processes, where detailed accu-
rate models are seldom available (Bonvin 1998).

By combining strategies for the various types of
outputs, the control inputs can have contributions
from both run-to-run and on-line updates:

uk(t) = up" (t) + up" (t) (®)

The term u}'"(t) stems from the trajectories
ujt[0,T] and represent the ‘feedforward’ operat-
ing policies that are not altered within a run. How-
ever, u;'"[0, T'| may change between runs (via run-
to-run update), leading to inter-run dynamics. On
the other hand, u("(t) represents the ‘feedback’
correction during the run (via on-line update).
This combination of strategies is illustrated in
Figure 2.



Applying only run-to-run control exhibits the lim-
itations of being open-loop in run time, in partic-
ular for run-time disturbances. In general, a com-
bination of these four strategies is used. However,
in such a combined scheme, care should be taken
that the on-line and run-to-run corrective actions
do not oppose each other. Hence, the stability
issue is critical.

In formulating the control strategy, controllability
is important since it informs whether or not open-
loop inputs exist that can provide the desired per-
formance. Once a controller is designed, stability
issues are of uppermost importance. Stabilization
(and more appropriately finite-time stabilization),
which is the issue of designing a controller that
achieves stability and desired performance, will
not be addressed in this paper.

3. INTRA- AND INTER-RUN STABILITY

Due to the presence of the two time scales ¢ and
k, both intra-run (in run time ¢) and inter-run (in
run index k) stability need to be addressed.

3.1 Intra-run stability

Stability in run time ¢ is important for repeata-
bility and reproducibility reasons. The problem
addressed therein is whether the trajectories of
various runs with initial conditions sufficiently
close will remain close during the rest of the run.

System (1) under on-line closed-loop operation
using the feedback law (4) or (5) can be written
as:

ik(t) = F(Ik (t)a t)7 Lk (O) = x;cc (9)

The standard definition of Lyapunov stability
is typically used around an equilibrium point
(Vidyasagar 1978). To extend this definition to
finite-time systems without an equilibrium point,
it is first necessary to introduce the concept of a
tube around the nominal trajectory in the (n+1)-
dimensional space of states and time.

Definition 1. The trajectories x [0, T] are defined
to be inside the (a,b)-tube B, around the ref-
erence trajectories z[0,T], i.e. zx[0,T] € Bqp, if
they satisfy ||z (t) — Z(¢)|| < ae®, Vt € [0,T].

The tube consists of a ball of radius a in the
n-dimensional state space at time ¢ = 0, which
shrinks or expands with time at a rate determined
by b.

Definition 2. System (9) is locally intra-run (-
tube stable around the trajectories Z[0,T] if

there exists a § > 0 such that, for all zi¢ = z(0) +
AZ(0) with [|[AZ(0)|| < 4, the state evolution
k[0, T] € Bs .

A diverging (converging) system has a positive
(negative) value of 3. Note that a system that
initially diverges to eventually converge has a
positive 8. In addition to its sign, the value of §
is quite useful since, with finite-time systems, the
dividing line between stability and instability is
not whether the trajectories converge or diverge,
but by how much they come together or grow
apart in the interval of interest. Hence, in the
context of batch processes, stability is not a yes-no
result, but rather a measure quantified by g.

Definition 3. System (9) is locally intra-run a-
terminal-time stable around the trajectories
Z[0,T] if there exists a 6 > 0 such that, for
all zi¢ = Z(0) + Az(0) with [|AZ(0)|| < 4, the
terminal states statisfy ||z (T) — Z(T)|| < ad.

Terminal-time stability is the counterpart of
asymptotic stability for finite-time systems. Again,
stability is not simply determined by whether « is
greater or less than 1, but instead it is quantified
by the value of «.

It is possible to give results similar to the two
theorems of Lyapunov (one based on linearization
and the other on the existence of a non-increasing
Lyapunov function) for tube stability.

Theorem 1. Let Aig(t) = A(t)Azg(t) with the
initial conditions Az (0) = AZ(0) be a bounded
linearization of System (9) along Z[0, T for run k.
Let 0pqz(t) be the maximum of the real parts
of the eigenvalues of the time-dependent ma-
trix %fg A(r)dr. Also, let Gar = mMaxs Opmaq ().
Then, System (9) is tube stable around Z[0, T
with 0 = Gmmaz. Furthermore, the system is lo-

cally terminal-time stable around Z[0, T with a =
eo'm,am (T)T .

The proof of the theorem uses Bellman-Gronwall’s
Lemma (Vidyasagar 1978). Note that the eigen-
values of the integral of A are studied rather than
the eigenvalues of A themselves. In most optimally
operated finite-time systems (e.g. using a finite-
time linear quadratic regulator), though the eigen-
values of the integral are negative, some of the
eigenvalues of A might become positive toward the
end of the run. This phenomenon caused by on-
line control of zj is referred to as the ‘batch kick’
in the optimization of batch processes. Intuitively,
this means that little can go wrong toward the end
since the ‘time-to-go’ is small.



Turning to the second Lyapunov method, the
following result can be stated.

Theorem 2. Let V(z,t) : R®" x Ry — R be
a continuously differentiable function such that
V(z,t) = 0 and V(z,t) > 0 for all z(t) #
Z(t), Vt. If V(z,t) < o(t)V(z,t) along the sys-
tem trajectories for all x(t) = Z(t) + AZ(t), Vt,
[IAZ(t)]| < d, then System (9) is tube stable with

(3 = max; %fot o(r) dr.

Note that the definition of stability presented by
(Lohmiller and Slotine 1998) using contraction of
deviations around pre-specified trajectories is a
special case of Definition 2 above and requires
contraction at every time instant, i.e. o(t) < 0 for
all t. This measure is clearly inadequate for batch
systems that exhibit a batch kick. Information
regarding the overall performance is better related
to the integral of o as given in Theorems 1 and 2
than to its instantaneous value.

3.2 Inter-run stability

The interest in studying stability in run index k
arises from the necessity to guarantee convergence
of run-to-run adaptation schemes. Here, the stan-
dard notion of stability applies as the independent
variable k goes to infinity. The main conceptual
difference with the stability of continuous pro-
cesses is that ‘equilibrium’ refers to entire trajec-
tories. Hence, the norms have to be defined in the
space of functions L such as the integral squared
error LLo.

For studying stability with respect to run index
k, System (1) is considered under closed-loop
operation. At the k" run, the trajectories of the
(k — 1)%" run are known, which fixes u}""[0,7]
according to (6) or (7). These input profiles, along
with the on-line feedback law (4) or (5), are
applied to (1) to obtain zy(¢t) for all ¢ and thus
2k[0,T]. All these operations can be represented
formally as:

k[0, T) = F(xr-1[0,T]), 20[0,T] = @init[0, T[10)

where #;,;+[0,T] are the initial state trajecto-
ries. Inter-run stability is considered around the
equilibrium trajectory computed from (10), i.e.

Definition 4. System (10) is locally inter-run Lya-
punov stable around the equilibrium trajectories
Z[0,T] if there exist § > 0 and ¢ > 0 such
that, for all x¢[0,7] = Z[0,T] + Az[0,T] with
||Af[07T]|| < 57 ”xk[OaT] B f[O,T]H < G,Vk. Ifa in
addition, limy_, o ||2£[0, T]—Z[0, T]|| = 0, then the
system is locally inter-run asymptotically stable.

This stability definition is fairly standard but in
a discrete setting. Thus, in principle, either one
of the two Lyapunov methods (via linearization
or Lyapunov function) can be used to analyze
stability. However, the linearization method has
problems since differentiation has to be performed
in the space of functions. The Lyapunov-function
method can be used once a norm is appropriately
defined (Vidyasagar 1978).

Theorem 3. Let V : L™ — R be a continuously
differentiable functional such that V(z[0,T]) =0
and V(x[0,T]) > 0 for z[0,T] # z[0,T].

System (10) is locally inter-run Lyapunov sta-
ble if, for all ([0, 7] = z[0,T] + AZ[0,T] with
[AZ[0, T][| < 6, V(zk41[0,T]) < V(2x[0,T1), V k.

If, in addition, Z[0,T] is the largest invariant set
satisfying V(244+1[0,7T]) = V(xx[0,T]), then the
system is locally inter-run asymptotically stable.

Again, the choice of a Lyapunov function is a
major difficulty. The norm of the input error
[|u[0,T] — [0, T]||L, has served as a useful Lya-
punov function in some of our studies, although
the output error has been widely used in the
literature.

4. CONTROLLABILITY OF RUN-TIME AND
RUN-END OUTPUTS

One of the definitions of controllability for infinite-
time dynamic systems requires that there exists
an input vector u[tg, 7] with which the equilibrium
state can be reached from any arbitrary state x(¢o)
in the neighborhood of the equilibrium.

There are two difficulties with extending this def-
inition to batch processes. Firstly, the controlla-
bility of finite-time systems needs to be defined
around trajectories. Therein, the relevant question
is whether or not some neighborhood of given
trajectories can be reached. Clearly, not all state
trajectories can be fixed independently because
the state vector x[0,T] contains a lot of redun-
dant information. For example, since a position
trajectory enforces the velocity, the trajectories of
position and velocity cannot be chosen indepen-
dently of each other! . Hence, only controllability
in terms of independent output trajectories can be
investigated (y-controllability).

Secondly, the above definition of controllability
mentions the existence of a time 7, which however
might be larger than the terminal time 7. This
aspect becomes important when considering the

1 In contrast, when instantaneous values are considered,
arbitrary position and velocity values can be specified.



controllability with respect to the run-end outputs
(z-controllability).

Here, controllability addresses the problem of the
existence of inputs that can implement the desired
action and thus is independent of whether the
correction is made on-line or on a run-to-run basis.

4.1 Controllability of run-time outputs

Let yi, i ={1,---,p}, be the i*" run-time output
of System (1)—( ) and let its relative degree? be

o dlyp
r ie. Fur i+ =0, Vj<r

Definition 5. System (1)-(2) is locally y-controllable

around the arbitrary trajectories §[0,T] if there
exists a § > 0 such that, for all |Ag[0,T]| < 4,
AF'[0,T) € CU" =Y for i = {1,---,p}, there exists
ug[0,T] € U that leads to yx[0,T] = y[0,T] +
Agl0,T].

Note that if the first (r* — 1) derivatives of Ay’
are discontinuous, Dirac impulses are required at
the inputs to meet the outputs. Thus, the per-
turbations Ay’ that are considered cannot have
discontinuities in their first (r® — 1) derivatives,
ie. Ajt € C"—1D where C" denotes the space of
functions that have continuous derivatives up to
order r.

Note also that the trajectories g[0, 7] are assumed
feasible, i.e. they respect the initial conditions
and they can be implemented through @[0, T] (the
condition under which @[0,T] exist for a given
§[0,T7] is not addressed here). The question asked
in this definition regards only the neighboring
trajectories. This is clearly a local inversion prob-
lem for which standard conditions for inverting
a multi-input multi-output system can be used
(Hirschorn 1979).

Theorem 4. Let ui, j = {1,---,m}, be the j**
input of System (1)-(2). Let the relative degrees

rt,i={1,---,p}, remain constant around gj[O T],
and M(t) be defined as M, ;(t) = 631 4 tryﬁ If
k

M(t) is of rank p, V ¢, then System (1)-(2) is
locally y-controllable around [0, 7.

4.2 Controllability of run-end outputs

A similar definition can be provided for system
controllability in terms of reaching specified run-
end outputs.

2 The relative degree of an output is the minimal degree
of its time derivative for which at least one input appears.

Definition 6. System (1,3) is locally z-controllable,
from time ty on, around an arbitrary operating
point Z if there exists a § > 0 such that, for all
[IAZ|| < 0, there exists uk[to, T] € U that leads to
zr = Z+ AZ.

Here, the notion of controllability is linked to a
given time tg. The question asked is the following:
Is it possible to change the outcome of the run if,
at time instant ty in the run, one wishes so? To
answer this question, consider the linearization of
System (1,3) around a trajectory, resulting in the
linear time-varying system (Friedland 1986):

Az = A(t)Al‘k + B(t)Auk, Al‘(to) =0 (].].)
Az, = C(t)Axy (12)

Theorem 5. Consider the output controllability
Grammian G(t) for System (11)-(12):

ft; A(k) dr

P(r)=C(r)e B(T)
T
g(to):/P(T)PT(T) dr (13)

If G(to) is of rank g, then System (1,3) is locally
z-controllable from time g on.

For on-line control of run-end outputs, Theorem 5
can be used to indicate until what time tg in the
batch the control of run-end outputs is feasible.

For run-to-run control of run-end outputs, it is
important to study the case where the inputs
are parameterized. Consider the parameterization
url0,T] = U(m), where m, € R™ are the input
parameters. This way, the batch process can be
seen as a static map between the input param-
eters m; and the run-end outputs zi. To assess
controllability, the transfer matrix between
and z; needs to be computed. The equivalent of
Theorem 5 using input parametrization is given
next.

Theorem 6. Consider the ¢ x n, transfer matrix
between 7 and z calculated for System (11)-(12):

A(n dk ou

If T (to) is of rank ¢, then System (1,3) with the
parametrization ugx[0,T] = U(my) is locally z-
controllable from time t¢ on.

Note that run-to-run control requires only the
evaluation of the matrix 7(0). The rank condi-
tion (or invertibility) of G or 7 follows from the



fact that the inputs that can create the necessary
change in the run-end outputs are obtained by
inversion. However, note that as ty approaches
T, the Grammian approaches singularity, with
G(T) = 0. Similarly, if a piecewise parametriza-
tion is used, after a certain time, some of the
parameters will have no influence on the outputs,
thus making a few columns zero. As ty proceeds
toward T, more and more columns will become
zero. Hence, as t — T, inverting G or 7 requires
larger and larger inputs for control. Also rank
deficiency may occur, and the system may lose
controllability.

5. ILLUSTRATIVE EXAMPLE

Consider the scale-up, from the laboratory to pro-
duction, of a semi-batch reactor in which several
reactions take place. The desired and main side
reactions are

A+ B — C, 2B — D

with C the desired product and D an undesired
side product. The reactions are fairly exothermic
and the reactor is equipped with a jacket for
heat removal. The control objective is twofold:
(i) Operate isothermally at 50°C by manipulating
the jacket temperature, and (ii) match the final
concentrations that have been obtained in the
laboratory, cg(T') = ¢B,maz and cp(T) = ¢p maz,
by manipulating the feed rate of reactant B.

The control structure used is illustrated in Fig-
ure 3. It implements on-line feedback temperature
control. In addition, the feedforward profile for
the jacket temperature ij 10,77 is adjusted on
a run-to-run basis by means of ILC. In this case,

M = %f is a constant non-zero scalar irrespec-
J
tive of the trajectory chosen (hence, satisfies y-

controllability - Theorem 4). The controller reads

t

K
T x(t) = Tj{ T(t) + Krey(t) + T—IR / e (T)dr,
0

T 00,7 — Al = TH[A, T+ Kinc eA,T),

Jik+1
with ey (t) = Ty res(t) — Trk(t), Kr the propor-
tional gain and 77 the integral time constant of
the PI master controller. It can be easily verified
that the system is tube stable with a negative
8. Kipc is the gain of the ILC controller and
A > 0 the value of the input shift. The second
equation allows adapting the feedforward term for
the jacket temperature setpoint on a run-to-run
basis based on ILC with input shift. In Theorem 3,
the integral squared output error fOT ex () dr is
used as the Lyapunov function in run index k. The
value of the input shift is tuned for convergence

(Welz et al. 2004). Due to the presence of the shift,
the error does not converge asymptotically to zero.

In addition, the feed rate profile u[0,T] is pa-
rameterized using the two feed-rate levels u; and
ug, each valid over half the batch time. The final
concentrations cp(T") and ¢p(T) are met, on a
run-to-run basis, by adjusting the two parameters
7 = {u1,u2}. The transfer matrix 7 is evaluated
around the current operating point using (14),
with 24 = [1 0] during the first half of the batch
and 24 = [0 1]7 in the second half. With the
matrix 7 being full rank (satisfies z-controllability
- Theorem 6), the discrete integral control law
reads

o1 = Tk + TV KRog [2ref — 21],  (15)

where 71 is the pseudo-inverse of 7, and Kropr
the gain of the run-to-run controller. The run-to-
run convergence of this scheme can be shown using
Theorem 3 with the squared input error |7 —7*||?
as the Lyapunov function in run index & (Francois
et al. 2005).

The evolution of the manipulated and controlled
variables are illustrated in Figures 4.

6. CONCLUSIONS

The control of batch processes is characterized by
run-time and run-end objectives on the one hand,
and by actions that can be implemented on-line
and on a run-to-run basis on the other. It has been
shown that the concepts of stability and controlla-
bility, which are well understood for infinite-time
systems operating around an equilibrium point,
are not directly applicable to finite-time batch
processes.

With regard to stability, the concept of tube
stability, by which the state trajectories remain
within a given tube, has been introduced. The
special case of terminal-time stability has also
been discussed. Two theorems that help evaluate
tube stability have been proposed.

As for controllability with respect to specified
trajectories, it was observed that the entire state
space cannot be studied due to the fact that there
is considerable redundancy in the state trajecto-
ries. Hence, only controllability with respect to
two types of outputs have been addressed. Con-
trollability was studied from the point-of-view of
inversion, and results were adapted from the ex-
isting literature.

REFERENCES

Abel, O., A. Helbig, W. Marquardt, H. Zwick and
T. Daszkowski (2000). Productivity optimiza-



o

cooling fluid

ILC

T,[0.T]

Co(T)

Cg(T)

Fig. 3. On-line and run-to-run strategies to control the reactor temperature and the final concentrations.

ATC
70 A um)

............ 50

40
30

B
(:ii/
==

S

20

\ &

,

’ 1 ‘
- 4

ST

A Conc.

0.3

0.2 ’

0.1 / -

tihl ,

P 0

-
-~

©D,max

[ °Bmax

ti

o
S
©
N

" L
T

Fig. 4. Evolution of the reactor and jacket temperatures (left), of the feed rate (middle) and of the
concentrations c¢g and cp (right), initially (dotted lines) and after 3 iterations (solid lines).

tion of an industrial semi-batch polymeriza-
tion reactor under safety constraints. J. Pro-
cess Contr. 10(4), 351-362.

Bonvin, D. (1998). Optimal operation of batch
reactors - A personal view. J. Process Contr.
8(5-6), 355—-368.

Campbell, W.J., S.K. Firth, A.J. Toprac and
T.F. Edgar (2002). A comparison of run-to-
run control algorithms. In: American Control
Conference. Anchorage, Alaska. pp. 2150—
2155.

Chin, I.S., S.J. Qin, K.S. Lee and M. Cho (2004).
A two-stage iterative learning control tech-
nique combined with real-time feedback for
independent disturbance rejection. Automat-
ica 40(11), 1913-1922.

Flores-Cerrillo, J. and J.F. MacGregor (2003).
Within-batch and batch-to-batch inferential-
adaptive control of semibatch reactors: A par-
tial least squares approach. Ind. Eng. Chem.
Res. 42, 3334-3335.

Francois, G., B. Srinivasan and D. Bonvin (2005).
Use of measurements for enforcing the nec-
essary conditions of optimality in the pres-
ence of constraints and uncertainty. J. Pro-
cess Contr. 15(6), 701-712.

Friedland, B. (1986). Control System Design
— An Introduction to State-Space Methods.
McGraw-Hill, New York.

Hirschorn, R.M. (1979). Invertibility of multivari-
able nonlinear control systems. IEFEFE Trans.
automat. Contr. 24, 855-865.

Lohmiller, W. and J.J.E. Slotine (1998). On con-
traction analysis for nonlinear systems. Auto-
matica 34(6), 683-696.

Moore, K.L. (1993). Iterative Learning Control
for Deterministic Systems. Springer-Verlag,
Advances in Industrial Control, London.

Nagy, Z.K. and R.D. Braatz (2003). Robust non-
linear model predictive control of batch pro-
cesses. AICRE Journal 49(7), 1776-1786.

Srinivasan, B., D. Bonvin, E. Visser and
S. Palanki (2003). Dynamic optimization of
batch processes: II. Role of measurements
in handling uncertainty. Comp. Chem. Eng.
44, 27-44.

Vidyasagar, M. (1978). Nonlinear Systems Anal-
ysis. Prentice-Hall, Englewood Cliffs.

Welz, C., B. Srinivasan and D. Bonvin (2004).
Iterative learning control with input shift.
In: IFAC Symp. DYCOPS-7. Boston, MA.
pp. 187-192.



