

Dynamic Real-Time Optimization via Tracking of the Necessary Conditions of Optimality

D. Bonvin and B. Srinivasan⁺

Laboratoire d'Automatique EPFL, Lausanne, Switzerland

+ Department of Chemical Engineering Ecole Polytechnique Montreal, Canada

Laboratoire d'Automatique

Outline

- Optimization and uncertainty
- Tracking the Necessary Conditions of Optimality
 - Turn optimization problem into control problem
 - Decentralized control scheme
 - Simulation results
 - Application projects
- Conclusions

lustrative example

NCO Tracking

Selectivity terminal constraint: Number of moles of D at $t_f n_{Df} \le n_{Df,max}$

NCO Tracking

Caboratoire d'Automatique **Nominal Optimal Solution** umax 1 u_{state}(t) 0.8 2 u_{sens}(t) Feed (I/min) 9.0 3 0.2 t₂ t₁ tf 0 50 100 150 0 180 time (min)

Implementation of the Nominal Solution

Laboratoire d'Automatique

Measurement-based Optimization

Solution Model

Input representation capable of achieving (near) optimality

- Choice of decision variables
 - Identify arcs and switching times that vary with uncertainty
 - Introduce approximations and parameterization as needed
- Pairing for decentralized control
 - Associate combinations of decision variables with active constraints
 - Associate remaining decision variables with sensitivities

NCO -- Solution Model A

Decision variables: t_1 , t_2 , $\eta_1(t)$, $\eta_2(t)$

Pairing

	Constraints	Sensitivities
Path Objectives During the run	$T_j = T_{j,min}$	<mark>∂H/∂η₂ = 0</mark> H: Hamiltonian
Terminal Objectives End of the run	$n_D(t_f) = n_{Df,max}$	_

Solution Model A

- Invariant part -- u_{max}
- Path constraint -- $T_j = T_{j,min} t_1, \eta_1(t)$
- Terminal constraint -- $n_D(t_f) = n_{Df,max} -- t_2$
- Sensitivity -- $\partial H / \partial \eta_2 = 0 \eta_2(t)$

$$u = \begin{cases} u_{\max} & 0 \le t \le t_1 \\ K_{\eta}(T_{j,\min} - T_j) & t_1 < t \le t_2 \\ G_{\eta}(\partial H / \partial \eta_2) & t_2 < t \le t_f \end{cases}$$

$$t_1 = t \quad with \quad T_j(t) = T_{j,\min} \quad and \quad T_j(t_-) > T_{j,\min}$$

$$t_2 = R_{\pi}(n_{Df,\max} - n_D(t_f))$$

Caboratoire d'Automatique

NCO-tracking Scheme for Solution Model A

NCO -- Solution Model C

Decision variables: t_1 , t_2 , $\eta_1(t)$, $\eta_2(t)$

Different pairing

	Constraints	Sensitivities
Path Objectives During the run	$T_j = T_{j,min}$	-
Terminal Objectives End of the run	$n_D(t_f) = n_{Df,max}$	$\partial n_{\rm C}(t_{\rm f})/\partial t_2 = 0$

Solution Model C

- Invariant part -- u_{max}
- Path constraints -- $T_j = T_{j,min} t_1, \eta_1(t)$
- Terminal constraints -- $n_D(t_f) = n_{Df,max} -- \eta_2(t)$
- Sensitivity -- $\partial n_C(t_f) / \partial t_2 = 0 t_2$

$$u = \begin{cases} u_{\max} & 0 \le t \le t_1 \\ K_{\eta}(T_{j,\min} - T_j) & t_1 < t \le t_2 \\ T_{\eta}(n_{Df,\max} - n_{Df}^{pred}(t)) & t_2 < t \le t_f \end{cases}$$

$$t_1 = t \quad with \quad T_j(t) = T_{j,\min} \quad and \quad T_j(t_-) > T_{j,\min}$$

$$t_2 = G_{\pi}(\partial n_C(t_f) / \partial t_2)$$

Caboratoire d'Automatique

NCO-tracking Scheme for Solution Model C

NCO-tracking Results

Model and run index	Minimum jacket temperature 10 °C	Maximal final amount of D 100 mol	Final amount of C Cost (mol)
	10.0	70.6	
	10.0	79.0	370.4
A 5	10.0	96.2	389.8
A 10	10.0	99.6	392.2
C 1	10.0	100	391.8
C 5	10.0	100	391.8
C 10	10.0	100	391.8

Ideal cost: 392.3

Open-loop nominal cost: 374.6

NCO Tracking in Practice

- Features of NCO tracking
 - No need of a process model for implementation
 - Need appropriate process measurements
 - Approximations can (must) be introduced in solution model
- Practical observations
 - Complexity depends on the number of inputs (not system order)
 - For many terminal-time dynamic optimization problems, the solution is often determined by the constraints of the problem
- Practical extensions
 - Measurement noise → backoff
 - Unknown active constraints \rightarrow superstructure

Projects Implementing NCO Tracking

- On-line optimization
 - Semi-batch reactor with safety constraint (*Novartis Basel*; *Bayer-RWTH*)
 - Discontinuous wastewater treatment plant (Firmenich Geneva)
 - Fed-batch fermenter (Bioengineering Lab EPFL)
 - Batch distillation column (Engineering School Fribourg)
 - Grade transitions in polymerization (Bayer-RWTH; CEPRI Thessaloniki)
- Run-to-run optimization
 - Emulsion copolymerization reactor (Aqua+Tech Geneva)
 - Electro-discharge machining (Charmilles Geneva)
 - Batch reactive distillation column (INPT Toulouse)
 - Fed-batch fermenter (Novozymes Denmark)

Bold: experimental *Italics*: industrial

Caboratoire d'Automatique

Conclusions

- Real-time optimization under uncertainty
 - Turn optimization problem into control problem
 - Considerable prior information goes into solution model
 - How robust is this information wrt. uncertainty ?
 - \rightarrow solution model must remain valid over uncertainty
 - Considerable potential for industrial applications

Further work

- Rigorous mathematical framework
- Application to large-scale processes

