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Abstract

We present a novel approach to detecting human silhouettes
in monocular sequences that achieves very low rates of both
false positives and negatives by combining shape and mo-
tion information. To this end, we use sequences of moving
silhouettes built using motion capture data that we match
against short image sequences.

We demonstrate the effectiveness of our technique using
both indoor and outdoor images of people walking in front
of cluttered backgrounds and acquired with a moving cam-
era, which makes techniques such as background subtrac-
tion impractical.

1. Introduction

Approaches to recognizing 3-D human body postures from
a single image have recently become increasingly popu-
lar [1, 3, 8, 11, 18]. While they do not suffer from many
of the problems that affect more traditional recursive body
tracking techniques, most of them have only been demon-
strated in cases where clean body silhouettes can be ex-
tracted, for example using background subtraction, which
is very restrictive. A key exception is the work reported
in [6]. Combining a hierarchy of templates [13] and effec-
tively using the chamfer distance has made the approach
applicable to more challenging cases such as the one of a
moving camera on a car. However, even then, the algorithm
tends to produce many false positives, especially when the
background is cluttered. As a result, in practice, it is used
in conjunction with a stereo rig both to narrow the initial
search area and to filter out false detections from the back-
ground [7, 8].

We improve upon this approach and achieve very low
rates of both false positives and negatives by incorporating
motion information into our templates. It lets us differenti-
ate between actual people and static objects whose outlines
roughly resemble those of a human, which are surprisingly
numerous. As illustrated by Fig. 1, this is key to avoid-
ing misdetections. This is of course a well known fact and
optical flow methods have been proposed to detect moving
humans [4]. However, accurately computing the flow on
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Figure 1: Detection against a cluttered background. (a) An
edge image corresponding to one of the images of a se-
quence. (b) The first three best template matches obtained
using single frame matching, which are wrong. (c) The best
template match using the spatio-temporal templates we ad-
vocate. (d) The corresponding 3D pose.

human limbs is notoriously difficult, especially if the back-
ground is not static. Our approach avoids this problem by
relying on sequences of moving silhouettes.

More specifically, we focus on the part of the walking
cycle where both feet are on the ground and use motion
capture data to create sequences of 2—-D silhouettes that we
match against short image sequences. We chose this spe-
cific posture both because it is very characteristic and be-
cause it could easily be used to initialize a more traditional
recursive tracking algorithm to recover the in-between body
poses.

As shown in Fig. 2, we obtain good results even when the
background is cluttered and background subtraction is im-
practical because the camera moves. Note that the subjects
move closer or further so that their apparent scale changes
and turn so that the angle from which they are seen also
varies. In this example, no stereo data or information about
the ground plane was required to eliminate false-positives.
Our method retains its effectiveness indoors, outdoors, and



Figure 2: Detected silhouettes in several indoor and outdoor sequences acquired by a moving camera. Since we search for
a specific posture —the one where both legs are on the ground and the angle between them is greatest— the fact that the
algorithm does not respond to some of the people in the second and third image of the third row is correct. In that sense, the
detection on the left of the first image in the third row is one of the rare false positives it produces. The sequence with several

people is attached as a supplementary material.

under difficult lighting conditions. Furthermore, because
the detected templates are projections of 3-D models, we
can map them back to full 3-D poses.

Note that, even though we chose a specific motion to test
it, our approach is generic and could be applied to any other
actions that all people perform in roughly similar ways but
with substantial individual variations. For example, there
also are characteristic postures for somebody sitting on a
chair or climbing stairs. In the area of sports, we could
use a small number of templates to represent the consecu-
tive postures of a tennis player hitting the ball with a fore-
hand, a backhand, or a serve, as is done in [18]. We could
similarly handle the transition between the upswing and the

downswing for a golfer. In short, characteristic postures
are common in human motion and, therefore, worth find-
ing. The only requirement for applying our method is that a
representative motion database can be built.

In the reminder of the paper we first briefly discuss ear-
lier approaches. We then introduce our approach to body
pose detection and present a number of results obtained in
challenging conditions. Finally, we discuss possible exten-
sions.

2. Related Work

Until recently, most approaches to capturing human 3-D
motion from video relied on recursive frame-to-frame pose



estimation. While effective in some cases, these techniques
usually require manual initialization and re-initialization if
the tracking fails. As a result, there is now increasing in-
terest for techniques that can detect a 3-D body pose from
individual frames of a monocular video sequence.

One approach [19, 12] is to use classification to detect
people in images, but it does not provide either a pose or a
precise outline. Furthermore, such global approaches tend
to be very occlusion sensitive.

Instead of detecting the body as a whole, a different tack
is to look for individual body parts and then to try assem-
bling them to retrieve the pose [14, 11, 10]. This can be
done by minimizing an appropriate criterion, for example
using an A* algorithm. This has the potential to retrieve
human bodies under arbitrary poses and in the presence of
occlusions. Furthermore it can be done in a computationally
effective way using pictorial structures [5]. However, it can
easily become confused because there are many limb-like
objects in real world images.

Another class of approaches relies on techniques such
as background subtraction to produce silhouettes that can
then be analyzed. Several methods learn during an offline
stage a mapping between the visual input space formed by
the silhouettes and the 3—D pose space from examples col-
lected manually or created using graphics software. For ex-
ample, [15] uses multilayer perceptrons to map the silhou-
ette represented by its moments to the 3-D pose. In [16]
the mapping is performed using robust locally weighted re-
gression over nearest neighbors that are efficiently retrieved
using hash tables. In [3], it is done indirectly via manifolds
embedded in low dimensional spaces, where each manifold
corresponds to the subset of silhouettes for walking motion
seen from a particular viewpoint. Local Linear Embedding
is used to map the manifolds to both the silhouettes and the
3-D pose. In [1], the mapping between the couple formed
by an extracted silhouette and a predicted pose to the cor-
responding 3-D pose is established using Relevant Vector
Machine. While these works introduce powerful tools to
associate 3—-D poses to detected silhouettes, they tend to be
of limited practical use because they require relatively clean
silhouettes that are not always easy to obtain.

A more robust way to match global silhouettes against
image contours is to use both a hierarchy of templates and
the chamfer distance, an approach originally introduced
in [13] and extended in [7, 8]. This produces excellent re-
sults when applied to difficult outdoor images. However,
it seems to have a relatively high false detection rate. Re-
ducing this rate involves either introducing a priori assump-
tions about where people can be [7] or incorporating addi-
tional processing such as texture classification or stereo ver-
ification [8]. In the context of hand tracking, [17] also relies
on the chamfer distance and a tree structure quite similar
to the hierarchy of templates of [13] for efficiency. In this

case, the false positives and negatives problem is avoided
by assuming that one and only one hand is present in the
image. Bayesian tracking is combined with detection to dis-
ambiguate the hand pose.

By contrast to these earlier approaches, our method,
which also relies on global silhouettes matching, includes
an original way to take motion into account to avoid false
positives. Such information was also exploited in [2] for
human action recognition, but only under the assumption
that preprocessed and centered subimages of the people are
available. In our case we directly use the full images as
input.

3 Approach

In this section, we describe how we introduce motion infor-
mation into the silhouette matching process. This is done
on the sole basis of the noisy and potentially incomplete sil-
houettes that can realistically be extracted from images of
cluttered scenes acquired by a moving camera.

3.1 Creatingthe Templates

Here, we focus on the part of the walking cycle where both
feet and legs are on the ground and the angle between them
are the greatest, and use motion capture data and graphics
software to create a database of templates.

We first used a Vicon!™ optical motion capture system
and a treadmill to capture 8 people, 5 men and 3 women,
walking at nine different speeds ranging from 3 km/h to
7 km/h, by increments of 0.5 km/h. Also, we built a vir-
tual character that can perform the captured motions, and
rendered images at a rate of 25 frames per second as seen
from the virtual cameras depicted by Fig. 3(a). Note that
Camera 3 (frontal view) and Camera 7 (back view) are not
used, since these views give images of the model in which
it is very difficult to distinguish the searched pose from oth-
ers. The rendered images are then used to create templates
such as those depicted by Fig. 3(b). The rendered images
are rescaled at seven different scales ranging from 52x 64
to 92x 113 pixels, so that an image at one scale is 10%
larger than the image one scale below. From each one of
the rendered images, we extract the silhouette of the model.
Each template is made of a short sequence of silhouettes
that includes a key frame, that is the frame representing
the specific walking pose and which is always taken to be
the middle frame in the sequence. The silhouettes are rep-
resented as sets of oriented pixels that can be efficiently
matched against image sequences, as will be discussed in
Section 3.2.

In practice we use 3 frame silhouette sequences. The
top row of Fig. 3(b) corresponds to a profile view in which
the o, represent the angles between the two legs. Here, we
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Figure 3: Creating spatio-temporal templates: (a) Eight vir-
tual cameras are placed around the model at every 45°. (b)
Each template corresponding to a single camera view con-
sists of three silhouettes, extracted from three consecutive
frames. Blue arrows in image Camera 1/ Frame 1 represent
edge orientations used for matching silhouettes for some of
the contour pixels. (c) The three silhouettes of a template
are superposed to highlight the differences between the out-
lines.

have 2 > 1 and w2 > 3. The bottom row represents the
same motion but seen from a different angle. To highlight
the differences between the three silhouettes, we superpose
the three profile ones in Fig. 3(c).

3.2 Single Silhouette Matching

As in previous approaches [13, 7], we rely on Chamfer dis-
tance, efficiently computed using the Distance Transform
(DT) of the input image, to match silhouettes to individual
input images. However, we have endeavored to increase its
robustness.

The original formulation of the Chamfer distance is

1 .
dchamfer(57 C) = E Z cmeucl‘ ||Si - CJH (l)
s; €S 7

where S is the silhouette containing n points, and C' is the
set of contour points in the input image after Canny edge
detection. Simply relying on the distance between edge pro-
duces a lot of false positives, especially in presence of clut-
ter. We therefore also take into account the edge orientation
by introducing a penalty term

p(si, ;) = K * [tan(as, — ﬁcj)]z, )

where «,; and 3., are the edge orientation respectively at
the silhouette point s, and at the contour point ¢j, and K
is a weight that defines the slope of the penalty function.
The algorithm for DT computation is modified so that each
location in the DT image also contains the edge orientation
of the closest edge pixel. In practice we use K = 20, which
is enough to completely eliminate the influence of the pixels
that have the edge orientation difference greater than 30°,
even if the distance between them is zero.

As discussed above, our template database contains dif-
ferent scale templates. To allow effective comparison be-
tween the chamfer distances for such templates, we explic-
itly introduce a scale factor & into Equation 1 to normalize
the distance to the value that would be computed if the tem-
plate has not been scaled. Finally we introduce the Tukey
robust estimator [9] to reduce the effect of outliers or miss-
ing edges. We therefore take Chamfer distance to be

donamser(5.0) = 237 (% i — (o) +p<si,c<si)>)

s; €S
3
where ¢(s;) is the closest contour point to point s;.

3.3 Spatio-Temporal Template Matching

Instead of single silhouette matching, we match our tem-
plates made of several silhouettes against portions of the se-
quence. Let the input image sequence be the set of images
I, I, ... I, ... Iy, .., Where ¢ represents the discretized
time and ¢,,,,.. the time at which the last frame was acquired.
Each template T created as explained in Section 3.1 is made
of a sequence of silhouettes: 7' = {T1,...,T;,..., Tng }s
where ¢ is the index of the silhouette in the sequence and



Figure 4: A spatio-temporal template matched against consecutive images of the sequence.

Ng the number of silhouettes in the templates. In our ex-
periments, we took Ng = 3 but it could be higher. An
example of template matched against a portion of an image
sequence is presented Fig. 4. Note that, for the sake of sim-
plicity, the template scale is not explicitly represented in the
following.

Let 7" be the rectangular patch of image I, whose
upper-left corner is positioned at (z,y) and that is of the
same size of the templates. Area(x,y) denotes an area cen-
tered on point (z,y) where © — dx < =z < z + dz and
y —dy <y < y + dy, where dz and dy are proportional to
the template scale.

Using these notations, we take the distance D between
Ng consecutive input images 1,41 ... I;4 n, and a template
T located at pixel (z, y) to be

Ng
1
D(T,x,y, Liqr ... Ieyng) = No E di(z,y,T), (4
=1

di(xay7T) = min dchamfer (,Tzalt(f_;,y/)) . (5)
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This allows small variations on the locations of the suc-
cessive silhouettes of a template. The templates can then
be matched against the sequence by looking for local min-
ima of the distance D(.) when varying the template 7', the
location (x, y) over the images and ¢ over time.

However, if we directly search for the best matches in
a exhaustive way, we would get several responses for the
same person around the correct location and time. To avoid
that, we rely on the following strategy. Let the match be-
tween an input sequence of Ng frames and a template 7'
be the vector m = [Tin, tm, Tm, Ym, Dm]” . We build the
sorted list £ of m; vectors sorted according to their dis-
tances D,, as follows. Foreacht = 1...¢4: — Ng We
find the best match m according to Dy, and insert it in the
sorted list £. We repeat this parsing of the sequence until
the distance Dy, falls above a given threshold 6, excluding
the matches already present in £. 6p can be dynamically
chosen as discussed below. This gives us a single match per

person because a match m is inserted into the list £ only if
it does not overlap either in space or time another match m’
already in £ with a smaller distance. More formally m is
inserted if there is no match m’ € £ such as:

D, < Dp,
(Tm, Ym) € Area(Tm/, ym’) and | (6)
to — 0t <t <ty + Ot

where ot is a constant that defines a frame range within
which multiple detections in the same area are not allowed.
Finally, we end up with the sorted list of matches £ for
the whole input sequence. Assuming the best match to be
correct, it is possible to dynamically set the threshold to
0p = KpDp, Where Kp is the same scalar value for all
results shown in this paper.

3.4 Implementation Details

In practice, a naive implementation of this method would
be computationally very expensive. Therefore we propose
an alternative way of finding the best matches. For each
time step ¢, we search for the silhouettes T; of each tem-
plate 7" in the image I;,;, 1 < i < Ng. We also build a
lookup table for a fast access to the silhouettes detected in
an image around a given location. As before, to avoid multi-
ple responses for the same person, we reject detections that
overlap with better ones.

From these silhouette detections, we will build the list
L, of detected templates for which the silhouette sequence
starts at time ¢. By fusing the successive lists £; while re-
specting the conditions given in (6), we retrieve the final list
L described above.

Each list £, is constructed as follows. For each silhouette
T; detected in image ;. ;, where i varies between 1 and Ng,
we check if the other silhouettes 7); of the same template 7'
have been detected around the location of T in the other
images I, ;. This search is performed efficiently using the
lookup table. If all the successive silhouettes for a same
template have been coherently detected, they are inserted as



Figure 5: Our approach is robust to changes in the camera
position. Here the camera is placed very high, and a satis-
fying pose is recovered even though there are no templates
in the database for such camera view.

a single template in the list £,. The associated distance is
simply the mean of the Chamfer distance of the successive
silhouettes.

The silhouette detection involves matching all the silhou-
ettes from the database against corresponding image region
It(z’y). A naive implementation would be computationally
very expensive as it would require wy x hy x Ng x N
operations for chamfer score computation, where wr is the
silhouette width, h is the silhouette height, Ng is the num-
ber of silhouettes per template and N+ is the number of tem-
plates. To decrease this complexity, we precompute a list of
edge pixels that belong to at least one database silhouette.
This list lets us reduce the number of accesses to the cham-
fer map to less than wy x hp because only the pixels from
the list are accessed. At the same time, the required number
of operations is reduced by a factor K ~ 0.07, which is the
ratio of edge pixels to the template size.

As aresult, it takes a little under 0.06 seconds per spatio-
temporal template per video frame on a 2.8 GHz PC. Since
we use 432 such templates, it takes 25 seconds to process a
frame. This is admittedly not particularly fast but adequate
to demonstrate feasibility, which is our goal. Furthermore,
since the current technique could be significantly speeded
up by using a Gavrila like template hierarchy, we do not see
any theoretical obstacle to ultimately incorporating it into a
practical real world application.

Figure 6: Top rows: Correct detections in spite of the clut-
tered background. Bottom row: Correct detection even
though a substantial part of the silhouette is missing.

4 Reaults

We have already shown in Fig. 2 some of the results ob-
tained from several image sequences with cluttered back-
ground. Note that the subjects move closer or further so
that their apparent scale changes and turn so that the an-
gle from which they are seen also varies. All the templates
in our database are rendered from virtual cameras that are
positioned at 1.20m from the ground level, so that optimal
results can be expected when the camera is at that height.
However, our algorithm is very robust with respect to cam-
era position. Fig. 5 shows its good behaviour even when the
camera is placed high above the head of the person.

In Fig. 6 we further demonstrate that the detections are
correct even when the edge images are very noisy. Further-
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Figure 7: Frames from two different sequences in which our algorithm finds only humans in the correct key pose. Note that
the camera is moving to follow the person. The 3-D pose corresponding to the right-most images of the first two rows are
shown. The second sequence is supplied as a supplementary material.

more, we can map the detected templates back to full 3-D
poses as shown in Fig. 5. Remember that our method is de-
signed to detect people in a specific pose. As shown in the
walking sequences of Fig. 7, that is exactly what it does.
Note that the camera moves to follow the person.

Typical failure modes involve a detection location that
is usually correct but an inaccurate orientation or scale, as
shown in Fig. 8. To quantify this, we estimated the error rate
on the two movies supplied with the paper as supplemen-
tary material. The first movie is depicted by the last three
rows of Fig. 7. In the 590 frames we got 42 positives, 2
false negatives and no false positives. Among the positives
there are 4 detections for which the scale is more than 10%
incorrect, such as the one shown in Fig. 8(a). In the sec-
ond movie, depicted by the second and third row of Fig. 2,
there are multiple people. In this 445 frames sequence, our

algorithm finds 37 positives, 6 false negatives and 2 false
positives. Note that the two false positives do correspond to
people but not in the searched posture, as shown in the first
image of the third row of Fig. 2. There are no false pos-
itives in the background. Among the positives there are 5
detections for which the scale is more than 10% uncorrect,
and 2 detections for which the orientation error is more than
45°, such as the one shown in Fig. 8(b). Like many other
approaches, our algorithm has difficulties to disambiguate
which leg is which in a key pose in strict side views. How-
ever, as soon as the view changes slightly, the correct pose
is recognized.

In summary, our method detects people in the target pos-
ture with a very low error rate. The few false positives still
correspond to people but at somewhat inaccurate scales or
orientations. While this paper focuses on pure detection,
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Figure 8: Failure modes. (a) Wrong scale. (b) Wrong ori-
entation.

it is therefore clear that the performance of our algorithm
could be further increased by simple spatio-temporal filter-
ing of several consecutive detections.

5 Conclusion

We have presented a method for human body pose detection
that combines silhouette matching and motion information
in an original way. This is important because human mo-
tion is very different from other kinds of motions and can
be effectively used to reduce the false positive and negative
detection rate. As a result, we have already been able to
demonstrate very good results for indoor and outdoor se-
quences for which background subtraction is impossible,
under difficult lighting conditions, different camera view-
points and apparent scale changes. Furthermore, since the
detected templates are projections of 3-D models, mapping
them back from 2-D to full 3-D poses is straightforward.

Our approach, even though tested on specific human mo-
tion, is generic and could be applied for any other actions
that all people perform in roughly similar ways but with
substantial individual variations. The only requirement is
that a representative motion database can be built.

This method, with its accurate 3—-D pose detections, is a
key step towards robust full 3-D body pose tracking algo-
rithms that can initialize and re-initialize themselves in dif-
ficult real-world conditions where techniques such as back-
ground subtraction are impractical. Developing such tracker
would be our long term task in the future.
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