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ABSTRACT

Deformable 3–D models are used extensively in Computer Graphics and Computer Vision for Visualization, Animation
and Modeling. They can be represented either as traditional explicit surfaces, such as triangulated meshes, or as implicit
surfaces.
On one hand, explicit surfaces can easily be manually deformed by users, such as graphics designers, either directly by
moving the mesh vertices or indirectly using a Free Form Deformation approach. On the other hand, implicit representa-
tions are well-suited both for physically-based simulations and for modeling noisy image-data. For example, to fit a cloud
of 3–D points, implicit representations allow fitting without search because one only needs to evaluate a differentiable
field function at every data point, instead of searching for the facets that are closest to the data points.
In this paper we propose a method that can turn an explicit surface into an implicit shell, which closely approximates its
shape and can deform in tandem with it. This allows both graphics designers to deform and reshape the implicit surface by
manipulating explicit surfaces using standard deformation techniques and automated fitting algorithms to take advantage
of the attractive properties of implicit surfaces.
We demonstrate the applicability of our technique for upper body—head, neck and shoulders—modeling and animation.

1 INTRODUCTION

In the world of Computer Graphics, 3D objects tend to be
modeled as explicit surfaces such as spline patches or tri-
angulated meshes. Because such representations are in-
tuitive and easy to manipulate, they are widely accepted
among graphics designers. As a result, hardware imple-
mentations of polygon rendering have become common-
place. These representations, however, are not necessarily
ideal for fitting surfaces to data such as 3D points produced
by laser-scanners and stereo systems or 2D points from im-
age contours. This stems from the fact that fitting typi-
cally involves finding the facets that are closest to the 3–D
data points or most likely to be silhouette facets. This re-
quires searching, which is slow, and dealing with the non-
differentiability of the distance function, which degrades
the convergence properties of most optimizers.

Implicit surfaces known in the literature under different
names: Blobby Molecules(Blinn, 1982), Soft Objects(Wyvill
and Wyvill, n.d.) and MettaBalls(Nishimura and al., 1985)
took substantial attention in both Computer Graphics and
Computer Vision communities. They are well-suited for
simulating physically based processes and for modeling
smooth objects. Because the algebraic distance to an im-
plicit surface is computed by evaluating a differentiable
function, they do not suffer from the drawbacks discussed
above when it comes to fitting them to 2 and 3D data (Sul-
livan et al., 1994, Plänkers and Fua, 2001a, Desbrun and
Gascuel, 1995). However, they have not gained wide ac-
ceptance, in part because they are more difficult to deform
and to render than explicit surfaces.

In short, explicit surface representations are very well suited
for graphics purposes, but less so for fitting and automated�
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modeling. The reverse can be said of implicit surface rep-
resentations. In this paper, we propose to combine the
strengths of both approaches and to avoid their drawbacks
by:

1. transforming explicit surfaces into implicit surfaces,
which we call implicit shells, whose shape closely ap-
proximates that of the original triangulations as de-
picted by Fig. 2(d, e, f)

2. deforming the implicit and the explicit surfaces in tan-
dem for fitting and rendering purposes as shown in
Fig. 2(g, h, i)

To create the implicit shells we attach spherical or triangu-
lar metaballs to each facet of the explicit mesh. The param-
eters of those metaballs are a function of the facet geome-
try. As a result, when a facet deforms, so does the corre-
sponding metaball. Particularly we choose Dirichlet Free
Form Deformations (Moccozet and Magnenat-Thalmann,
1997, Ilic and Fua, 2002) for deforming the implicit and
explicit models in tandem, but the way how implicit shells
are created allows using of any other deformation method
including direct mesh manipulation or indirect mesh ma-
nipulation using set of control points. This means that any
FFD, or B-spline based approach of deforming meshes can
be used to deform their implicit shells. However, some
other indirect methods for explicit surface deformation, such
as PCA parmetrization (Blanz and Vetter, 1999), can be
used to deform our implicit shells.

Our contribution is therefore an approach to surface fitting
that allows us to take an arbitrary explicit surface model,
for example one that has been obtained from the web and
was not designed with fitting in mind, turn it into an im-
plicit shell, and deform it to obtain an optimal least-square
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Figure 1: Reconstruction from an uncalibrated video sequence. Left colum: 3 of 6 images from a short video sequence.
Middle colum: Disparity maps extracted from consecutive image pairs using correlation-based stereo. Right coloum:
Reconstructed and textured models obtained by using an explicit model for the head and an implicit mesh model for the
neck and shoulders.

fit to new experimental data using a few well-chosen con-
trol points. It can then be instantly used, modified or blended
with other objects. In Fig. 1, we demonstrate our approach
in the complex case of head, neck and shoulders modeling
from images. We fit the head separately from the neck and
shoulders to image-data, blend them, and, finally, animate
them.

In the remainder of the paper, we first briefly review earlier
approaches. We then introduce our approach to creating
implicit shells and deforming them. Finally, we describe
our optimization framework and demonstrate the applica-
bility of our framework to upper-body modeling.

2 PREVIOUS WORK

2.1 Fitting Explicit Surfaces

Three-dimensional reconstruction of visible surfaces con-
tinues to be an important goal of the computer vision re-
search community and many approaches relying on full
3–D explicit representations have been proposed, such as
3–D surface meshes (Cohen et al., 1991, Terzopoulos and
Vasilescu, 1991), parameterized surfaces (Stokely and Wu,
1992, Lowe, 1991), local surfaces (Ferrie et al., 1992), and
particle systems (Szeliski and Tonnesen, 1992). In earlier
work (Ilic and Fua, 2002), we showed that Dirichlet Free
Form Deformations (DFFDs) (Moccozet and Magnenat-
Thalmann, 1997) could be used to robustly fit explicit sur-
faces to noisy stereo data because they let us parametrize

the surface using a very small number of control points.
Unlike the original Free Form Deformations (FFDs) (Seder-
berg and Parry, 1986) and most of their successors (Coquil-
lart, 1990, Kalra et al., 1992, Chang and Rockwood, 1994),
DFFDs do not require the control points to lie on a regular
rectangular grid. This is achieved by replacing the standard
rectangular local coordinates by generalized natural neigh-
bor coordinates, also known as Sibson coordinates (Sib-
son, 1980). It gives us the ability to place control points
at arbitrary locations rather than on a regular lattice, and
thus, much greater flexibility. In practice, control points
are taken to be on the surface triangulation, with a denser
distribution where the surface curvature is high. DFFD has
local deformation property that makes deformation process
intuitive and it is desirable for fitting as well. In this paper,
we extend this idea to also deforming implicit surfaces.

In the Computer Graphics world, there has also been a
great deal of work on fitting parametric surfaces, such as
B-spline patches or subdivision surfaces (M. Eck, 1996), to
3D data. They are typically used to produce models from
relatively clean laser-scanner data. B-spline patches are
easily controlled using a set of control points and widely
accepted for CAD modeling purposes. However, when
dealing with very noisy data such as the stereo data of
Fig. 1, B-spline methods that require many patches to achieve
the required modeling precision, and consequently many
control points, could be hard-pressed to preserve even

���
continuity among patches.
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2.2 Fitting Implicit Surfaces

There has also been sustained interest in the use of vol-
umetric primitives (Kakadiaris and Metaxas, 1996, Ter-
zopoulos and Vasilescu, 1991, Pentland and Sclaroff, 1991)
and implicit surface representations (Desbrun and Gascuel,
1995, Sullivan et al., 1994, Plänkers and Fua, 2001b) for
fitting purposes. These methods, however, are tailored for
specific shapes such as the human body and its skeleton
and there is no generally accepted way to deform generic
implicit surfaces.

A popular way to deform implicit surfaces is to twist, bend,
and taper the space in which the model lives by choos-
ing a suitable warping function (Blinn, 1982, Barr, 1984,
Wyvill and van Overveld, 1997). However, these deforma-
tions are limited to parametric surfaces, such as spheres
or cylinders, and there is no way to warp the space in
a free form manner. In (Bardinet et al., 1998), simple
superquadrics are parametrized using conventional FFDs
for automatic heart reconstruction and deformation from
medical images. Here the FFDs ability to deform para-
metric surfaces has been exploited, but only to reshape
a single primitive. Our proposed implicit shells coupled
with DFFDs go much further by allowing us to deform
completely generic implicit surfaces. In spirit, the implicit
shells are related to the earlier distance surfaces (Bloo-
menthal and Shoemake, 1991). However, in this earlier
work, the problems associated to bulges created by meta-
balls blending into each other are handled by a convolution
mechanism that looses the algebraic nature of the distance
function and makes the distance surfaces impractical for
the kind of fitting we perform.

Radial basis functions (RBF) (J. C. Carr, 2001, J. C. Carr
and Beatson, 1997, Turk and O’Brien, 1999) are an inter-
esting alternative to soft objects or metaballs (Wyvill and
Wyvill, n.d., Nishimura and al., 1985). The shape of the
resulting surface, however, is controlled not only by the
position of the RBF centers but also by the RBF weights
that have no geometric interpretation, which makes this ap-
proach also unsuitable for in-tandem deformation of ex-
plicit and implicit surface.

2.3 Explicit vs Implicit

In short, both approaches to 3–D modeling have their strengths
and weaknesses for the purpose of fitting noisy image-
data. Explicit surfaces are easy to deform and to render us-
ing well known computer graphics techniques, but as dis-
cussed earlier, are not ideal for fitting purposes. Implicit
surfaces are better suited for least-squares style fitting be-
cause they can be used to define differentiable objective
functions (Sullivan et al., 1994, Plänkers and Fua, 2001a).
However, unless one uses either a single geometric prim-
itive or a set of such primitives attached to some kind of
skeleton, it is relatively difficult to control their shape in an
intuitively pleasing way. As a result users such as graph-
ics designers tend to prefer explicit models. It is therefore
important to be able to go back and forth between the two
kinds or representations.

3 IMPLICIT SHELLS FROM EXPLICIT MESHES

To create an implicit surface model that can deform in tan-
dem with the explicit surface, we must address two prob-
lems:

1. Creating an implicit shell that closely approximates
the shape of the initial explicit mesh,

2. Controlling the object shape, in both its explicit and
implicit forms, using the same set of parameters.

Our approach is depicted by Fig. 2. We now discuss its
components.

3.1 Explicit Surface Deformation

We have shown in earlier work that introducing DFFD con-
trol points is an effective way to deform explicit meshes (Ilic
and Fua, 2002). These points can be distributed freely in
space and every surface triangulation point is influenced by
certain subset of control points. The magnitudes of these
influences, known as Sibson coordinates (Sibson, 1980),
are computed before the optimization starts (Moccozet and
Magnenat-Thalmann, 1997). The displacement of each
surface triangulation point is the linear combination of the
displacements of the control points that influence it. Let� ���	�
�
�	� ��������

be the set of control points and � be
a subset influencing surface triangulation point � , ���� � ����� ����� , where ���! �
�	�
�"�$#&% . The elements of� are the natural neighbors of � and their influence is ex-
pressed by the Sibson coordinates ' � . Let the control points
from � be displaced from their initial positions by ( �)� � �*� �
�
�	�"�+# % . The new position of the surface triangulation
point becomes:

�-,/.102�3�54 ��67�98;: ' � ( � � � � �  � (1)

with < ��6�"8;: ' � ��= and ' �5>  .
3.2 From Explicit to Implicit Surfaces

To create implicit shell of the explicit triangular mesh we
convert each mesh’ facets to a metaball primitive. Metaball
primitives we consider here are:

1. spherical metaballs

2. triangular metaballs

Spherical metaball is an isosurface of the scalar field gen-
erated from the skeleton which is the center of the sphere
circumscribed around the facet with its center on the facet
as shown in Fig. 2(b). Triangular metaball is an isosurface
of the scalar field generated from the skeleton which is now
whole facet instead of the point as in the case of spherical
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metaball. The parameters for the metaball include the po-
sition of the skeleton, and the potential filed function de-
pending on the distance from the skeleton. This is depicted
in Fig. 2(c).

Spherical metaballs are very simple and suitable for fairly
regular meshes, while the triangular metaballs are more
complex but suitable for completely generic meshes. Tri-
angular metaballs provide much closer approximation of
the explicit mesh what is discussed bellow.

3.2.1 Spherical Metaballs First way of building the
implicit shell whose shape approximates the initial explicit
mesh is done as follows. We circumscribe a spherical meta-
ball primitive around each facet of the surface triangulation
in such a way that the sphere center lies on the facet, as
it is shown in the Fig 2 (b). In fact spherical metaball is
an isosurface of the scalar field depending on the distance
from the field generating point, also called skeleton. For
the spherical metaball skeleton is the center of the triangle
and the distance is simple Euclidean distance of the points
in space from the center of the sphere. We can express the
radius and center of the spherical metaball in function of
triangle vertices:

?A@BDC �FE ? @B � ? ?G@BIHJ (2)

The center of the sphere circumscribed around the triangle
depends on the triangle’s center of the gravity

? @B � and the
orthocenter

?1@BIH . Finally, we have the distance from the
center of the sphere to be the potential field function:

K�LNM �POQ�+RTS �VU M � L ? � L$W ?@ B W ? W ?@ B : W S+S (3)

W ?@ B W �YX LNM ? BDC[Z SP\ 4 L O ? BDC[] S^\ 4 L R ? BDC[_ S^\ (4)

W ?@ B : W � X L � � Z ? BDC Z S \ 4 L � � ] ? BDC ] S \ 4 L � � _ ? BDC _ S \
(5)

where ` ?@ B ` is the distance of any 3D point from the sphere
center and ` ?@ B : ` is the radius of the spherical metaball. If we
now consider the complete mesh consisting of a number of
the triangles we get the definition of the implicit surface
which approximates the mesh:

a LbM �POQ�$RcS �Vd ? �7 e 8;: U M � L ? � L+W ?@ B W ? ` ? @B : e ` S
Where d is the threshold of the potential field meaning that
changing this value we can obtain different isosurface of
the potential field. Usually we set d to be equal one, so that

all the points on the surface have potential filed value equal
zero, inside surface values smaller then zero and outside
values greater then zero.

Ideally, to get a smooth implicit surface, the explicit mesh
should have equally sized facets. In practice, the smaller
the facets, the smaller the spheres circumscribed around
them, and the closer the resulting implicit mesh approxi-
mates the initial explicit mesh. We have therefore found
experimentally that subdividing the explicit mesh until all
the facets are small enough is sufficient to produce visually
pleasing results. Furthermore, as will be discussed bellow,
the number of control parameters does not depend on the
number of primitives and there is no significant computa-
tional penalty in so doing. Fig. 2(d, e) depicts the conver-
sion of a simple triangulation patch into an implicit mesh.

3.2.2 Triangular Metaballs Previous approach assumes
that the explicit mesh has small, approximately equally
sized facets so that the obtained implicit surface closely ap-
proximates explicit one. To overcome this limitation and
to better approximate explicit mesh we use following ap-
proach. We create the implicit shells in such a way that in-
stead of considering point, where the center of the sphere,
is the skeleton around which the potential field is created,
we use the whole triangle as the skeleton and compute po-
tential filed around it in function of the distance from that
primitive. In the Fig. 2(c) you can see metaball created
around the triangle which we call triangular metaball.

The distance function is the Euclidean distance from the
triangle expressed as function which defines distance ei-
ther from the plane if the point projects on the triangle or
the distance from the line or point if the point project out-
side the triangle. In this case it is necessary to consider
seven different regions. According to which region projec-
tion of the considered 3D point

?@ �
belongs to we can write

following distance function:

W ?@ B W �

fgggggggggggggggggggggggh gggggggggggggggggggggggi

jjjj ?@ k ?@ �ml-no , o jjjj � B U	pcq1r k =sss ?@ L B l ? @� \	t+u ?@ v sssW ?@ v W � B U	pcq1r k Jsss ?@ L B l ? @� � t+u ?@xw sssW ?@ w W � B U	pcq1r k Esss ?@ L B l ? @� \	t+u ?@zy ssssss ?@zy sss � B U	pcq1r k;{sss ?@ � ? ? @� \ sss � B U	pcq1r k}|sss ?@ � ? ? @� � sss � B U	pcq1r k�~sss ?@ � ? ? @� � sss � B U	pcq1r k��

(6)

Finally, distance function can be incorporated in the same
potential field function as used for spherical metaballs:

a LbM �POQ�$RcS �Vd ? �7 e 8;: U M � L ? � L+W ?@ B W ?�� : S (7)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Converting an explicit surface into an implicit shell. Upper row: Single triangle as the part of the explicit
mesh (a), converted to the spherical metaball shown transparent (b) and to the triangular metaball (c). Middle row:
Initial explicit surface (d), converted to the transparent implicit shell with the spherical metaballs (e) and converted to
the implicit shell using triangular metaballs (f). Bottom row: Deformed explicit mesh (g), and corresponding deformed
implicit shells shown transparent around the explicit one with spherical metaballs (h) and with the triangular metaballs
(i).

where � : is the fixed distance from the triangle, where po-
tential field of the triangular metaball is zero. Having con-
trol over the parameter � : we can approximate the explicit
mesh with the arbitrary thin implicit surface. This ap-
proach to conversion allow us to convert any mesh, for ex-
ample one taken from the web, to the implicit shell and use
it for automatic fitting or blending.

3.2.3 Implicit Shells Parametrization and Deforma-
tion Our goal is to deform the implicit mesh in tandem
with the explicit mesh. Explicit mesh is deformed using
set of control points. In our case these are DFFD control
points, but in general it can be any set of control points
which control shape of the mesh, such as FFD or B-spline
and NURBS patch control points. All this methods allow
that mesh vertices, can be expressed as a function of the
control points. Since both, spherical metaball and triangu-
lar metaball parameters depend only on the vertices of the

triangle it means that they depend also on control points.
We can therefore write the field function

a
that defines the

implicit shell as

a LN� � � �D�
�z��� ��� S �Vd ? ,7 e 8 � K�L B LN� � � �/� � \ �	���z� ��� S9� B
e S
(8)

where
�

is a point in
���

,
K

is the exponential field func-
tions discussed below, B LNM � � �D� � \ �
�z���z� ��� S is the Euclidean
distance to the primitive q , and B e is the radius of primi-
tive. For the spherical primitives radius of the primitive
also depends on the control points, while for the triangular
metaballs this is fixed value labeled as � : in Eq. 7.
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Figure 3: Generic model of the upper body and corre-
sponding control mesh. Left: Complete model surface
triangulation, with rigid head as a mesh and deformable
neck-shoulders converted to the implicit surface. Right:
Complete control mesh

4 OPTIMIZATION FRAMEWORK

Our goal is to deform the implicit mesh so that it conforms
to the image data which is made of 3–D points derived
from stereo and silhouette information. In standard least-
squares fashion, for each data-point

� e
, we write an obser-

vation equation of the form

� LN� e �$�)S �Vr y"�	� ]$� .e 43� e � =���q�� k r y"� (9)

with weight � � ]$� .e
, where � O ��U is one of the possible types

of observations we use, � is a state vector that defines the
surface shape, � is the distance from the point to the sur-
face, and � e is the deviation from the model. In practice,
we take � Lb� e �$�)S to be the algebraic distance of

�
to the im-

plicit surface defined by the field function of
a

of Eq.8and
we minimize the weighted sum of the squares of the devia-
tions. To ensure that the minimization proceeds smoothly,
the system automatically computes the � � ]$� .e

weights so
that the different kinds of observations have commensurate
influence(Ilic and Fua, 2002).

4.1 Parametrization and Regularization

In theory we could take the parameter vector � to be the
vector of all

M �+O , and R coordinates of the surface trian-
gulation. However, because the image data is very noisy,
we would have to impose very strong regularization con-
straints. This is why we chose to use the DFFD approach to
deforming the surface instead and introduce control trian-
gulations such as the one dpicted by Fig. .3. Their vertices
are points located at characteristic places on the model and
serve as DFFD control points. This ability to place the con-
trol points at arbitrary locations is what sets DFFDs appart
from all other kinds of FFDs. The control triangulation
facets are used to introduce the regularization constraint
discussed below. In our scheme, we take the state vector� to be the vector of 3-D displacements of DFFD control
points(Ilic and Fua, 2002).

Because there are both noise and gaps in the image data,
we still found it necessary to introduce a small regulariza-
tion term. Since, we expect the deformation between the
initial shape and the original one to be smooth, this can be

done by preventing deformations at neighboring vertices
of the control mesh to be too different. This is enforced
by introducing a deformation energy ��� that approximates
the sum of the square of the derivatives of displacements
across the control surface. By treating the control triangu-
lation facets as C : finite elements, we write

������( �ZD� ( Z 4�( �]I� ( ] 4�( �_�� ( _ (10)

where � is a stiffness matrix and ( Z � ( ] and ( _ are the
vectors of the x, y and z coordinates of the control vertices’
displacements. The term we actually optimize becomes:

�Y� 7�9� e � ,/�$�G� �
� ]$� .e � \e 4�� n � n

where � n is a small positive constant.

4.2 Stereo and Silhouette Observations

In this work, we concentrate on combining stereo and sil-
houette data. Because the field-function

a
of Eq.8 is both

well-defined and differentiable, the observations and their
derivatives can be computed both simply and without search.

3–D Point Observations Disparity maps are used to com-
pute clouds of noisy 3–D points such as those of Fig.1.
Each one is used to produce one observation of the kind
described by Eq. 9. Minimizing the corresponding resid-
uals tends to force the fitted surface to be as close as pos-
sible to these points. Because of the long range effect of
the exponential field function in the error function

a
of

Eq.8, the fitting succeeds even when the model is not very
close to the data. Also, during least-squares optimization,
an error measure that approaches zero instead of becoming
even greater with growing distance has the effect of filter-
ing outliers.

Silhouettes Observations A silhouette point in the im-
age defines a line of sight tangential to the surface. Let �
be an element of the state vector. For each value � , we
define the implicit surface:

� L � S � � � ¡� � � a LN� � � S �¢= �  -£ (11)

Let
�)L � S be the point on the line of sight where it is tan-

gential to � L � S . By definition, it must satisfy the two con-
straints:

1. The point is on the surface, therefore
a Lb�)L � S"� � S �= �  �

2. The normal to � L � S is perpendicular to the line of
sight at

�)L � S .
We integrate silhouette observations into our framework by
performing, before each minimization, a search along the
line of sight to find the point that has the lowest field value
and, therefore, satisfies the second constraint. It is then
used to add one of the observations described by Eq. 9to
enforce the first constraint.
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Figure 4: Reconstructed shaded model of a person with
overlaid silhouettes. Top row: Reconstructed model of the
person using stereo alone viewed using the same perspec-
tive as that of the original images from Figure 1 and with
overlaid silhouettes extracted from original images. Bot-
tom row: Equivalent results using both stereo and silhou-
ette data.

5 RESULTS

We first demonstrate our technique on modeling people’s
neck and shoulders, and then animate them.

Neck and Shoulder Modeling Here we recover person
using real stereo and silhouette data reconstructed from an
initially uncalibrated 6–frame video sequence in which the
camera was moving around a static subject. In the left side
colum of Fig. 1, we show the first, middle and last frames
of the sequence. We used snakes to extract the silhou-
ettes. In the absence of calibration information, we used a
model-driven bundle-adjustment technique (Fua, 2000) to
compute the relative motion and, thus, register the images.
We then used a max-flow algorithm to derive from con-
secutive image pairs disparity maps, such as those shown
in the middle colum of Fig. 1. Fig. 4 depicts reconstruc-
tion results of the neck and shoulders obtained either by
using stereo alone or by using both stereo and silhouettes.
In both cases, the head was reconstructed separately us-
ing our earlier DFFD-based method (Ilic and Fua, 2002).
Notice that it is only when we combine both information
sources that we get a model that projects correctly in all
the views. This shows that its shape is geometrically cor-
rect even at places where the surface slants away from the
cameras and, therefore, where stereo fails. Note that the
texture-mapped views of Fig. 1 and the shaded views of
Fig. 4 were generated by moving the initial explicit surface
to match the deformed implicit shell, thereby underlining
the importance to go back and forth from the explicit to the
implicit representation.

Animation results Finally, we show that automatically
obtained results can be easily manually manipulated. Re-
sult of the optimization process is optimal position of the
control points which define the shape of the object we model

Figure 5: Deformation results. Left image: Reconstructed
model of the person in its initial position. Right image: The
same person with the both sholders rised simultaniously.

from images. These displacement of control point can be
used to further deform the object. In the Fig. 5(left) we
show the person after reconstruction and in the Fig. 5(right)
person with both shoulders rised. This is obtained by sim-
ply selecting and moving some control points on the shold-
ers.

6 CONCLUSION

We have presented an approach to switching from explicit
surfaces to implicit that allows us to take advantage of the
strengths of both kinds of approaches. To this end, we have
proposed a technique for creating implicit shells in such a
way that their shape depend only on the explicit surfaces’
shape and that they are both parametrized in the same way.
Particularly we choose Dirichlet Free Form Deformations
for deforming the implicit and explicit models in tandem,
but the way how implicit shells are created allows using of
any other deformation method including direct mesh ma-
nipulation or indirect mesh manipulation using set of con-
trol points. This means that any FFD, or B-spline based
approach of deforming meshes can be used to deform their
implicit shells. However, some other indirect methods for
explicit surface deformation, such as PCA parmetrization,
can be used to deform our implicit shells.

We used the example of upper-body modeling using stereo
and silhouette data to demonstrate the power of this ap-
proach. The explicit model we started from was not tai-
lored for fitting purposes has man facets and a complex
topology, neither of which has a significant impact on the
quality of the fitting or the complexity of the computation.

Our next step will be to explore the use of this method
for tracking upper body motion form monocular video se-
quences what should automatically produce animation pa-
rameters of the model. We expect this to result in a com-
pletely generic for modeling and animation from images.
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