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Abstract

Deformable 3–D models can be represented either as
explicit or implicit surfaces. Explicit surfaces, such as tri-
angulations or wire-frame models, are widely accepted in
the Computer Vision and Computer Graphics communi-
ties. However, for automated modeling purposes, they suf-
fer from the fact that fitting to 2–D and 3–D image-data typ-
ically involves minimization of the Euclidean distance be-
tween observations and their closest facets, which is a non-
differentiable distance function. By contrast, implicit sur-
face representations allow fitting by minimizing an alge-
braic distance where one only needs to evaluate a differ-
entiable field potential function at every data point. How-
ever, they have not gained wide acceptance because they
are harder to meaningfully deform and render.

To combine the strength of both approaches, we propose
a method that can turn a completely arbitrary triangulated
mesh, such as one taken from the web, into an implicit sur-
face that closely approximates its shape and can deform in
tandem with it. This allows both graphics designers to de-
form and reshape the implicit surface by manipulating ex-
plicit surfaces using standard deformation techniques and
automated fitting algorithms to take advantage of the attrac-
tive properties of implicit surfaces. We demonstrate the ap-
plicability of our technique for upper body—head, neck and
shoulders— automated reconstruction.

1. Introduction

In the world of Computer Graphics, 3–D objects tend to
be modeled as explicit surfaces such as triangulated meshes
or parametric surfaces like spline patches. Because such
representations are intuitive and easy to manipulate, they
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are widely accepted among graphics designers. These rep-
resentations, however, are not necessarily ideal for fitting
surfaces to data such as 3–D points produced by laser-
scanners and stereo systems or 2–D points from image con-
tours where the data are noisy and incomplete. This stems
from the fact that fitting typically involves finding the facets
that are closest to the 3–D data points or most likely be-
ing silhouette facets. This involves non-differentiable dis-
tance function, which degrades the convergence properties
of most optimizers.

Implicit surfaces, known in the literature as Blobby
Molecules[4], Soft Objects[34] and Metaballs[19], have
received substantial attention in both the Computer Graph-
ics and Computer Vision communities. They are well-suited
for simulating physically based processes and for mod-
eling smooth objects. Because the algebraic distance to
an implicit surface is computed by evaluating a differen-
tiable function, they do not suffer from the drawbacks dis-
cussed above when it comes to fitting them to 2 and 3–D
data [29, 22, 8]. However, they have not gained wide ac-
ceptance, in part because they are more difficult to deform
and to render than explicit surfaces.

In short, explicit surface representations are well suited
for graphics purposes, but less so for fitting and automated
modeling. The reverse can be said of implicit surface rep-
resentations. In earlier work [?], we proposed method for
combining the strengths of both approaches while avoiding
their drawbacks by converting explicit surfaces into implicit
meshes whose shape closely approximates that of the orig-
inal triangulations and deforming the implicit and the ex-
plicit surfaces in tandem for fitting purposes. To create the
implicit mesh, we circumscribed each facet with a spheri-
cal volumetric primitive with its center being on the facet,
as depicted by the middle row of Fig. 1. This approach is ef-
fective but has some limitations: It works best for fairly reg-
ular meshes like one shown in the middle row of Fig. 1,
or high-resolution meshes such as one shown in Fig. 2(e,
f), while it can produce lumpy implicit surfaces for irregu-
lar coarse ones, as depicted in Fig. 2(a, b).



Figure 1. Converting an explicit surface into an implicit surface. Top row: Initial explicit meshes
(facet, triangulated mesh patch and deformed mesh patch, from left to right respectively) . Middle
row: Initial explicit surfaces from the top row converted to the spherical implicit meshes shown as
transparent around explicit once. Bottom row: Initial explicit surfaces from the top row converted to
the triangular implicit meshes shown again as transparent.

Here, we overcome these limitations by replacing spheri-
cal metaballs by triangular metaballs shown in the left hand
side image of the bottom row in Fig. 1. Instead of computing
the potential field as a function of the distance from the cen-
ter of a facet, we take it to be the Euclidean distance from
the whole triangle. As shown in the bottom row of Fig. 1
and in third and forth column of Fig. 2, the thickness of the
implicit surface approximating the explicit surface can be
arbitrarily small, whatever the mesh topology. The parame-
ters of those metaballs are a function of the facet geometry.
As a result, when a facet deforms, so does the correspond-
ing metaball and the implicit and the explicit surfaces move
in tandem. In this work, we use Dirichlet Free Form Defor-
mation(DFFD) [18, 13] to control the shape, but in general,
since we can turn any mesh into its implicit representation
one could have chosen other methods, such as Free Form
Deformations(FFDs) [26, 7], B-splines or PCA parameteri-
zation [3] to deform the explicit mesh and consequently the
implicit one. DFFD had been chosen because it allows us to
control any complex shapes with a relatively small number
of parameters, then allows arbitrary control points deploy-

ment, produces local deformation and provides very natural
way of deforming the objects for the graphics designers.

Our contribution is therefore an approach to surface fit-
ting that allows to take an arbitrary explicit surface model
of any complexity, for example one that has been obtained
from the web and was not designed with fitting in mind,
turn it into an implicit mesh, and deform it to obtain an op-
timal fit to image-data. In the automatic reconstruction im-
plicit surface is just virtually present and it was fitted to the
data, while actual explicit mesh was deformed along with
it. Because of very close approximation of the mesh with its
virtual implicit surface we can keep the deformed explicit
mesh and use it instantly for rendering, furthermore provide
it to the graphic designer with a optimal position of the con-
trol points for further modification and animation.

In the remainder of the paper, we first briefly review ear-
lier approaches. We then introduce our approach to creating
implicit meshes and deforming them, where we compare
spherical and new triangular metaballs approach. Then, we
describe our optimization framework, and finally demon-
strate the applicability of our framework to the complex



case of fitting the upper-body including – head, neck and
shoulders – to image-data, where we compare results ob-
tained by fitting explicit mesh, spherical implicit mesh and
triangular implicit mesh to stereo and silhouette data.

2. Previous Work

Three-dimensional surface reconstruction continues to
be an important goal and many approaches relying on ex-
plicit surface representations, such as 3–D surface meshes
[6, 31], parameterized surfaces [28, 17], local surfaces [10],
and particle systems [30], have been proposed.

There has also been sustained interest in the use of volu-
metric primitives [16, 31, 20] and implicit surface represen-
tations [8, 29, 23] for fitting purposes. These methods, how-
ever, are tailored for specific shapes such as the human body
and its skeleton and there is no generally accepted way to
deform generic implicit surfaces.

A popular way to deform implicit surfaces is to twist,
bend, and taper the space in which the model lives by choos-
ing a suitable warping function [4, 2, 33]. However, these
deformations are limited to parametric surfaces, such as
spheres or cylinders, and there is no way to warp the space
in a free form manner. In [1], simple superquadrics are
parametrized using conventional FFDs for automatic heart
reconstruction and deformation from medical images. Here
the FFDs ability to deform parametric surfaces has been ex-
ploited, but only to reshape a single primitive. Our proposed
implicit shells coupled with DFFDs [18, 13] go much fur-
ther by allowing us to deform completely generic implicit
surfaces. In spirit, the our implicit meshes are related to
the earlier distance surfaces [5]. However, in this earlier
work, the problems associated to bulges created by meta-
balls blending into each other are handled by a convolution
mechanism that looses the algebraic nature of the distance
function and makes the distance surfaces impractical for the
kind of fitting we perform.

Radial basis functions (RBF) [14, 15, 32] are an inter-
esting alternative to soft objects or metaballs [34, 19]. The
shape of the resulting surface, however, is controlled not
only by the position of the RBF centers but also by the RBF
weights that have no geometric interpretation, which makes
this approach also unsuitable for in-tandem deformation of
explicit and implicit surface.

In short, both approaches to 3–D modeling have their
strengths and weaknesses for the purpose of fitting noisy
image-data. It is therefore important to be able to combine
two kinds or representations and deform them in tandem.

3. Implicit Mesh Models

To create an implicit mesh model that can deform in tan-
dem with the explicit surface, we must address two prob-

lems:

1. Creating an implicit surface that closely approximates
the shape of the initial explicit mesh,

2. Controlling the object shape, in both its explicit and
implicit forms, using the same set of parameters.

To convert an arbitrary triangulated surface into an implicit
mesh, we create an implicit surface primitive or metaball for
each facet. In earlier work [?] we used spherical metaballs,
which are very simple but only suitable for fairly regular
meshes or high resolution meshes as it is shown in the mid-
dle row of Fig. 1, where first one triangle, then ordinary reg-
ular and the deformed mesh patch are converted into spher-
ical implicit mesh shown as transparent. Here, we replace
them by the triangular metaballs, which are more complex
but can handle arbitrarily irregular meshes and low resolu-
tion meshes and perform much closer approximation of the
explicit surface, as depicted by the third row of Fig. 1. In
this section, we first compare the two kinds of metaballs
and then discuss our approach to shape deformation.

3.1. Spherical Metaballs

The spherical metaball [?] is created by circumscribing
a spherical primitive around a facet in such a way that the
sphere center lies on the facet and corresponds to the cen-
ter of the circumscribed circle around the facet. It defines a
potential field that can be expressed as:�������	��

�������������������������
���

(1)

where
�

is a 3–D point,
�

is the Euclidean distance to the
sphere’s center,

� �
is the radius of the spherical metaball and�

is free coefficient defining slope of the potential field func-
tion. The implicit mesh, shown in gray in the middle row of
Fig. 1, is then taken to be an isosurface of the sum of all
these potential fields. Formally, it is defined as the set of
3–D points

�
that satisfy

� �����	� �!�#"$ % & � 

�'�(�����)���
% �������*�+�,�

, (2)

where
�

is an arbitrarily chosen isovalue. Usually we take�
to be one, so that all points on the surface have a po-

tential field value equal to zero and the values smaller then
zero inside and greater then zero outside. Because the spher-
ical metaballs are circumscribed around the facets their ra-
dius

�+�
depends on the size of the triangle. As shown in

the second row of Fig. 1, as long as the explicit mesh is
relatively regular or high resolution, this yields a valid ap-
proximation. However, because large facets produce large
primitives, the approximation becomes much less accurate
when the explicit mesh has large facets. If we deal with low
resolution irregular mesh as the one depicted in Fig. 2(a),
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Figure 2. Conversion of low and high resolution explicit meshes to implicit ones, using either spher-
ical or triangular metaballs . Left column(a, e): Low and high resolution mesh. Second column(b, f):
Corresponding implicit surfaces created with spherical metaballs, shown as transparent. Third col-
umn(c, g): Corresponding implicit surfaces created with triangular metaballs. Last column(d, h):
Magnified implicit triangular metaballs surface in the neck and shoulders area, highlighting the ap-
proximation’s quality.

elongated facets produce an implicit surface whose thick-
ness can change dramatically, as shown in Fig. 2(b). Up to
a point, that can be remedied by retriangulating the mesh
obtaining one depicted in Fig. 2(e), so that it consists of
many smaller size facets and produce better approximation
as shown in Fig. 2(f). This has been done in our previous
work [?], but of course, that results in a substantial increase
in computational cost.

Lack of close approximation of the explicit mesh with
the implicit one may produce problems during the fitting.
That is caused by the notion of two sides of the implicit
surface which become important when implicit surface is
thick like in a case of spherical implicit surface depicted in
Fig. 3(a). If the model is not encapsulated inside the obser-
vation data and it intersects with the observations, that can
cause fitting of the wrong side of the implicit surface to the
data as it is shown in Fig. 3(b) in the neck area.

3.2. Triangular Metaballs

To solve these problems, and create implicit surfaces that
more closely approximate arbitrary meshes, we propose to
replace the spherical metaballs by triangular ones. This is
done by replacing the Euclidean distance

�
to the facet’ cen-

ter in Eq. 1 by the actual distance - to the whole facet.
In the bottom row of Fig. 1 you can see metaball created
around the triangle which we call triangular metaball. The
distance function is the Euclidean distance from the trian-
gle expressed as function which defines distance either from
the plane if the point projects on the triangle or the distance
from the line or point if the point project outside the trian-
gle.

Finally, distance function can be incorporated in the
same potential field function as used for spherical meta-
balls:
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Figure 3. Influence of the explicit mesh approximation by the spherical or triangular implicit surface
to fitting results. (a) Spherical implicit mesh. (b) Inner side of the spherical implicit mesh fitted to
the data, depicted as small circles, in the neck area. (c) Triangular implicit mesh. (d) Correct fitting
of triangular implicit mesh to the data because of the small thickness of the implicit surface.
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that has almost the same form as before, but where
�/���0�

is
distance of the point in space to the triangle and - � is a dis-
tance that represents the thickness of the implicit surface.
Actually, all the points in space at the distance - � from the
triangle have potential field value equal to zero. Again, com-
plete implicit surface is obtained by summing all the field
potentials that produces overall implicit surface expressed
as:

� �����1�!�!� "$ % & � 

�'�(�����)���
% �����2� - � � , (4)

It is easy to spot that the potential field is now indepen-
dent of the facet sizes and mesh resolution as depicted in
Fig. 2(c, g, d, h) what is not the case for the spherical meta-
balls as shown in Fig. 2(b, f). Having control over the pa-
rameter - � allows us to approximate the explicit mesh with
an arbitrarily thin implicit surface and in that way to re-
lax the constraint of using fairly regular or high resolution
mesh.

However, triangular implicit mesh might produces small
bulges near vertices and along the edges, but since we have
control over the slope of the exponential field function

�
it

is easy to remove the bulges by tuning
�

to smaller value.
Also, the problem of fitting to the wrong side of the implicit
surface is now overcome by the very close approximation
of explicit surface. Choosing - � to be arbitrary small thick-
ness of the implicit surface, even if fitting is done to the in-
ner side of it, fitting error is negligible as shown in Fig. 3(c,
d).

3.3. Deforming Implicit and Explicit Meshes

We have shown that introducing DFFD control points is
an effective way to deform explicit meshes [13]. Our idea
of converting explicit mesh to implicit surface by close ap-
proximation allows to apply the same deformation mecha-
nism based on DFFD control points to control the shape of
both explicit and implicit surface.

3.3.1. Deforming Explicit Meshes Mayor advantage of
DFFD over other FFDs [26, 7, 12], is obtained by releas-
ing the constraint on the shape of the control mesh, which
is the main conceptual geometric limitation of FFDs. Here
rectangular local coordinates of FFDs are replaced by gen-
eralized natural neighbor coordinates of DFFD, also known
as Sibson coordinates, and a generalized interpolant [9] is
applied. The idea comes from the data visualization com-
munity that relies on data interpolation and, thus, heavily
depends on local coordinates. This property of locality al-
lows using sparse matrix computation in our optimization
framework, what is not the case for other FFDs which are
global deformation.

3.3.2. Computing Sibson Coordinates Every surface tri-
angulation point is influenced by certain subset of control
points. The magnitudes of these influences, known as Sib-
son coordinates [27], are computed only once before the op-
timization starts [18]. The displacement of each surface tri-
angulation point is the linear combination of the displace-
ments of the control points that influence it.

Let 3 �54 3268793�:�7+;<;=;<7.3 "?>*@BADC be the set of all con-
trol points and E �F4 326G7.3(:G7.3 C 7.3�H > be a subset of all
control points, influencing surface triangulation point

�
,EJI#3K79E �L4 3(M > , where

�N�FO 7+;�;+;P7.Q as shown in
Fig 4(a). Subset E of influencing control points has been
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Figure 4. (a) Initial position of a subset of
control points E �R4 3 6 7.3 : 793 C 7.3 H > and one
mesh vertex

�
for which Sibson coordinates

have to be computed. (b) Delaunay triangu-
lation of the control point set with circum-
scribed spheres around each Delaunay facet.
(c) Voronoi diagram of control points. (d)
Voronoi diagram of control point set with
added mesh vertex ETS �U4 3 6 793 : 7.3 C 793 H 7 � > ,and Sibson coordinate of control point 326 .

extracted from the overall set of control points 3 , by mak-
ing Delaunay triangulation of all control points from 3 ,
and then searching to which circles(spheres in 3D) circum-
scribed around Delaunay facets, surface triangulation points�

belongs to, as depicted in Fig. 4(b). The elements of E
are the natural neighbors of

�
and their influence is ex-

pressed by the Sibson coordinates V�M . Further step is to cre-
ate Voronoi diagram out of control points from E , what
will produce one Voronoi cell for each control point that
is some polygon in 2D or polyhedron in 3D as shown in
Fig. 4(c). Finally, insert the surface triangulation point

�
to

the set of control points E and redo Voronoi diagram on setETW �54 3268793�:�7.3 C 793�H�7 � > . This will add new Voronoi cell
corresponding to the inserted point

�
. It will take out parts

of the volumes of the precedent Voronoi cells corresponding
to control points from E , as shown in Fig. 4(d). Simply, for
control point 3 6 , part of its Voronoi cell taken by the new in-

serted Voronoi cell corresponding to
�

, marked as dark gray
in Fig. 4(d), normalized with the whole volume of the cell�

, is actual Sibson coordinate V�6 �JX�Y�Z\[<]_^�`ba)X�Y�Z�[=] 6 S `X�Ydc,[ec+` , as
depicted on Fig. 4(d), which measures influence of control
point 326 to surface point

�
.

Let the control points from E be displaced from their ini-
tial positions by fg3�M�7 �h�ji 7+;�;+;P79kml , where kgl is number
of influencing control points (in our example knl � Q ). The
new position of the surface triangulation point becomes:

�po�qdr*�s�mt "�u$M & � V M fg3 M 7.3 M @ E (5)

with v "�uM & � VwM �xO and V)M?y i .
3.3.3. Deforming Implicit Meshes To deform implicit
surface created from the explicit one either created from
spherical or triangular metaballs it is sufficient to control
parameters which define the shape of the metaballs. Let us
consider one single triangle. In both cases important param-
eters which define shape of the metaball are distance func-
tion
�������

and either radius of the metaball
� �

for the case
of spherical metaball or thickness of the metaball - � in the
case of triangular metaball. Distance function

�������
in the

case of triangular metaball is distance of the point
� @zA{C tothe triangle, and in case of the spherical metaball distance

from the center of the circumscribed circle around the tri-
angle. Since triangle corners are controlled by the control
points, and can be expressed as weighted linear combina-
tion of control points, as in Eq. 5, than the corresponding
distance function

�/�����
also depends on control points and

can be expressed as:

�������	������� 793 6}| 3 : 7+;<;<;=793 " � (6)

In case of the spherical metaballs radius of the metaball�+�
also depends on the control points, while thickness of the

triangular metaball - � is free parameter and is provided by
the user. We can therefore rewrite the field potential func-
tion
�

of Eq. 4 that defines the implicit mesh as:

� ��� 793 6 7+;<;=793 " �����{� "$ % & 6 
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(7)
where

�
is a point in ADC , �

% ��� 7.3 6 7.3 : 7�;=;<;=793 " � is the Eu-
clidean distance to primitive ~ , - � is the implicit surface’s
thickness and k is number of facets.

Note that here we have chosen to use DFFD control
points to deform the explicit mesh but, that in fact, the
method is generic because allows us to express the vertices’
positions as a function of a some other parameters.



(a) (b)

Figure 5. (a) Complete head and neck shoul-
ders generic surface triangulation model
which is converted to implicit mesh. (b) Con-
trol mesh representing triangulated DFFD
control points, which appear to be optimiza-
tion parameters.

4. Optimization framework

Our goal is to deform the implicit mesh so that it con-
forms to the image data which are made of 3–D points
derived from stereo and silhouette information. Model is
parametrized in terms of DFFD control points which are
connected to a control mesh, as depicted on the Fig. 5(b),
representing a reduced version of the original generic model
shown in Fig. 5(a).

4.1. Objective Function

In standard least-squares fashion, for each data-point
� %

,
we minimize following objective function:

� ������� 6:��P� ��� 7 ��� � : � 6: v�"��b���% & 6������ c q% � - ���
% 7 �	� � : (8)

with weight � ��� c q% , where �d� �0
 is one of the possible types
of observations we use, such as stereo and silhouette ob-
servation,

����4 -_3 6 79-�3 : 7+;<;=;<7.-_3 " l > is a state vector that
defines the surface shape and in our implementation rep-
resents displacements of the DFFD control points, - is the
distance from the either stereo or silhouette point to the sur-
face. In practice, we take - ���w� 7 ��� to be the algebraic dis-
tance of

�0� 7�� ��O 7.k Y9�b� to the implicit surface defined by
the field function of

�
of Eq. 7 and can be expressed as:

- ��� � 7 ����� � ��� � 7 ���2� �?� "$ % & 6 �����
% ��� � 7 �	� 7.- � � 7 OT� � � k Y9���

(9)

Where
�

is a potential field threshold set to one, andk is a number of facets. To ensure that the minimization
proceeds smoothly, the system automatically computes the����� c q% weights, so that the different kinds of observations
have commensurate influence[13].

Because there are both noise and gaps in the image data,
we still found it necessary to introduce a small regulariza-
tion term based on the connectivity of the control mesh
shown in Fig. 5(b). Since, we expect the deformation be-
tween the initial shape and the original one to be smooth,
this can be done by preventing deformations at neighbor-
ing vertices of the control mesh to be too different. This is
enforced by introducing a deformation energy ��� that ap-
proximates the sum of the square of the derivatives of dis-
placements across the control surface. By treating the con-
trol triangulation facets as � � finite elements, we write

� � � f � �'� f � t f � � � f � t f � �
� f � (10)

where � is a stiffness matrix and f � 79f � and f � are the
vectors of the x, y and z coordinates of the control ver-
tices’ displacements. The term we actually optimize using
Levenberg-Marquardt algorithm [24] becomes:

� ������� O� �P� ��� 7 ��� � : t�  � � � (11)

where
  � is a small positive constant.

4.2. Stereo and Silhouette Observations

In this work, we concentrate on combining stereo and
silhouette data. Because the field function

�
of Eq. 7 is

both well-defined and differentiable, the observations and
their derivatives can be computed both simply and without
search.

Stereo Observations Disparity maps are used to compute
clouds of noisy 3–D points such as those of Fig. 5. For each
one of the kind we express the distance of the observation
to the model defined by Eq. 9. Minimizing the norm de-
fined by Eq. 11 tends to force the model to be as close as
possible to the observations. Because of the long range ef-
fect of the exponential field function

�
of Eq.7, the fitting

succeeds even when the model is not very close to the data.
Also, during least-squares optimization, observations which
appear to be outliers have smaller algebraic distance when
they are further from the model. This means that the error
measure approaches zero instead of becoming even greater
with growing distance, what has the effect of filtering out-
liers.

Silhouette Observations A silhouette point in the image de-
fines a line of sight tangential to the surface. Let

�
be an

state vector. For each value
�

, we define the implicit sur-
face:



Figure 6. Reconstruction from an uncalibrated video sequence. Left column: 3 of 6 images from
a short video sequence with overlaid silhouettes on head, neck and shoulders. Second column:
Disparity maps extracted from rectified consecutive image pairs using max flow-based stereo, af-
ter automated registration. Third column: Textured reconstructed model with triangular metaballs
where overlaid silhouettes show correct fitting to silhouettes. Forth column: Animated reconstructed
model.

¡ ���	����¢'� @zA C 7 � ��� 7 ����� �g£ (12)

Let
�������

be the point on the line of sight where it is tangen-
tial to

¡ �����
. By definition, it must satisfy two constraints:

1. The point is on the surface, therefore
� ��������� 7 ���	��� ;

2. The normal to
¡ ���	�

is perpendicular to the line of sight
at
�������

.

We integrate silhouette observations into our framework by
performing, before each minimization, a search along the
line of sight to find the point that has the lowest field value
and further must satisfy the second constraint as it is done
in [21].

5. Results

Here we use the example of head, neck and shoulder
modeling to demonstrate our method’s applicability. We
start with the generic head, neck and shoulder model as
shown in Fig. (a) and Fig. 2(a) when fitting triangular im-
plicit mesh that has a complex topology and is made of very
irregular facets, and with remeshed high resolution model as
shown in Fig. 2(e) when fitting spherical implicit mesh.

Reconstruction and Animation In Fig. 5 we show recon-
struction results using stereo and silhouette data obtained
from an initially uncalibrated 6–frame video sequence in
which the camera was filming a moving subject. In the left
column, we show the first, middle and last frames of the se-
quence. We used snakes to extract the silhouettes shown as
white lines. In the absence of calibration information, we
used a model-driven bundle-adjustment technique [11] to
compute the relative motion and, thus, register the images.
We then used a graph-cut technique [25] to derive disparity
maps from consecutive images, such as those shown in the
second column. In the third column, we show reconstructed
model using triangular implicit mesh reprojected using the
same camera corresponding to the images in the first col-
umn. Notice that outlined silhouettes which are taken from
the original image precisely lay on the reprojected model.

Furthermore, in Fig. 7 we compare fitting quality of re-
sults obtained by fitting following models to stereo and sil-
houettes: the explicit mesh (first row), the implicit spherical
mesh (second row), and the triangular implicit mesh (third
column). Obtained results are reprojected back to the cor-
responding views of the camera and important details are
zoomed in. First and the last end column represent two dif-
ferent camera views, while middle columns show close ups.

Notice that when fitting mesh because of non-
differentiable distance function we have wrong result



Figure 7. Reconstruction results comparing fitting to stereo and silhouettes of the following models:
Explicit mesh (first row), Spherical implicit mesh (second row), and Triangular implicit mesh (third
column)

on the right shoulder and on the right side of the face as
shown in the first row of Fig. 7. In the case of fitting spher-
ical implicit mesh, as depicted in the second row of Fig. 7,
even though we use high resolution model, the result ob-
tained suffers from the problem of thick implicit surface,
as explained in Fig. 3 where inner side of the implicit sur-
face is fitted to the silhouettes in the neck area what pro-
duces wrong result on the left shoulder too. Finally, fitting
of the triangular implicit mesh is depicted in the bot-
tom row of Fig. 7. In this case well aligned re-projection
of the reconstructed model with overlaid silhouettes in-
dicates quality of the reconstruction, though we used
low resolution irregular mesh. The texture-mapped mod-
els depicted on the right side column of Fig. 5 and the
shaded views were generated by using only explicit sur-
face, thereby underlining the importance of deforming
explicit and implicit surfaces in tandem. It is impor-
tant to stress that obtained avatar can be animated using
optimal position of the control points obtained from our al-
gorithm as a starting configuration. Some animation results
are shown in forth column of Fig. .

6. Summary and Conclusions

We have presented an approach to switching from ex-
plicit surfaces to implicit that allows us to take advantage
of the strengths of both kinds of approaches. To this end,
we have proposed a technique for creating implicit meshes
in such a way that their shape depends only on the explicit
surfaces’ shape and that they are both parametrized in the
same way. Particularly we choose DFFD to deform the im-
plicit and explicit models in tandem, but the way how im-
plicit shells are created allows using of any other defor-
mation method including direct mesh manipulation or in-
direct mesh manipulation using set of control points. This
means that any FFD, or B-spline based approach of deform-
ing meshes can be used to deform their implicit shells. Also,
some other indirect methods for explicit surface deforma-
tion, such as PCA parmetrization, can be used to deform
our implicit meshes.

We used the example of upper-body modeling using
stereo and silhouette data to demonstrate the power of this
approach. The explicit model we started from was not tai-
lored for fitting purposes and has no man facets, but has a



complex topology, neither of which has a significant impact
on the quality of the fitting or the complexity of the compu-
tation.

Our next step will be to explore the use of this method
for tracking upper body motion form monocular video se-
quences what should automatically produce animation pa-
rameters of the model. We expect this to result in a com-
pletely generic approach for modeling and animation from
images.
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