
Imposing Hard Constraints on Soft Snakes

P. Fua
�
and C. Brechb�uhler

y

� Arti�cial Intelligence Center

SRI International

333 Ravenswood Avenue

Menlo Park, CA 94025, USA

fua@ai.sri.com

y Communication Technology Lab.

ETH-Z�urich

Gloriastr. 35

CH-8092 Z�urich, Switzerland

brech@vision.ee.ethz.ch

Abstract

An approach is presented for imposing generic hard constraints on deformable models at a

low computational cost, while preserving the good convergence properties of snake-like models.

We believe this capability to be essential not only for the accurate modeling of individual ob-

jects that obey known geometric and semantic constraints but also for the consistent modeling

of sets of objects.

Many of the approaches to this problem that have appeared in the vision literature rely on

adding penalty terms to the objective functions. They rapidly become untractable when the

number of constraints increases. Applied mathematicians have developed powerful constrained

optimization algorithms that, in theory, can address this problem. However, these algorithms

typically do not take advantage of the speci�c properties of snakes. We have therefore designed

a new algorithm that is closely related to Lagrangian methods but is tailored to accommodate

the particular brand of deformable models used in the Image Understanding community.

We demonstrate the validity of our approach �rst in two dimensions using synthetic images

and then in three dimensions using real aerial images to simultaneously model terrain, roads,

and ridgelines under consistency constraints.

Keywords : Snakes, Deformable models, Constrained optimization, Consistency.

1



1 Introduction

We propose an approach to imposing generic hard constraints on \snake-like" deformable models
[Terzopoulos et al., 1987, Kass et al., 1988] while both preserving the good convergence properties

of snakes and avoiding having to solve large and ill-conditioned linear systems of equations.

The ability to apply such constraints is essential for the accurate modeling of complex objects

that obey known geometric and semantic constraints. Furthermore, when dealing with multiple

objects, it is crucial that the models be both accurate and consistent with each other. For example,

individual components of a building can be modeled independently, but to ensure realism, one must

guarantee that they touch each other in an architecturally feasible way. Similarly when modeling

a cartographic site from aerial imagery, one must ensure that the roads lie on the terrain|and not

above or below it|and that rivers 
ow downhill.

A traditional way to enforce such constraints is to add a penalty term to the model's energy
function for each constraint. While this may be e�ective for simple constraints|such as the attrac-
tive or repulsive forces that are often attached to the mouse cursor to guide snake optimization|
this approach rapidly becomes intractable as the number of constraints grows for two reasons.

First, it is well known that minimizing an objective function that includes such penalty terms
constitutes an ill-behaved optimization problem with poor convergence properties [Fletcher, 1987,
Gill et al., 1981]: the optimizer is likely to minimize the constraint terms while ignoring the remain-
ing terms of the objective function. Second, if one tries to enforce several constraints of di�erent
natures, the penalty terms are unlikely to be commensurate and one has to face the di�cult problem

of adequately weighing the various constraints.
Using standard constrained optimization techniques is one way of solving these two problems.

However, while there are many such techniques, most involve solving large linear systems of equa-
tions and few are tailored to preserving the convergence properties of the snake-like approaches
that have proved so successful for feature delineation and surface modeling. For example, Sequen-
tial Quadratic Programming (SQP) [Fletcher, 1987] is widely recognized as one of the most powerful

such techniques but updating the Lagrange multipliers requires solving a full (n+m)� (n+m) po-
tentially ill-conditioned linear system|n being the number of state variables, normally much larger
than m the number of constraints. It also requires the computation of the Hessian of the objective

function which is hard to do when dealing with images because second derivatives of image gray
values are notoriously noisy.

In the area of computer vision, one notable exception to the complexity problem is the approach
proposed by Metaxas and Terzopoulos [1991] to enforce holonomic constraints1 by modeling the

second order dynamics of the system and stabilizing the constraint equations to prevent possible

divergence using the Baumgarte method [Baumgarte, 1972]. Solving the system only requires
dealing with matrices whose size is proportional to the number of constraints m.

In this work we propose a new approach to enforcing hard-constraints on deformable models
without undue computational burden while retaining their desirable convergence properties. Given

a deformable model, the state vector that de�nes its shape, an objective function to be minimized
and a set of constraints to be satis�ed, each iteration of the optimization performs two steps:

1Holonomic constraints are purely geometric constraints on a dynamic system.

2



� Orthogonally project the current state toward the constraint surface, that is the set of all

states that satisfy the constraints.

� Minimize the objective function in a direction that belongs to the subspace that is tangent to

the constraint surface.

This algorithm is closely related to the two-phase algorithm proposed by Rosen [1978] and is an

extension of a technique developed in [Brechb�uhler, 1995, Brechb�uhler et al., 1995]. We will show

that this can be achieved by solving mxm linear systems|where m is the number of constraints

and that does not require computing the Hessian of the objective function. The corresponding

procedure is straightforward and easy to implement. Furthermore, this approach remains in the

spirit of most deformable model approaches: they can also be seen as performing two steps, one

attempting to �t the data and the other to enforce global constraints [Cohen, 1995].

We view our contribution as the design of a very simple and e�ective constrained-optimization
technique that allows the imposition of hard constraints on deformable models at a very low com-
putational cost.

We �rst present the generic constrained optimization algorithm that forms the basis of our
approach. We then specialize it to handle snake-like optimization. Finally, we demonstrate its
ability to enforce geometric constraints upon individual snakes and consistency constraints upon

multiple snakes.

2 Constrained Optimization

Formally, the constrained optimization problem, also known as the nonlinear equality-constrained
problem (NEP), can be described as follows. Given a function f of n variables S = fs1; s2; ::; sng,
we want to minimize it under a set of m constraints C(S) = fc1; c2; ::; cmg = 0. That is,

NEP: minimize f(S)

subject to C(S) = 0 : (1)

While there are many powerful methods for nonlinear constrained minimization [Gill et al., 1981,

Culioli, 1994], we know of none that are particularly well adapted to snake-like optimization: they

do not take advantage of the locality of interactions that is characteristic of snakes. For example,
Sequential Quadratic Programming (SQP) [Fletcher, 1987] is widely recognized as one of the most
powerful such techniques, and we outline it in appendix. However, in our experience, it has a

number of drawbacks for our speci�c application:

� The functions we try to optimize have severe nonconvexities. As a result, the iterations

may become unstable, with rapidly diverging Lagrange multipliers and the constraints being

violated ever worse. Sophisticated heuristics are required to overcome this problem. In their
work, Metaxas et al. used the Baumgarte method with well-chosen parameters to stabilize

the optimization.

3



� SQP requires the computation of the Hessian, which is hard to do when dealing with images:

second derivatives of image gray values are notoriously noisy.

� SQP requires solving (m + n) � (m + n) linear systems of equations, which is unnecessarily

large in cases where m is signi�cantly smaller than n. In addition, these systems have zeros

on their diagonals, which makes a tedious reordering of the matrix necessary for many sparse

linear solvers to be able to deal with them.

For these reasons, we have developed [Brechb�uhler, 1995] the robust constrained optimization

method described below that seems better suited to our problem.

2.1 Constrained Optimization in Orthogonal Subspaces

Solving a constrained optimization problem involves making two things happen concurrently: satis-
fying the constraints and minimizing the objective function. SQP attempts to do both at the same
time. For our application, it has proved nore e�ective to decouple the two and decompose each
iteration into two steps:

1. Enforce the constraints by projecting the current state onto the constraint surface. This
involves solving a system of nonlinear equations by linearizing them and taking Newton steps.

2. Minimize the objective function by projecting the gradient of the objective function onto the
tangent subspace to the constraint surface and searching in the direction of the projection, so
that the resulting state does not stray too far away from the constraint surface.

Figure 1 depicts this procedure. This two-step approach is closely related to gradient projection
methods �rst proposed by Rosen [1978].

-1.5 -1 -0.5 0.5

0.4

0.6

0.8

1

1.2

1.4

S0

S1

S2

S3

C(S)=0

Figure 1: Constrained optimization. Minimizing (x � 0:5)2 + (y � 0:2)2 under the constraint

that (x=2)2 + y2 = 1. The set of all states that satisfy the constraint C(S) = 0, i.e.

the constraint surface, is shown as a thick gray line. Each iteration consists of two

steps: orthognal projection onto the constraint surface followed by a line search in a

direction tangent to the surface. Because we perform only one Newton step at each

iteration, the constraint is fully enforced only after a few iterations

4



Projecting onto the constraint surface Let C be the constraints of Equation 1 and S be the

current state. The �rst iteration step involves �nding dS such that C(S + dS) � 0. We linearize

the constraints and write

C(S + dS) � C(S) +AT (S) � dS (2)

where A is the n�m Jacobian matrix of the constraints:

A =
@C

@S
= r � CT =

2
664

@c1
@s1

: : : @cm
@s1

...
. . .

...
@c1
@sn

� � �
@cm
@sn

3
775 ; (3)

We can satisfy the constraints by taking Newton steps, that is iteratively solving the equation

AT (S) � dS = �C(S) (4)

and incrementing S by dS. Equation 4, however, typically has many solutions because there are
more variables than constraints. We choose the shortest possible dS, which restricts dS to the
column space of A. Any component of dS orthogonal to this space would not change the validity

of the solution, but would make it longer. Hence, dS can be written as dS = AdV , and dV is
computed by solving the square symmetric positive de�nite m�m system

AT (S)dS = AT (S)A(S)dV = �C(S) : (5)

In practice, because we go through several minimization iterations, performing a single Newton step
at every iteration su�ces to eventually enforce the constraints.

Minimizing the objective function Let S be the state vector after projection, G = rf the
gradient of the objective function and A the Jacobian matrix of Equation 3. Computing GZ,
projection of G into the null space of A|that is the tangent subspace to the constraint surface|
amounts to estimating Lagrange multipliers, that is, the coe�cients that can be used to describe G

as closely as possible as a linear combination of constraint normals. We solve the over-determined

system A� = G in the least squares sense by solving the m�m system

AT (S)A(S) � � = AT (S)G : (6)

A� is the component of G that is normal to the constraint surface, and we take GZ to be G�A�.

Then, f can be minimized by performing a line search in the GZ direction. This amounts to

steepest descent in the projected gradient direction. Alternatively, we can construct a new search
direction in the way conjugate gradient does as a linear combination of GZ and the previous search

direction.

5



In short, each iteration of the optimization procedure involves the following two steps:

1. Take a Newton step to project the variables onto the constraint surface. This is achieved by

solving the linear system

AtAdV = �C(S)

and incrementing S by AdV .

2. Minimize f in a direction parallel to the projection of its gradient onto the tangent subspace

to the constraint surface. To compute this direction, we �rst solve the linear system

AT (S)A(S)� = AT (S)rf

and take the direction to be rf �A�.

These two steps operate in two locally orthogonal subspaces, in the column space of A and in its
orthogonal complement, the null space of AT . Note that AT (S)A(S) is an m � m matrix and is
therefore small when there are more variables than constraints, which is always the case in our
application.

2.2 Behavior of the Algorithm

We use the simple example of a chain falling under the in
uence of gravity to demonstrate the algo-
rithm's behavior. The chain is modeled as a sequential list of twenty 2-D vertices S = f(xi; yi); i =
1; : : : ; 20g whose distances must remain constant. Assuming the endpoints are �xed, minimizing

the chain's potential in the gravity �eld implies

minimizing y1=2 +
P19
i=2 yi + y20=2,

subject to (xi � xi�1)
2 + (yi � yi�1)

2 = 0:12

We ran the optimization twice, once using the conjugate gradient approach to computing the
search direction and once using steepest descent, that is, directly using GZ . Stages of the optimiza-
tion are shown in Figure 2. Figure 3 depicts the evolution of the objective function and squared

constraint norm kC(S)k2. Here again, because we perform only one Newton step at each iteration,

the constraints are fully enforced only after a few iterations. For the �rst 35 iterations, steepest

descent and conjugate gradient are roughly equivalent. Later, steepest descent slows down, whereas
conjugate gradient reaches the �nal solution after about 46 iterations.

Our approach allows us to combine di�erent kinds of constraints. To demonstrate this, we now

also require the chain links to form right angles at vertices 4 and 13. We add the following two

constraints:
( x4 � x3 )( x5 � x4 ) + ( y4 � y3 )( y5 � y4 ) = 0
(x13 � x12)(x14 � x13) + (y13 � y12)(y14 � y13) = 0

Several optimization iterations are shown in Figure 4. Note that the objective function could

be further reduced by 
ipping the corner at vertex 13 outward. However, doing so would mean

temporarily violating a constraint, which our algorithm does not allow.

6



1 4 20

Echain1.ps

46 � 37 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

Echain4.ps

46 � 37 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

Echain20.ps

46 � 37 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

35 46 60

Echain35.ps

46 � 37 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

Echain46.ps

46 � 37 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

Echain60.ps

46 � 37 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

Figure 2: Minimizing the chain's potential energy while enforcing constant inter-vertex dis-

tances, using conjugate gradient (thin black chain) or steepest descent (thick gray

chain): intermediate results after 1, 4, 20, 35, 46, and 60 iterations.

goalEq.ps

68 � 41 mm

10 20 30 40 50 60

-10

-9

-8

-7

-6

-4

-2

-10.05

constrEq.ps

68 � 43 mm

10 20 30 40 50 60

Log10 Sum (constr[<0])^2

-25

-20

-15

-10

(a) (b)

Figure 3: Evolution of the objective function and squared constraint norm. (a) Evolution

of the potential energy f(S) for the chain of Figure 2 while minimizing conjugate

gradient (thin black line) or steepest descent (thick gray line). We use a nonlinear

ordinate scale. (b) Logarithmic plot of the squared constraint norm kC(S)k2.

By using an active set strategy, our optimization scheme can also solve inequality-constrained

problems. For example, it can prevent the vertices from entering a forbidden circle and from moving

7



1 2 8

rect1.ps

46 � 36 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

rect2.ps

46 � 36 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

rect8.ps

46 � 36 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

16 32 64

rect16.ps

46 � 36 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

rect32.ps

46 � 36 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

rect64.ps

46 � 36 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

Figure 4: Chain with two \rusty" joints where the links are constrained to form 90-degree

angles: intermediate results after 1, 2, 8, 16, 32, and 64 iterations.

1 2 4 8

cgIchain1.ps

34 � 26 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

cgIchain2.ps

34 � 26 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

cgIchain4.ps

34 � 26 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

cgIchain8.ps

34 � 26 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

16 32 56 80

cgIchain16.ps

34 � 26 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

cgIchain32.ps

34 � 26 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

cgIchain56.ps

34 � 26 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

cgIchain80.ps

34 � 26 mm

0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

Figure 5: Minimizing the chain's potential energy under inequality constraints: intermediate

results after 1, 2, 4, 8, 16, 32, 56, and 80 iterations. Active one-vertex constraints

are indicated by black dots, two-vertex constraints by thick lines.

too far from their neighbors by bounding, but not �xing, the inter-vertex distance. The optimization

8



can then be rephrased as

minimizing y1=2 +
P19
i=2 yi + y20=2

subject to (xi � xi�1)
2 + (yi � yi�1)

2 � 0:12 (two-vertex constraint)

(xi � 0:4)2 + (yi � 0:33)2 � 0:22 (one-vertex constraint) .

Figure 5 depicts the optimization.

3 Snake Optimization

We �rst introduce our notations and brie
y review traditional \snake-like" optimization [Kass et al.,

1988] and our own use of this technique for the modeling of what we refer to below as generalized

snakes, that is, 2{D and 3{D linear features and 3{D surfaces. We then show how it can be
augmented to accommodate the constrained-optimization algorithm described above and impose
hard constraints on single snakes. Finally, we further extend it to allow the simultaneous and

constrained optimization of multiple snakes.

3.1 Unconstrained Snake Optimization

In our work, we take 2{D features to be outlines that can be recovered from a single 2{D image
while we treat 3{D features as objects whose properties are computed by projecting them into
several 2{D images. We model 2{D and 3{D linear features as polygonal curves and 3{D surfaces

as triangulations. More precisely, a polygonal curve, C, is modeled as a sequential list of vertices,
that is, in two dimensions, a list of n 2{D vertices S2 of the form

S2 = f(xi; yi); i = 1; : : : ; ng ; (7)

and, in three dimensions, a list of n 3{D vertices S3 of the form

S3 = f(xi; yi; zi); i = 1; : : : ; ng : (8)

Similarly, we represent a surface S by a hexagonally connected set of 3{D vertices

SM = f(xi; yi; zi); i = 1; : : : ; ng (9)

called a mesh. Neighboring vertices are further organized into triangular planar surface elements

called facets. Each vertex in the interior of the surface has exactly six neighbors, as shown in
Figure 6(a).

In the remainder of the paper, we will refer to S, the vector of all x, y, and z coordinates that
de�ne the deformable model's shape as the state vector of the model. In practice, we take S to be

the vector

S = (x1; x2; :::; xn; y1; y2; :::; yn) in 2{D (10)

S = (x1; x2; :::; xn; y1; y2; :::; yn; z1; z2; :::; zn) in 3{D

9



I I I1 2 3

g1 g2 g3

N

L

(a) (b) (c)

Figure 6: 3{D surfaces and energy terms. (a) A triangulated 3{D mesh, its shape depends on

the x,y and z coordinates of its vertices. (b) Facets are sampled at regular intervals

as illustrated here. The stereo component of the objective function is computed by

summing the variance of the gray level of the projections of these sample points, the

gis. (c) The albedo of each facet is estimated using the facet normal
�!
N , the light

source direction
�!
L , and the average gray level of the projection of the facet into the

images. The shading component of the objective function is the sum of the squared

di�erences in estimated albedo across neighboring facets.

and we de�ne the vectors X, Y , and Z as the vectors of all x, y and z coordinates, respectively.
We recover a model's shape by minimizing an objective function E(S) that embodies the image-

based information. For 2{D linear features, E(S) is the average value of the edge gradient along
the curve. For 3{D linear features, E(S) is computed by projecting the curve into a number of
images, computing the average edge-gradient value for each projection and summing these values
[Fua, 1995].

For 3{D surfaces, we use an objective function that is the sum of a stereo term and a shape-

from-shading term. As their behavior and implementation have already been extensively discussed
elsewhere, we only describe them brie
y and refer the interested reader to our previous publication
[Fua and Leclerc, 1995]. The stereo component of the objective function is derived by comparing

the gray levels of the points in all the images for which the projection of a given point on the
surface is visible. As shown in Figure 6(b), this comparison is done for a uniform 3{D sampling of

the surface. This method allows us to deal with arbitrarily slanted regions and to discount occluded
areas of the surface. The shading component of the objective function is computed using a method

that does not invoke the traditional constant albedo assumption. Instead, it attempts to minimize
the variation in albedo across the surface, and can therefore deal with surfaces whose albedo varies

slowly. This term is depicted by Figure 6(c). The stereo term is most useful when the surfaces are

highly textured. Conversely, the shading term is most reliable where the surfaces have little or no

texture. To account for this phenomenon, we can take the complete objective function, E(S), to

be a weighted average of these two components where the weighting is a function of texture within
the projections of individual facets. However, to generate the results shown in Section 4, we have

10



used only the stereo component of the objective function.

In all these cases, E(S) typically is a highly nonconvex function, and therefore di�cult to

optimize. As shown by Kass et al. [1988], it can e�ectively be optimized by

� introducing a quadratic regularization2 term ED = 1=2StKSS where KS is a sparse sti�ness

matrix,

� de�ning the total energy ET

ET (S) = ED(S) + E(S)

= 1=2StKSS + E(S) ; (11)

� embedding the curve in a viscous medium and solving the dynamics equation

@ET

@S
+ �

dS

dt
= 0 ; (12)

with
@ET

@S
=

@ED

@S
+

@E

@S
;

where � is the viscosity of the medium.

Since the regularization term ED is quadratic, its derivative with respect to S is linear, and
therefore Equation 12 can be rewritten as

KSSt + �(St � St�1) = �
@E

@S

�����
St�1

) (KS + �I)St = �St�1 �
@E

@S

�����
St�1

: (13)

In practice, � is computed automatically at the start of the optimization procedure so that a
prespeci�ed average vertex motion amplitude is achieved [Fua and Leclerc, 1990]. The optimization

proceeds as long as the total energy decreases. When it increases, the algorithm backtracks and
increases �, thereby decreasing the step size. In the remainder of the paper, we will refer to the

vector

dSt = St � St�1 (14)

as the \snake step" taken at iteration t.
Furthermore, ED can be chosen so that its derivatives with respect to X,Y , and Z are decoupled

so that we can rewrite Equation 13 as a set of two or three di�erential equations in the two or three

spatial coordinates:

(K + �I)Wt = �Wt�1 �
@E

@W

�����
Xt�1

(15)

2This term can be understood as a \deformation energy" that minimizes the overall curvature of the model, hence

the notation.

11



where W stands for either X, Y , or Z, and K a sparse nxn matrix, n being the number of vertices.

In e�ect, this optimization method performs implicit Euler steps with respect to the regulariza-

tion term [Kass et al., 1988] and is therefore more e�ective at propagating smoothness constraints

across the surface than an explicit method such as conjugate gradient.

It is this property that our constrained-optimization algorithm strives to preserve.

3.2 Constraining the Optimization

Given a set ofm hard constraints C(S) = fc1; c2; ::; cmg that the snake must satisfy, we could trivially

extend the technique of Section 2 to constrained snake optimization by taking the objective function

f to be the total energy ET of Equation 11. However, this would be equivalent to optimizing an

unconstrained snake using gradient descent as opposed to performing the implicit Euler steps that

so e�ectively propagate smoothness constraints.
In practice, propagating the smoothness constraints is key to forcing convergence toward desir-

able answers. When a portion of the snake deforms to satisfy a hard constraint, enforcing regularity
guarantees that the remainder of the snake also deforms to preserve it and that unwanted discon-

tinuities are not generated. This is especially true in most of our applications because many of
the constraints we use can be satis�ed by moving a small number of vertices, thereby potentially
creating \kinks" in the curve or surface that subsequent optimization steps may not be able to
remove without getting stuck in local minima.

Therefore, for the purpose of optimizing constrained snakes, we decompose the second step of
the optimization procedure of Section 2 into two steps. We �rst solve the unconstrained Dynamics

Equation (Equation 13) as we do for unconstrained snakes. We then calculate the component of the
snake step vector of Equation 14|the di�erence between the snake's current state and its previous
one|that is perpendicular to the constraint surface and subtract it from the state vector. The �rst
step regularizes, while the second prevents the snake from moving too far away from the constraint
surface.

As in the case of unconstrained snakes, �, the viscosity term of Equation 12, is computed
automatically at the start of the optimization and progressively increased as needed to ensure a
monotonic decrease of the snake's energy and ultimate convergence of the algorithm.

An iteration of the optimization procedure therefore involves the following three steps:

1. Take a Newton step to project St�1, the current state vector, onto the constraint surface.

ATAdV = �C(St�1)

St�1  St�1 +AdV

Calculate the snake's total energy. If it has increased, revert to the previous position and

increase the viscosity.

2. Take a normal snake step by solving

(KS + �I)St = �St�1 �
@E

@S

�����
St�1

:

12



3. Ensure that dS, the snake step from St�1 to St, is in the subspace tangent to the constraint

surface. Compute � such that

AtA� = AT (St � St�1)

and update St

St  St �A�

so that the snake step dS becomes

dS = (St �A�)� St�1

) ATdS = 0 :

To illustrate the convergence properties of our algorithm, we introduce two simple sets of con-

straints that can be imposed on 2{D snakes. The most obvious one forces the snake to go through
a speci�c point (a0; b0). It can be written as the two constraints

xi � a0 = 0 ;

yi � b0 = 0 ; (16)

where i is the index of the snake vertex that is closest to (a0; b0) at the beginning of an iteration. In
practice, the constraint always remains \attached" to the vertex that was closest initially and we

refer to this constraint as an \attractor constraint." A slightly more sophisticated set of constraints
achieves a similar purpose while allowing the point at which the snake is attached to slide. It is
designed to force the snake to be tangent to a segment ((a0; b0); (a1; b1)), and we will refer to it as
a \tangent constraint." It can also be written as a set of two constraints

�������
xi a0 a1
yi b0 b1
1 1 1

������� = 0

����� xi+1 � xi�1 a1 � a0
yi+1 � yi�1 b1 � b0

����� = 0 (17)

where i in the index of the snake vertex that is both closest to the line segment and between the
endpoints at the beginning of an iteration. The �rst constraint ensures that (xi; yi), (a0; b0), and

(a1; b1) are collinear. The second ensures that the �nite-di�erence estimate of the tangent vector is

parallel to the segment's direction. The vertex at which the constraint is attached can slide along
the segment and can slide o� its edges so that a di�erent vertex may become attached.

In Figure 7, we use these spring and tangent constraints to contrast the behavior of our algorithm

with one that attempts to impose these constraints by adding penalty terms to the energy function,

that is, one that minimizes

ET (S) +
X

1�i�m

�ici(S)
2 ; (18)

13



(a) (b) (c)

(d) (e) (f)

Figure 7: Imposing spring and tangent constraints on a 2{D snake. (a) An image of a poly-

gon with an initial outline. The two-sided arrows represent tangent constraints

(Equation 17), while the crosshair depicts an attractor constraint (Equation 16).

(b) The result of unconstrained snake optimization. (c) The result of enforcing

the constraints using penalty functions. (d,e,f) Three iterations of our constrained

optimization algorithm.

where the �i are arbitrarily chosen weights. The behavior shown in Figure 7(c) is typical. If the
�i are taken to be large enough to enforce the constraints, the image forces are almost completely
ignored during the optimization, yielding a poor result. In essence, our method, like all those that
rely on Lagrange multipliers, recomputes the weighting of each constraint|and not of its square|at

each iteration so that this problem does not occur.

3.3 Multiple Snakes

Our technique can be further generalized to the simultaneous optimization of several snakes under

a set of constraints that bind them. Given N snakes, we concatenate their respective state vectors
S1; S2; :::; SN into a composite state vector S = (S1; S2; :::; SN) and compute for each snake the
viscosity coe�cient �1; �2; :::; �n that would yield steps of the appropriate magnitude if each snake

was optimized individually.

The three steps of an iteration of the optimization procedure then become

1. Project S onto the constraint surface as before and compute energy of each individual snake.

14



(a) (b) (c) (d)

Figure 8: Imposing distance and tangent constraints on a pair of 2{D snakes. (a) An image

of a polygon with two initial outlines. The one-sided arrows represent distance con-

straints (Equation 19) that tie the two curves, while the two-sided arrow represents

a tangent constraint (Equation 17) that constrains only one of the curves. (b) The

result of unconstrained snake optimization. (c) The result of enforcing only the

distance constraints. (d) The result of enforcing all the constraints.

For all snakes whose energy has increased, revert to the previous position and increase the

viscosity.

2. Take a step for each snake individually:

(K1 + �1I)S1t = �1S1t�1 �
@E1

@S1

�����
S1t�1

: : : = : : :

(Kn + �nI)Snt = �nSnt�1 �
@En

@Sn

�����
Snt�1

:

3. Project the global step into the subspace tangent to the constraint surface as before.

Because the snake steps are taken individually we never have to solve the potentially very

large linear system involving all the state variables of the composite snake but only the smaller

individual linear systems. Furthermore, to control the snake's convergence via the progressive
viscosity increase, we do not need to sum the individual energy terms. This is especially important

when simultaneously optimizing objects of a di�erent nature, such as a surface and a linear feature,
whose energies are unlikely to be commensurate so that the sum of these energies would be essentially

meaningless.

In e�ect, the optimization technique proposed here is a decomposition method and such methods
are known to work well [Gill et al., 1981] when their individual components, that is, the individual

snake optimizations, are well behaved, which is the case here.
To illustrate the behavior of this method, we reuse the image of Figure 7 and introduce a

\distance" constraint between two snakes. Given a vector of length d, such as the ones depicted by

15



arrows in Figure 8(a) and two snakes, let (x1i ; y
1
i ; z

1
i ) and (x2j ; y

2
j ; z

2
j ) be the vertices of each snake

that are closest to the vector's endpoints. The distance constraint can then be written as

(x1i � x2j)
2 + (y1i � y2j )

2 + (z1i � z2j )
2
� d2 = 0 : (19)

As shown in Figures 8(b,c), the algorithm exhibits good convergence properties even though the

constraints are not linear but quadratic. It also allows us to e�ectively combine di�erent types of

constraints.

4 Results

We demonstrate the ability of our technique to impose geometric constraints on 2{D and 3{D

deformable models using real imagery.

4.1 2{D Features

Figure 9(a) depicts the very rough outline of the edge of a road. The outline is too far from the
actual contour for a conventional snake to converge toward the edge. However, using two of the
tangent constraints of Equation 17 and one of the attractor constraints of Equation 16, we can force
convergence toward the desired edge.

We can also model the main road edges in the image of Figure 9 starting with the three rough
approximations shown in Figure 10(a). Here again, these initial contours are too far away from
the desired answer for unconstrained optimization to succeed. To enforce convergence toward the
desired answer, in addition to the unary constraints|that is, constraints that apply to individual
snakes|of the previous example, we can introduce binary constraints|that is, constraints that tie

pairs of snakes|and optimize the three contours simultaneously. The binary constraints we use are
the distance constraints of Equation 19.

In both of these examples, we were able to mix and match constraints of di�erent types as
needed to achieve the desired result without having to worry about weighting them adequately.

4.2 3{D Features

We now turn to the simultaneous optimization of 3{D surfaces and 3{D features. More speci�cally,
we address the issue of optimizing the models of 3{D linear features such as roads and ridgelines and
the terrain on which they lie under the constraint that they be consistent with one another. In Fig-

ures 11 and 12 we present two such cases where recovering the terrain and the roads independently

of one another leads to inconsistencies.
Because we represent the terrain as a triangulated mesh and the features as 3{D polygonal

approximations, consistency can be enforced as follows. For each edge ((x1; y1; z1); (x2; y2; z2)) of
the terrain mesh and each segment ((x3; y3; z3); (x4; y4; z4)) of a linear feature that intersect when

projected in the (x; y) plane, the four endpoints must be coplanar so that the segments also intersect

16



(a) (b) (c) (d)

Figure 9: Modeling the edge of a road. (a) Aerial image of a set of roads. (b) A very rough

approximation of one of the road's edges and a set of constraints. As in Figure 7,

the two-sided arrows represent tangent constraints (Equation 17) while the crosshair

depicts an attractor constraint (Equation 16). (c) The result of unconstrained snake

optimization. (d) The result of constrained snake optimization using the constraints

depicted by (b).

in 3{D space. This can expressed as

���������

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1

���������
= 0 ; (20)

which yields a set of constraints that we refer to as consistency constraints.
In both examples shown here, we follow a standard coarse-to-�ne strategy. We start with a

rough estimate of both terrain and features|ridgelines and roads|and reduced versions of the

images. We then progressively increase the resolution of the images being used and re�ne the

discretization of our deformable models. In Figures 13 and 14, we show that the optimization under

the consistency constraints of Equation 20 avoids the discrepancies that result from independent

optimization of each feature.
In the example of Figure 13, the \ridge-snake" attempts to maximize the average edge gradient

along its projections in all three images. In the case of Figures 12 and 14 the roads are lighter
than the surrounding terrain. At low resolution, they can e�ectively be modeled as white lines, and

the corresponding snakes attempt to maximize image intensity along their projections. At higher

resolution, they are better modeled as pairs of parallel edges. We do so by introducing pairs of
snakes, constrained to remain parallel, that we call ribbon snakes. We also introduce a building and

17



(a) (b) (c)

Figure 10: Modeling a set of road edges. (a) A set of three contours roughly approximating the

edges of the main roads and a set of constraints. As before, the two-sided arrows

represent \tangent constraints" (Equation 17) that apply to individual contours,

while the thinner one-sided arrows represent distance constraints (Equation 19) that

bind pairs of contours. (b) The result of unconstrained snake optimization. (c) The

result of constrained snake optimization using the constraints depicted by (a).

use its base to further constrain the terrain. Figures 14(a,b) depict the result of the simultaneous
optimization of the terrain and low-resolution roads. By supplying an average width for the roads,
we can turn the lines into ribbons and reoptimize terrain and features under the same consistency
constraints as before, yielding the results shown in Figures 14(c,d,e,f). As shown in Figure 15,
because the models for terrain and roads are consistent, we can now create synthetic views from

di�erent viewpoints that are such that the modeled road outlines still correspond to the road edges as
they appear in the synthetic image. In other words, if used for simulation purposes, our approach

would guarantee that there are no discrepancies between the synthetic images generated by the

simulator and its internal representation of the objects.
These two examples illustrate the ability of our approach to model di�erent kinds of features in

a common reference framework and to produce consistent composite models.

5 Conclusion

We have presented a constrained optimization method that allows us to enforce hard constraints

on deformable models at a low computational cost, while preserving the convergence properties

of snake-like approaches. We have shown that it can e�ectively constrain the behavior of linear

2{D and 3{D snakes as well as that of surface models. Furthermore, we have been able to use
our technique to simultaneously optimize several models while enforcing consistency constraints

18



(a) (b) (c)

(d) (e) (f)

Figure 11: Rugged terrain with sharp ridge lines. (a,b,c) Three images of a mountainous site.

(d) Shaded view of an initial terrain estimate. (e) Rough polygonal approximation of

the ridgelines overlaid on image (a). (f) The terrain and ridgeline estimates viewed

from the side (the scale in z has been exaggerated).

between them.

We believe that these last capabilities will prove indispensable to automating the generation
of complex object databases from imagery, such as the ones required for realistic simulations or
intelligence analysis. In such databases, the models must not only be as accurate|that is, true to

the data|as possible but also consistent with each other. Otherwise, the simulation will exhibit

\glitches" and the image analyst will have di�culty interpreting the models. Because our approach
can handle nonlinear constraints, in future work we will use it to implement more sophisticated

constraints than the simple geometric constraints presented here. When modeling natural objects,
we intend to take physical laws into account. For example, rivers 
ow downhill and at the bottom of

valleys; this should be used when modeling both the river and the surrounding terrain. In addition,

when modeling man-made objects, we intend to take advantage of knowledge about construction

19



(a) (b) (c)

(d) (e) (f)

Figure 12: Building a site model. (a,b,c) Three images of a site with roads and buildings. (d) A

rough sketch of the road network and of one of the buildings. (e) Shaded view of the

terrain with overlaid roads after independent optimization of each. Note that the two

roads in the lower right corner appear to be superposed in this projection because

their recovered elevations are inaccurate. (f) Di�erences of elevation between the

optimized roads and the underlying terrain. The image is stretched so that black

and white represent errors of minus and plus 5 meters, respectively.

practices such as the fact that roads do not have arbitrary slopes.
Eventually, we hope that the technique presented in this paper will form the basis for a suite

of tools for modeling complex scenes accurately while ensuring that the model components satisfy

geometric and semantic constraints and are consistent with each other.

Acknowledgments

Support for the portion of this research conducted at SRI was provided by various contracts from

the Advanced Research Projects Agency. We wish to thank Yvan Leclerc and Jean-Christophe

Culioli for the advice they gave us during the development of the approach described here.

20



(a) (b) (c)

(d) (e) (f)

Figure 13: Recovering the 3{D geometry of both terrain and ridges. (a) Shaded view of the

terrain after re�nement. (b) Re�ned ridgeline after 3{D optimization. (c) Side view

of the ridgeline and terrain after independent optimization of each one. Note that

the shape of the ridgeline does not exactly match that of the terrain. (d) Di�erences

of elevation between the recovered ridge-line and the underlying terrain. The image

is stretched so that black and white represent errors of minus and plus 80 feet,

respectively. (e) Side view after optimization under consistency constraints. (f)

Corresponding di�erence of elevation image stretched in the same fashion as (d).

Appendix: SQP, a Lagrange-Newton Algorithm

We summarize the optimization method presented in [Fletcher, 1987].

The Lagrangian function corresponding to the NEP of Equation 1 is de�ned as

l(S; �) = f(S)� �T C(S) : (21)

The augmented Lagrangian function includes a penalty term, the sum of the squared constraints

21



(a) (b) (c)

(d) (e) (f)

Figure 14: Recovering the 3{D geometry of both terrain and roads. (a) Shaded view of the

terrain with overlaid low-resolution roads after optimization under consistency con-

straints. (b) Corresponding di�erences of elevation between features and underlying

terrain. The image is stretched as the one of Figure 12(f). Note that only the roof

of the building is signi�cantly above the terrain. (c) The roads modeled as ribbons

overlaid on the terrain. (d,e,f) The optimized roads overlaid on the original images.

multiplied by a penalty factor �.

lA(S; �; �) = f(S)� �T C(S) + � � C(S)TC(S) (22)

At the solution (S�; ��), the function l(S; �) is stationary with respect to S and �. This can be
written as

�rl(S; �) = 0: (23)

Finding a zero of these equations using the Newton method is achieved by iteratively incrementing

S and � by dS and d�, computed by solving

�r �rT l

 
dS

d�

!
= � �rl ; (24)

where the matrix on the left is the Hessian of l. This is equivalent to solving 
W �A

�AT 0

! 
dS

�

!
=

 
�G

C

!
; (25)

22



(a) (b)

Figure 15: Generating synthetic views. (a) A synthetic view of the site generated using texture-

mapping. (b) The same view with the roads modeled as ribbons overlaid on the

image. Because the models for the road and the terrain are consistent, the modeled

road outlines still correspond to the road edges in the synthetic image.

where

W = rrTf(S) �
X
i

�irr
Tci(S)

is the Hessian rrT l, dS the S increment, and � the new estimate of the Lagrange multipliers.

The algorithm starts with initial estimates for S and �. It then repeatedly solves the system of
Equation 25 and updates S  S + dS until a convergence criterion is satis�ed.

23



References

[Baumgarte, 1972] J. Baumgarte. Stabilization of Constraints and Integrals of Motion in Dynamical

Systems. Computational Methods Applied Mechanics Eng., 1:1{16, 1972.

[Brechb�uhler et al., 1995] C. Brechb�uhler, G. Gerig, and O. K�ubler. Parametrization of Closed

Surfaces for 3-D Shape Description. Computer Vision, Graphics, and Image Processing: Image

Understanding, 61(2):154{170, March 1995.

[Brechb�uhler, 1995] C. Brechb�uhler. Description and Analysis of 3-D Shapes by Parametrization of

Closed Surfaces. PhD thesis, ETH Zurich, R�amistrasse 101, CH-8092 Z�urich, 1995. Diss. ETH

No. 10979.

[Cohen, 1995] L. Cohen. Auxiliary Variables for Deformable Models. In International Conference

on Computer Vision, pages 975{980, Cambridge, MA, June 1995.

[Culioli, 1994] J.C. Culioli. Introduction �a l'Optimisation. Ellipses, 1994.

[Fletcher, 1987] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, Chichester,
New York, Brisbane, Toronto, Singapore, 2nd edition, 1987. \A Wiley-Interscience Publication".

[Fua and Leclerc, 1990] P. Fua and Y. G. Leclerc. Model Driven Edge Detection. Machine Vision

and Applications, 3:45{56, 1990.

[Fua and Leclerc, 1995] P. Fua and Y. G. Leclerc. Object-Centered Surface Reconstruction: Com-
bining Multi-Image Stereo and Shading. International Journal of Computer Vision, 16:35{56,
September 1995. Also available as Tech Note 535, Arti�cial Intelligence Center, SRI International.

[Fua, 1995] P. Fua. Parametric Models are Versatile: The Case of Model Based Optimization. In
ISPRS WG III/2 Joint Workshop, Stockholm, Sweden, September 1995.

[Gill et al., 1981] P.E. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic Press,

London a.o., 1981.

[Kass et al., 1988] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models.

International Journal of Computer Vision, 1(4):321{331, 1988.

[Metaxas and Terzopoulos, 1991] D. Metaxas and D. Terzopoulos. Shape and Norigid Motion Esti-

mation through Physics-Based Synthesis. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 15(6):580{591, 1991.

[Rosen, 1978] Rosen. Two-phase algorithm for non linear constraint problems. Non Linear Pro-

gramming, 3:97{124, 1978.

[Terzopoulos et al., 1987] D. Terzopoulos, A. Witkin, and M. Kass. Symmetry-seeking Models and

3D Object Reconstruction. International Journal of Computer Vision, 1:211{221, 1987.

24


