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ABSTRACT

Model-Based Optimization (MBO) is a paradigm in which an objective function is used to express both geometric and
photometric constraints on features of interest. A parametric model of a feature, such as a road, a building, a river or the
underlying terrain, is extracted from one or more images by adjusting the model’s state variables until a minimum value of the
objective function is obtained. The optimization procedure yields a description that simultaneously satisfies (or nearly satisfies)
all constraints, and, as a result, is likely to be a good model of the feature.

Furthermore, because objects are all modeled in the same fashion, we can refine the models simultaneously and enforce
geometric and semantic constraints between objects, thus increasing not only the accuracy but also the consistency of the

reconstruction.

We believe that these capabilities will prove indispensable to automating the generation of complex object databases from
imagery, such as the ones required for realistic simulations or intelligence analysis.

1 INTRODUCTION

Model-Based Optimization (MBO) is a paradigm in which
an objective function is used to express both geometric and
photometric constraints on features of interest. A parametric
mode| of a feature (such as a road, a building, or coast-
line) is extracted from one or more images by adjusting the
model’s state variables until a minimum value of the objec-
tive function is obtained. The optimization procedure yields
a description that simultaneously satisfies (or nearly satisfies)
all constraints, and, as a result, is likely to be a good model
of the feature.

The deformable models we use here are extensions of tra-
ditional snakes [Terzopoulos, et al., 1987, Kass et al., 1988,
Fua and Leclerc, 1990]. They are polygonal curves or face-
tized surfaces to which is associated an objective function
that combines an “image term” that measures the fit to the
image data and a regularization term that enforces geometric
constraints.

Because features and surfaces are all modeled in a uniform
fashion, we can refine several models simultaneously and en-
force geometric and semantic constraints between objects,
thus increasing not only the accuracy but also the consis-
tency of the reconstruction. The ability to apply such con-
straints is essential for the accurate modeling of complex sites
in which objects obey known geometric and semantic con-
straints. In particular, when dealing with multiple objects,
it is crucial that the models be both accurate and consis-
tent with each other. For example, individual components
of a building can be modeled independently, but to ensure
realism, one must guarantee that they touch each other in
an architecturally feasible way. Similarly, when modeling a
cartographic site from aerial imagery, one must ensure that
the roads lie on the terrain—and not above or below it—and
that rivers flow downhill. To that end, we have developed
a constrained-optimization scheme that allows us to impose
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hard constraints on our snakes at a very low computational
cost while preserving their convergence properties.

We first introduce our generalized snakes. We then present
our constrained-optimization scheme. Finally, we demon-
strate its ability to enforce geometric constraints upon individ-
ual snakes and consistency constraints upon multiple snakes
to produce complex and consistent site models,

2 GENERALIZED SNAKES

We model linear features as polygonal curves that may be
described either as a sequential list of vertices, or, for more
complex objects such as a road network or a 3-D extruded
object, described by the network topology. In the latter case,
to describe the object completely, one must supply not only
the list of vertices but also a list of “edges” that defines the
connectivity of those vertices. In addition, with some of these
complex objects, one can also define “faces,” that is, circular
lists of vertices that must be constrained to remain planar.

Similarly, we model the terrain on which these features rest
as triangulated surface meshes whose shape is defined by the
position of vertices and can be refined by minimizing an ob-
jective function.

Our ultimate goal is to accommodate the full taxonomy of
those “generalized snakes” described by Table 1. The al-
gorithms described here are implemented within the Radius
Common Development Environment (RCDE) [Mundy et al,
1992].

2.1 Polygonal Snakes

A simple polygonal snake, C, can be modeled as a sequential
list of vertices, that is, in two dimensions, a list of 2-D vertices
Sz of the form

S2={(xz yi)7 i 1,...,“} ’ (1)
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| Constraints/Type || Simple curve

| Ribbon curve

| Network | Triangulated meshes |

Smooth Low res. roads, rivers
Polygonal Man-made structures
Planar Planar structures
Rectilinear Roof tops, parking lots

High res. roads
City streets
City streets
City streets

Road network Terrain
Street Networks
- Street Networks

Buildings

Table 1: Snake taxonomy. The columns represent different types of snakes and the rows different kinds of constraints that
can be brought to bear. The table entries are examples of objects that can be modeled using these combinations.

and, in three dimensions, a list of 3-D vertices Sz of the form

Ss={(ziyi ), i1=1,...,n} . (2)
In this paper, we refer to S, the vector of all z, y, and z coor-
dinates of the 2-D or 3-D vertices that define the deformable
model's shape as the model’s state vector.

In the 2-D case, the “image energy” of these curves—the
term we try to minimize when we perform the optimization
is taken to be

el

0 =g [ vzl as )
Ict J

where I represents the image gray levels, s is the arc length
of C, f(s) is a vector function mapping the arc length s to
points (z,y) in the image, and |C| is the length of C. In
practice, £7(C) is computed by integrating the gradient values
[VZ(f(s))| in precomputed gradient images along the line
segments that connect the polygonal vertices.

In the 3-D case, illustrated by Figures 1 and 2(a), £7(C) is
computed by projecting the curve into a number of images,
computing the image energy of each projection, and summing
these energies.

2.2 Smooth Snakes and Ribbons

These snakes are used to model smoothly curving features
such as roads or ridgelines.

- 2-D curves. Following Kass et al. [1988], we choose the
vertices of such curves to be roughly equidistant and add to
the image energy &5 a regularization term £p of the form

Ep(C) =m Y (wi— wic1)? + (i — yiz1)?
2 Y2z — w1 — zig1)® + (29 — yic1 — yis1)?

4

and define the “total energy” £r as

Er(C) = Ep(C) + £1(C) . (5)

The first term of £p approximates the curve's tension, and
the second term approximates the sum of the square of the
curvatures, assuming that the vertices are roughly equidis-
tant. In addition, when starting, as we do, with regularly
spaced vertices, this second term tends to maintain that reg-
ularity. To perform the optimization we could use the steepest
or conjugate gradient, but it would be slow for curves with
large numbers of vertices. Instead, it has proven much more
effective to embed the curve in a viscous medium and solve
the equation of the dynamics

o& ds
53; + Cl/az* = 0, (6)
wien 2 0 06
a5 as a5’
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where £ is the energy of Equation 5, o the viscosity of the
medium, and S the state vector that defines the current posi-
tion of the curve. Since the deformation energy £p in Equa-
tion 4 is quadratic, its derivative with respect to S is linear,
and therefore Equation 6 can be rewritten as

; oE
RsSt-f-Oz(St—Se-—l) = - as 5y
» g Q 88
= ([&5-{- C!I)bz = aSt—1 — (9—5; St s (7)
where Py
«pD -
el .S
g = &S

and K is a sparse matrix. Note that the derivatives of £p
with respect to z and y are decoupled so that we can rewrite
Equation 7 as a set of two differential equations of the form
o€

; ©)

—t=aVi_, - 2L

(K +al)V o v,

where V stands for either X or Y, the vectors of the z and y
vertex coordinates, and K is a pentadiagonal matrix. Because
I is pentadiagonal, the solution to this set of equations can
be computed efficiently in O(n) time using LU decomposition
and backsubstitution. Note that the LU decomposition need
be recomputed only when «a changes.

In practice, a is computed in the following manner. We start

with an initial step size A, expressed in pixels, and use the
following formula to compute the viscosity:

Van f)_é_'
A, 18S

, (©)

where n is the number of vertices. This ensures that the
initial displacement of each vertex is on the average of mag-
nitude A,. Because of the nonlinear term, we must verify
that the energy has decreased from one iteration to the next.
if, instead, the energy has increased, the curve is reset to its
previous position, the step size is decreased, and the viscosity
recomputed accordingly. This procedure is repeated until the
step size becomes less than some threshold value. In most
cases, because of the presence of the linear term that prop-
agates constraints along the whole curve in one iteration, it
takes only a small number of iterations to optimize the initial
curve.

3-D curves. To extend the smooth snakes to three dimen-
sions, we add one term in z to the deformation energy of
Equation 4. Since the derivatives of £p with respect to z,
y, and z are still decoupled, we can rewrite Equation 7 as a
set of three differential equations of the form of Equation 8,
where V' now stands for either X, Y, or Z, the ., y, or 2
vertex coordinates.

The only major difference with the 2-D case is the use of the
images' camera models. In practice, £;(C) is computed by
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(d)

(e)

Figure 1: Rugged terrain with sharp ridge lines. (a,b,c) Three images of a mountainous site. (d) Shaded view of an initial
terrain estimate. (e) Rough polygonal approximation of the ridgelines overlaid on image (a). (f) The terrain and
ridgeline estimates viewed from the side (the scale in z has been exaggerated).

summing gradient values along the line segments linking the
vertices' projections. These projections, and their derivatives,
are computed from the state vector S by using the camera
models. Similarly, to compute the viscosity, we use the cam-
era models to translate the average initial step Ay, a number
of pixels, into a step A, expressed in world units and use the
latter in Equation 9.

Ribbons 2-D snakes can also be extended to describe
ribbon-like objects such as roads in aerial images. A ribbon
snake is implemented as a polygonal curve forming the center
of the road. Associated with each vertex i of this curve is a
width w; that defines the two curves that are the candidate
road boundaries. The list of vertices can be written as

i}

The state vector S becomes the vector of all =, y, and w
and the average edge strength the sum of the edge strengths
along the two boundary curves. Since the width of roads
tends to vary gradually, we add an additional energy term of

Sy = {(1:E yi wi)}, t=1,... (10)

the form
Ew(C) = ) (wi—wia)’ (1)
Ow
ow Lw,

where 1V is the vector of the vertices' widths and L a tridi-
agonal matrix. The total energy can then be written as

f(C) = ,\Df:D(C) + /\Wgw((:) + AgfI(C) ,
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where Ap and Aw weigh the contributions of the two geo-
metric terms. At each iteration the system must solve the
three differential equations in the form of Equation 8, where
V now stands for either X, Y, or W, the z, y, or w vertex
coordinates.

2-D ribbons can be turned into 3—D ones in exactly the same
way 2-D snakes are turned into 3—-D ones. The state vector
S becomes the vector of all z, y, 2z, and w and, at each
iteration, the system must solve four differential equations,
one for each coordinate.

2.3 Network Snakes

The 2-D and 3-D “network snakes” are a direct extension of
the polygonal snakes of Section 2.1.

In the 2-D case, the extension is straightforward. A network
snake is now defined by a list of n vertices S as before and a
list of edges A = {(i,7) where 1 <i<nand 1< j<n}
Figure 3 depicts such a network snake. £7(C) is computed as

aey= Y &7 S LY, (12)

(1,5)€A (1)€A

where Sé’j is the sum of the edge gradients along the
((wi,yi)(z;,y;)) segment and L™ is its length. The snake is
optimized using either steepest gradient descent or conjugate
gradient.

In the 3-D case, one must take into account the fact that
not all the network’s edges are visible in all views. As a result
one must also provide, for each projection of the snake into
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Figure 2:

()

(f)

Recovering the 3-D geometry of both terrain and ridges. (a) Refined ridgeline after 3-D optimization. (b) Shaded

view of the terrain after refinement. (c) Side view of the ridgeline and terrain after independent optimization of
each one. Note that the shape of the ridgeline does not exactly match that of the terrain. (d) Differences of
elevation between the recovered ridgeline and the underlying terrain. The image is stretched so that black and
white represent errors of minus and plus 80 feet, respectively. (e) Side view after optimization under consistency
constraints. (f) Corresponding difference of elevation image stretched in the same fashion as (d).

(a)

Figure 3:
8)).

all the images, a list of visible edges. We compute this list
by using the face-visibility methods embedded in RCDE as
shown in Figure 4.

The number of degrees of freedom of generic 3-D networks
can be reduced by forcing them to be planar. We do this

either by defining a plane of equation
z=axr+by+c (13)

and imposing that the vertices lie on' such a plane or im-
posing planar constraints on sets of four vertices using the

Snake topology. (a) A simple polygonal curve described by a sequential list of vertices v;, 1
network described by a list of vertices v;, 1 <1 < 8, and a list of edges—((12) (23) (34) (45
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6

constrained-optimization approach introduced in Section 3.1.
In both cases, we replace the n degrees of freedom necessary
to specify the elevation of each vertex by the three degrees
of freedom required to define the plane.

These 3—-D networks can be further specialized to handle ob-
jects that are of particular interest in urban environments:
trihedral corners found on building roofs and extruded ob-
jects that are used in RCDE to model building outlines. In
Figure 5, we show several buildings modeled by roughly en-
tering their outlines within RCDE and optimizing the shapes
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(a)

(b)

Figure 4: Edge visibility. (a) An RCDE “extruded object." Only the visible faces—that is, those whose normal is oriented
towards the viewer—are drawn. Note that this heuristic does not account for nonconvexity, and as a resuit the
faces in the lower left corner of the image are improperly drawn. (b) The network snake generated to optimize
the extruded object. It includes roof edges and vertical wall edges. The edges at the back of the building are not
drawn—and not used during the computations involving these views—because they belong to hidden faces. The
edges at the base of the building are treated as invisible because their appearance is unreliable in typical imagery.

in three views simultaneously by using our extruded snakes.
The use of the snakes has allowed us to perform this task
much faster than we would have if we had had to precisely
delineate all five buildings by hand. To produce this result,
we have used the constrained-optimization technique of Sec-
tion 3.1 to constrain the “wall” edges to remain vertical. We
can also constrain the “roof outline” to be planar and the
“roof edges” to form 90-degree angles. These constraints
greatly reduce the number of degrees of freedom and allow
for better convergence properties.

2.4 3-D Surface Meshes

Given the task of reconstructing a surface from multiple im-
ages whose vantage points may be very different, we need
a surface representation that can be used to generate im-
ages of the surface from arbitrary viewpoints, taking into
account self-occlusion, self-shadowing, and other viewpoint-
dependent effects. Clearly, a single image-centered represen-
tation is inadequate for this purpose. Instead, an object-
centered surface representation is required.

Many object-centered surface representations are possible.
However, practical issues are important in choosing an ap-
propriate one. First, the representation should be general-
purpose in the sense that it should be possible to repre-
sent any continuous surface, closed or open, and of arbitrary
genus. Second, it should be relatively straightforward to gen-
erate an instance of a surface from standard data sets such
as depth maps or clouds of points. Finally, there should be a
computationally simple correspondence between the param-
eters specifying the surface and the actual 3-D shape of the
surface, so that images of the surface can be easily generated,
thereby allowing the integration of information from multiple
images.

A regular 3-D triangulation is an example of a surface rep-
resentation that meets the criteria stated above, and is the
one we have chosen for our previous work. In our imple-
mentation, all vertices except those on the edges have six
neighbors and are initially regularly spaced. Such a mesh de-
fines a surface composed of three-sided planar polygons that
we call triangular facets, or simply facets. Triangular facets
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are particularly easy to manipulate for image and shadow
generation; consequently, they are the basis for many 3-D
graphics systems. These facets tend to form hexagons and
can be used to construct virtually arbitrary surfaces. Finally,
standard triangulation algorithms can be used to generate
such a surface from noisy real data [Fua and Sander, 1992,
Szeliski and Tonnesen, 1992].

Sources of information. A number of information sources
are available for the reconstruction of a surface and its mate-
rial properties. Here, we consider two classes of information.

The first class comprises those information sources that do
not require more than one image, such as texture gradients,
shading, and occlusion edges. When using multiple images
and a full 3-D surface representation, however, we can do
certain things that cannot be done with a single image. First,
the information source can be checked for consistency across
all images, taking occlusions into account. Second, when the
source is consistent and occlusions are taken into account,
the information can be fused over all the images, thereby
increasing the accuracy of the reconstruction.

The second class comprises those information sources that
require at least two images, such as the triangulation of corre-
sponding points between input images (given camera models
and their relative positions). Generally speaking, this source
is most useful when corresponding points can be easily identi-
fied and their image positions accurately measured. The ease
and accuracy of this correspondence can vary significantly
from place to place in the image set, and depend critically on
the type of feature used. Consequently, whatever the type of
feature used, one must be able to identify where in the im-
ages that feature provides reliable correspondences, and what
accuracy one can expect.

The image feature that we have chosen for correspondence
(although it is by no means the only one possible) is simply
intensity in radiometrically corrected images—for example, by
filtering them. Clearly, intensity can be a reliable feature only
when the albedo varies quickly enough on the surface and,
consequently, the images are sufficiently textured.

Simple correlation-based stereo methods often use fixed-size
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Figure 5: Buildings modeled by entering rough models within RCDE and optimizing them using the extruded snakes. (a)
Rough initial sketches overlaid on one of the images. (b) A view from a different perspective. (c.d.e) Final building
outlines overlaid on the three images we used to perform the 3-D optimization. (f) A view of the buildings from

the perspective of (b).

windows in images to measure disparities, which wilt in gen-
eral yield correct results only when the surface is parallel to
the image plane. Instead, we compare the intensities as pro-
jected onto the facets of the surface. Consequently, the re-
construction can be significantly more accurate for slanted
surfaces. Some correlation-based algorithms achieve simi-
lar results by using variable-shaped windows in the images
[Quam, 1984, Nishihara, 1984, Kanade and Okutomi, 1990,
Baltsavias, 1991, Devernay and Faugeras, 1994]. However,
they typically use only image-centered representations of the
surface.

Our approach is much more closely related to the least-
squares approaches advocated by Wrobel [1991] and
Heipke [1992], who both use a 2-1/2-D representation of
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the surface.

As for the monocular information source, we have chosen to
use shading, where shading is the change in image intensity
due to the orientaticn of the surface relative to a light source.
We use this method because shading is most reliable when
the albedo varies slowly across the surface; this is the natu-
ral complement to intensity correspondence, which requires
quickly varying albedo. The complementary nature of these
two sources allows us to accurately recover the surface ge-
ometry and material properties for a wide variety of images.

In contrast to our approach, traditional uses of shading in-
formation assume that the albedo is constant across the en-
tire surface, which is a major limitation when applied to real
images. We overcome this limitation by improving upon a
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Figure 6. Mesh representation and computation of the image terms of the objective function: (a) Wireframe representation
of the mesh. (b) Facets are sampled at regular intervals; the circles represent the sample points. The stereo
component of the objective function is computed by summing the variance of the gray level of the projections of
these sample points, the g;s. (c) Each facet's albedo is estimated using its normal N, the light source direction
L, and the average gray level of the projection of the facet into the images. The shading component of the
objective function is the sum of the squared differences in estimated albedo across neighboring facets.

method to deal with discontinuities in albedo alluded to in
the summary of Leclerc and Bobick [1991]. We compute the
albedo at each facet by using the normal to the facet, a light-
source direction, and the average of the intensities projected
onto the facet from all images. We use the local variation
of this computed albedo across the surface as a measure of
the correctness of the surface reconstruction. To see why
albedo variation is a reasonable measure of correctness, con-
sider the case when the albedo of the real surface is constant.
When the geometry of the mesh is correct, the computed
albedo should be approximately the same as the real albedo,
and hence should be approximately constant across the mesh.
Thus, when the geometry is incorrect, this will generally give
rise to variations in the computed albedo that we can take
advantage of. Furthermore, by using a /ocal variation in the
computed albedo, we can deal with surfaces whose albedo is
not constant, but instead varies slowly over the surface.

Implementation. The triangulated 3-D mesh of vertices
that represents a surface, S, is a hexagonally connected set
of vertices such as the one shown in Figure 6(a). The po-
sition of a vertex v; is specified by its Cartesian coordinates
(zj,vy5,%;). The mesh can be deformed by varying these
coordinates to minimize an objective function that includes
terms derived from stereo and shading information. lts state
vector S is the vector of all a:,y, and z coordinates.

The stereo component of the objective function is derived by
comparing the gray levels of the points in all the images for
which the projection of a given point on the surface is visible.
It is similar to the term proposed by Wrobel [1991]. As shown
in Figure 6(b), this comparison is done for a uniform sampling
of the surface. This method allows us to deal with arbitrarily
slanted regions and to discount occluded areas of the surface.

The shading component of the objective function is computed
by using a method that does not invoke the traditional con-
stant albedo assumption. Instead, it attempts to minimize
the variation in albedo across the surface, and can therefore
deal with surfaces whose albedo varies slowly. This term is
depicted by Figure 6(c).

The stereo term is most useful when the surfaces are highly
textured. Conversely, the shading term is most reliable where
the surfaces have little or no texture. To account for this
phenomenon, we take the complete objective function, £(8),
to be a weighted average of these two components where the
weighting is a function of texture within the projections of
individual facets.
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In general, £(S) is a highly nonconvex function of the vertex
positions. To minimize £(S), we use the “snake-type” [Kass
et al., 1988] optimization technique of Section 2.2. We define
the total energy of the mesh, £7(8), as

Er(S) = Ep(8) +£(S) (14)

where £p(8) is a regularization term analogous to the one
of Equation 5. In practice, we take £p to be a measure of
the curvature or local deviation from a plane at every vertex.
Because the mesh is regular, £p can be approximated by
using finite differences as a quadratic form [Fua and Leclerc,
1995] ‘

En(S) =1/2X"KX+Y'KY +Z2TKZ), (15)

where XY, and Z are the vectors of the z,y, and z coordi-
nates of the vertices, and K is a sparse and banded matrix.
This regularization term serves a dual purpose. First, as be-
fore, it “convexifies” the energy landscape when Ap is large
and improves the convergence properties of the optimization
procedure. Second, in the presence of noise, some amount of
smoothing is required to prevent the mesh from overfitting
the data, and wrinkling the surface excessively.

To speed the computation and prevent the mesh from becom-
ing stuck in undesirable local minima, we typically use several
levels of mesh sizes—three in the example of Figure 2(b)—to
perform the computation. We start with a relatively coarse
mesh that we optimize. We then refine it by splitting every
facet into four smaller ones and reoptimizing. Finally, we
repeat the split and optimization processes one more time.

3 ENFORCING CONSISTENCY

We now turn to the enforcing of geometric and consistency
constraints on the multiple objects that may compose a com-
plex site.

A traditional way to enforce such constraints is to add a
penalty term to the model's energy function for each con-
straint. While this may be effective for simple constraints,
this approach rapidly becomes intractable as the number
of constraints grows, for two reasons. First, it is well
known that minimizing an objective function that includes
such penalty terms constitutes an ill-behaved optimization
problem with poor convergence properties [Fletcher, 1987,
Gill et al., 1981]: the optimizer is likely to minimize the con-
straint terms while ignoring the remaining terms of the ob-
jective function. Second, if one tries to enforce several con-
straints of different natures, the penalty terms are unlikely to
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be commensurate and one has to face the difficult problem
of adequately weighing the various constraints.

Using standard constrained optimization techniques is one
way of solving these two problems. However, while there
are many such techniques, most involve solving large linear
systems of equations and few are tailored to preserving the
convergence properties of the snake-like approaches of Sec-
tions 2.2 and 2.4. Exceptions are the approach proposed by
Metaxas and Terzopoulos [1991] to enforce holonomic con-
straints by modeling the second-order dynamics of the system
and the technique proposed by Amini et al. [1988] using dy-
namic programming.

Here, we propose a new approach to enforcing hard-
constraints on our snakes without undue computational bur-
den while retaining their desirable convergence properties.

3.1 Constrained Optimization in Orthogonal Subspaces

Formally, the constrained optimization problem can be de-
scribed as follows. Given a function f of n variables § =
{s1,$2,..,8n}, we want to minimize it under a set of m con-
straints C(S) = {c1,c2,..,cm} = 0. That is,

minimize f(S) subject to C(S) =0 . (16)
While there are many powerful methods for nonlinear con-
strained minimization [Gill et al., 1981], we know of none
that are particularly well adapted to snake-like optimization:
they do not take advantage of the locality of interactions
that is characteristic of snakes. We have therefore devel-
oped a robust two-step approach [Brechbiihler et al., 1995,
Fua and Brechbuhler, 1996] that is closely related to gradient
projection methods first proposed by Rosen [1961] and can
be extended to snake optimization.

Solving a constrained optimization problem involves satisfying
the constraints and minimizing the objective function. For
our application, it has proved effective to decouple the two
and decompose each iteration into two steps:

1. Enforce the constraints by projecting the current state
onto the constraint surface. This involves solving a
system of nonlinear equations by linearizing them and
taking Newton steps.

Minimize the objective function by projecting the gradi-
ent of the objective function onto the subspace tangent
to the constraint surface and searching in the direction
of the projection, so that the resulting state does not
stray too far away from the constraint surface.

Figure 7 depicts this procedure. Let C and S be the con-
straint and state vectors of Equation 16 and A be the n x m
Jacobian matrix of the constraints. The two steps are imple-
mented as follows:

1. To project S, we compute dS such that C(S +dS) =
C(S)+A'dS = 0 and increment S by dS. The shortest
possible dS is found by writing dS as AdV and solving
the equation A'AdV = —C(S).

To compute the optimization direction, we first solve
the linear system AT(S)A(S)A = AT (S)Vf and take
the direction to be Vf — AX. This amounts to esti-
mating Lagrange multipliers, that is, the coefficients
that can be used to describe V f as closely as possible
as a linear combination of constraint normals.

229

These two steps operate in two locally orthogonal subspaces,
in the column space of A and in its orthogonal complement,
the null space of AT. Note that AT(S)A(S) is an m x m
matrix and is therefore small when there are more variables
than constraints, which is always the case in our application.

This technique has been used to enforce the geometric con-
straints in the example of Figure 5. Furthermore, it can be
generalized to handle inequality constraints by introducing
an “active set strategy.” The inequality constraints that
are strictly satisfied are deactivated, while those that are
violated are activated and treated as equality constraints.
This requires additional bookkeeping but does not appear
to noticeably slow down the convergence of our constrained-
optimization algorithm.

3.2 Constraining Snake Optimization

We could trivially extend the technique of Section 3.1 to the
refinement of smooth curves and surfaces by taking the ob-
jective function f to be the total energy £r of Equation 5.
However, this would be equivalent to optimizing an uncon-
strained snake by using gradient descent as opposed to per-
forming the implicit Euler steps that so effectively propagate
smoothness constraints.

In practice, propagating the smoothness constraints is key
to forcing convergence toward desirable answers. When a
portion of the snake deforms to satisfy a hard constraint, en-
forcing regularity guarantees that the remainder of the snake
also deforms to preserve it and that unwanted discontinuities
are not generated. This is especially true in our application
because many of the constraints we use can be satisfied by
moving a small number of vertices, thereby potentially creat-
ing “kinks" in the curve or surface that subsequent optimiza-
tion steps may not be able to remove without getting stuck
in local minima.

Therefore, for the purpose of optimizing constrained smooth
snakes, we decompose the second step of the optimization
procedure of Section 3.1 into two steps. We first solve the
unconstrained Dynamics Equation (Equation 7) as we do for
unconstrained snakes. We then calculate the component of
the snake step vector—the difference between the snake's
current state and its previous one—that is perpendicular to
the constraint surface and subtract it from the state vector.
The first step regularizes, while the second prevents the snake
from moving too far away from the constraint surface.

As in the case of unconstrained snakes, o, the viscosity term
of Equation 7, is computed automatically at the start of the
optimization and progressively increased as needed to ensure
a monotonic decrease of the snake’s energy and ultimate con-
vergence of the algorithm.

Let S be the snake's state vector as described in Sections 2.2
and 2.4. An iteration of the optimization procedure involves
the following three steps:

1. Take a Newton step to project S;—1, the current state
vector, onto the constraint surface.

Si—1 & Si—1 + AdV where ATAdV = —C(Si—1) .

If the snake's total energy has increased, back up and
increase viscosity.

2. Take a normal snake step by solving
ot
a5

([\’S-{"O(I)St CYSt_l —_
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Figure 7: Constrained optimization. Minimizing ( — 0.5)% + (y — 0.2)? under the constraint that (z/2)% + y* = 1. The
set of all states that satisfy the constraint C(S) = 0, i.e. the constraint surface, is shown as a thick gray line.
Each iteration consists of two steps: orthognal projection onto the constraint surface followed by a line search in
a direction tangent to the surface. Because we perform only one Newton step at each iteration, the constraint is

fully enforced after only a few iterations.

3. Ensure that dS, the snake step from S;—; to S;, is in
the subspace tangent to the constraint surface.

Sy = Sy — AX where ATAN = AT(S, — S:_1)
so that the snake step dS becomes

dS = (S —AN) - Sy
= ATds = o

3.3 Multiple Snakes

Our technique can be further generalized to the simultaneous
optimization of several snakes under a set of constraints that
bind them. We concatenate the state vectors of the snakes
into a composite state vector .S and compute for each snake
the viscosity coefficient that would yield steps of the ap-
propriate magnitude if each snake was optimized individually.
The optimization steps become

1. Project S onto the constraint surface as before and
compute the energy of each individual snake. For all
snakes whose energy has increased, revert to the pre-
vious position and increase the viscosity.

2. Take a normal snake step for each snake individually.

3. Project the global step into the subspace tangent to
the constraint surface.

Because the snake steps are taken individually, we never have
to solve the potentially very large linear system involving all
the state variables of the composite snake but only the smaller
individual linear systems. Furthermore, to control the snake's
convergence via the progressive viscosity increase, we do not
need to sum the individual energy terms. This is especially
important when simultaneously optimizing objects of a dif-
ferent nature, such as a surface and a linear feature, whose
energies are unlikely to be commensurate so that the sum of
these energies would be essentially meaningless.

In effect, the optimization technique proposed here is a de-
composition method and such methods are known to work
well [Gill et al., 1981] when their individual components, the
individual snake optimizations, are well behaved, which is the
case here.

4 CONSISTENT SITE MODELING

We demonstrate the ability of our technique to impose geo-
metric constraints on 2-D and 3-D deformable models using
real imagery. More specifically, we address the issue of op-
timizing the models of 3-D linear features such as roads,

ridgelines, rivers, and the terrain on which they lie under the
constraint that they be consistent with one another. In Fig-
ures 1 and 8 we present two such cases where recovering the
terrain and the roads independently of one another leads to
inconsistencies.

Because we represent the terrain as a triangulated mesh
and the features as 3-D polygonal approximations, con-
sistency can be enforced as follows.  For each edge
((1,y1,21), (z2,y2,22)) of the terrain mesh and each seg-
ment ((za,ys, 23), (¥4, Y4, 24)) of a linear feature that inter-
sect when projected in the (z,y) plane, the four endpoints
must be coplanar so that the segments also ihtersect in 3-D
space. This can expressed as

ry T2 ¥3 T4
Y Y2 Ys Y4 0
Z1 Z2 Z3 Z4
1 1 1 1

; (a7

which yields a set of constraints that we refer to as consis-
tency constraints.

In Figures 2 and 9, we show that the optimization under the
constraints of Equation 17 avoids the discrepancies that result
from independent optimization of each feature.

In the example of Figure 2, the “ridge snake" attempts to
maximize the average edge gradient along its projections in
all three images. In the case of Figures 8 and 9, the roads
are lighter than the surrounding terrain. At low resolution,
they can effectively be modeled as white lines, and the corre-
sponding snakes attempt to maximize image intensity along
their projections. At higher resolution, they are better mod-
eled using the 3-D ribbon snakes of Section 2.2. We also
introduce a building and use its base to further constrain the
terrain. Figures 9(a,b) depict the result of the simultaneous
optimization of the terrain and low-resolution roads. By sup-
plying an average width for the roads, we can turn the lines
into ribbons and reoptimize terrain and features under the
same consistency constraints as before, yielding the result of
Figure 9(c).

The case of rivers is somewhat more complex. Like roads,
rivers are represented as linear features that must lie on the
terrain. But, in addition, the system must ensure that they
flow downhill and at the bottom of valleys. By introducing
the active set strategy described at the end of Section 3.1, we
have been able to impose such constraints and to generate
the more complete site model of of Figure 10.

These examples illustrate the ability of our approach to model
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Figure 8: Building a site model. (a,b,c) Three images of a site with roads and buildings. (d) A rough sketch of the
road network and of one of the buildings. (e) Shaded view of the terrain with overlaid roads after independent
optimization of each. Note that the two roads in the lower right corner appear to be superposed in this projection
because their recovered elevations are inaccurate. (f) Differences of elevation between the optimized roads and
the underlying terrain. The image is stretched so that black and white represent errors of minus and plus 5

meters, respectively.

(d) “(e)

Figure 9: Recovering the 3-D geometry of both terrain and roads. (a) Shaded view of the terrain with overlaid low-
resolution roads after optimization under consistency constraints. (b) Corresponding differences of elevation
between features and underlying terrain. The image is stretched like the one of Figure 8(f). Note that only the
roof of the building is significantly above the terrain. (c) The roads modeled as ribbons overlaid on the terrain.
(d.e,f) The optimized roads overlaid on the original images.

different kinds of features in a common reference framework 5 CONCLUSION
and to produce consistent composite models.

We have presented object modeling techniques for 2-D and
3-D linear features and 3-D surfaces that rely on paramet-
ric models and are extensions of traditional snakes. We have
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Figure 10: Composite model. Shaded and texture mapped views of an area of the site of Figure 8 including rivers, shown as
black lines, and buildings.

shown that, using a constrained optimization method that al-
lows us to enforce hard constraints on these deformable mod-
els at a low computational cost, we can generate consistent
models of complex sites.

We believe that this last capability will prove indispensable to
automating the generation of complex object databases from
imagery, such as the ones required for realistic simulations or
intelligence analysis. In such databases, the models must not
only be as accurate—that is, true to the data—as possible
but also consistent with each other. Otherwise, the simula-
tion will exhibit “glitches,” and the image analyst will have
difficulty interpreting the models. Because our approach can
handle nonlinear constraints, in future work we will use it to
implement more sophisticated constraints than the simple ge-
ometric constraints presented here. When modeling natural
objects, we intend to take physical laws into account. For
example, rivers flow downhill and at the bottom of valleys;
these characteristics should be used when modeling both the
_river and the surrounding terrain. In addition, when modeling
man-made objects, we intend to take advantage of knowledge
about construction practices, such as the fact that roads do
not have arbitrary slopes.
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We hope that the technique presented in this paper will even-
tually form the basis for a suite of tools for modeling complex
scenes accurately while ensuring that the model components
satisfy geometric and semantic constraints and are consistent
with each other.
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