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Abstract

A unified framework for 3-D shape reconstruction allows us to combine image-based and
geometry-based information sources. The image information i1s akin to stereo and shape-from-
shading, while the geometric information may be provided in the form of 3-D points, 3-D
features or 2-D silhouettes. A formal integration framework is critical in recovering complicated
surfaces because the information from a single source is often insufficient to provide a unique
answer.

Our approach to shape recovery is to deform a generic object-centered 3-D representation
of the surface so as to minimize an objective function. This objective function is a weighted
sum of the contributions of the various information sources. We describe these various terms
individually, our weighting scheme, and our optimization method. Finally, we present results on
a number of difficult images of real scenes for which a single source of information would have
proved insufficient.

Keywords : Surface reconstruction, Stereo, Shape-from-shading,Silhouettes, Geometric con-
straints.



1 Introduction

The recovering of surface shape from image cues, the so-called “shape from X” problem, has received
tremendous attention in the computer vision community. But no single source of information “X,”
be it stereo, shading, texture, geometric constraints or any other, has proved to be suflicient across
a reasonable sampling of images. To get good reconstructions of a surface, it is necessary to use
as many different kinds of cues with as many views of the surface as possible. In this paper, we
present and demonstrate a working framework for surface reconstruction that combines image cues,
such as stereo and shape-from-shading, with geometric constraints, such as those provided by laser
range finders, area- and edge-based stereo algorithms, linear features, and silhouettes.

Our framework can incorporate cues from many images of a surface, even when the images are
taken from widely differing viewpoints, accommodating such viewpoint-dependent effects as self-
occlusion and self-shadowing. It accomplishes this by using a full 3—D object-centered representation
of the estimated surface. This representation is then used to generate synthetic views of the
estimated surface from the viewpoint of each input image. By using standard computer graphics
algorithms, those parts of the surface that are hidden from a given viewpoint can be identified
and consequently eliminated from the reconstruction process. The remaining parts are then in
correspondence with the input images, and the images and corresponding cues are applied to the
reconstruction of the surface in an iterative manner using an optimization algorithm.

Recent publications describe the reconstruction of a surface using 3-D object-centered repre-
sentations, such as 2.1/2-D grids [Robert et al., 1992], 3-D surface meshes [Cohen et al., 1991,
Delingette et al., 1991, Terzopoulos and Vasilescu, 1991, Vemuri and Malladi, 1991, Mclner-
ney and Terzopoulos, 1993, Koh et al., 1994], parameterized surfaces [Stokely and Wu, 1992,
Lowe, 1991], local surfaces [Ferrie et al., 1992, Fua and Sander, 1992], particle systems [Szeliski
and Tonnesen, 1992], and volumetric models [Pentland, 1990, Terzopoulos and Metaxas, 1991,
Pentland and Sclaroff, 1991]. Most of these rely on previously computed 3-D data, such as the
coordinates of points derived from laser range finders or correlation-based stereo algorithms, and
reconstruct the surface by fitting it to these data in a least-squares sense. In other words, the
derivation of the 3-D data from the images is completely divorced from the reconstruction of the
surface.

In contrast, our framework allows us to directly use such image cues as stereo, shading, and
silhouette edges in the reconstruction process while simultaneously incorporating previously com-
puted 3-D data such as those mentioned above. In a previous publication [Fua and Leclerc, 1994] we
describe how stereo and shading are used within the framework described below, and the relation-
ship of this approach to previous work. Here, we focus on how an additional image cue (silhouette
edges) and previously computed 3-D data are incorporated into our reconstruction process.

Combining these different sources of information is not a new idea in itself. For example, Blake et
al. [1985] is the earliest reference we are aware of that discusses the complementary nature of stereo
and shape-from-shading. Both Cryer et al. [1992] and Heipke et al. [1992] have proposed algorithms
to combine shape-from-shading and stereo, while Liedtke et al. [1991] first uses silhouettes to derive
an initial estimate of the surface, and then applies a multi-image stereo algorithm to improve the
result. However, none of the algorithms we know of uses an object-centered representation and



an optimization procedure that are general enough to incorporate all of the cues that we present
here. This generality should also make possible the use of a very wide range of other sources of
information, such as shadows, in addition to those actually discussed here.

We view the contribution of this paper as providing both the framework that allows us to
combine diverse sources of information in a unified and computationally effective manner, and the
specific details of how these diverse sources of information are derived from the images.

In the next section, we describe our framework and the new information sources introduced
here. Following this, we demonstrate that the framework successfully performs its function on real
images and allows us to achieve results that are better than those we could derive from any one,
or even two, sources of information.

2 Framework

Our approach to recovering surface shape and reflectance properties from multiple images is to
deform a 3-D representation of the surface so as to minimize an objective function. The free
variables of this objective function are the coordinates of the vertices of the mesh representing the
surface, and the process is started with an initial estimate of the surface. Here we assume that
images are monochrome, and that their camera models are known a priori.

We represent a surface § by a hexagonally connected set of vertices V. = (vq, vq,...,v,,) called
a mesh. The position of vertex v; is specified by its Cartesian coordinates (z;,y;, z;). Each vertex
in the interior of the surface has exactly six neighbors.

Neighboring vertices are further organized into triangular planar surface elements called facets,
denoted F = (f1, fa,. .., fnf) The vertices of a facet are also ordered in a clockwise fashion. In this
work, we require that the initial estimate of the surface have facets whose sides are of equal length.
The objective function described below tends to maintain this equality, but does not strictly enforce
it. In the course of the optimization, we refine the mesh by iteratively subdiving the facets into
four smaller ones whose sides are still of roughly equal length.

In Figure 1, we show a shaded view and a wireframe representation of such a mesh. We also
show what we call a “Facet-1D” image. For each input image, it is generated by encoding the
index ¢ of each facet f; as a unique color, and projecting the surface into the image plane, using
a standard hidden-surface algorithm. As discussed in Sections 2.3 and 2.4, we use it to determine
which surface points are occluded in a given view and on which facets geometric constraints should
be brought to bear.

2.1 Objective Function and Optimization Procedure

The objective function £(S) that we use to recover the surface is a sum of terms that take into
account the image-based constraints—stereo and shape-from-shading—and the geometry-based
constraints—features and silhouettes—that are brought to bear on the surface. To minimize £(S),
we use an optimization method that is inspired by the heuristic technique known as a continuation
method [Terzopoulos, 1986, Leclerc, 1989a, Leclerc, 1989b] in which we add a regularization term
to the objective function and progressively reduce its influence. We define the total energy of the
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Figure 1: Projection of a mesh, and the Facet-ID image used to accommodate occlusions during surface
reconstruction: (a) A shaded image of a mesh. (b) A wire-frame representation of the mesh
(bold white lines) and the sample points in each facet (interior white points). (¢) The Facet-
ID image, wherein the color at a pixel is chosen to uniquely identify the visible facet at that
point (shown here as a gray-level image).

mesh, £7(S), as

ET(S) = /\DED(S)—I—E(S)
E(S) = Z/\igi(S). (1)

The &;(S) represent the image and geometry-based constraints, and the A; their relative weights,
as defined below. &p(S), the regularization term, serves a dual purpose. First, we define it as a
quadratic function of the vertex coordinates, so that it “convexifies” the energy landscape when Ap
is large and improves the convergence properties of the optimization procedure. Second, as shown
in the appendix, in the presence of noise, some amount of smoothing is required to prevent the
mesh from overfitting the data, and excessively wrinkling the surface.

In our implementation, we take £p to be a measure of the curvature or local deviation from a
plane at every vertex. We approximate this as follows.

Consider a perfectly planar hexagonal mesh for which the distances between neighboring vertices
are exactly equal. Let the neighbors of a vertex v; be ordered in clockwise fashion and let us denote
them vy, (;) for 1 < j < 6. This notation is depicted in Figure 2(a). If the hexagonal mesh was
perfectly planar, then the third neighbor over from the j** neighbor, UN;(j+3): Would lie on a straight
line with v; and vy (;). Given that the intervertex distances are equal, this implies that coordinates
of v; equal the average of the coordinates of vy,(;) and vy, 43), for any j.

Given the above, we can write a measure of the deviation of the mesh from a plane as follows:



Figure 2: Vertices and facets of a mesh: (a) The six neighbors N; (j) of a vertex v; are ordered clockwise.
The deformation component of the objective function tends to minimize the distance between
v; and the midpoint of diametrically opposed neighbors, represented by the dotted circle.
(b) Facets are sampled at regular intervals as illustrated here. The stereo component of the
objective function is computed by summing the variance of the gray level of the projections
of these sample points, the ¢;s. (¢) The albedo of each facet is estimated using the facet

normal ﬁ, the light source direction L | and the average gray level of the projection of the
facet into the images. The shading component of the objective function is the sum of the
squared differences in estimated albedo across neighboring facets.
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Note that this term is also equivalent to the squared directional curvature of the surface when
the sides have equal lengths [Kass et al., 1988]. This term can be made to accommodate multiple
resolutions of facets by normalizing each term by the nominal intervertex spacing of the facets.

In previous implementations [Fua and Leclerc, 1994], we have performed optimization using a
standard conjugate-gradient descent procedure [Press et al., 1986]. However, the £p term described
here is amenable to a “snake-like” optimization technique [Kass et al., 1988]. We embed the curve
in a viscous medium and solve the equation of dynamics

oEr dS

%4-04% = 0, (3)
& 0&p  OE

vith 55 = 35 T as’

where & is the total energy of Equation 1, o the viscosity of the medium, and S the state vector
that defines the current position of the mesh that is the vector of the z,y, and z coordinates of the
vertices. Since the deformation energy £p in Equation 2 is quadratic, its derivative with respect to



S is linear, and therefore Equation 3 can be rewritten as

KsSi+a(Si— Si-1) = — g—g -
= (Ks+al)S; = aSi_1 — g—g - (4)
where e ,
59 = KsS,

and Kg is a sparse matrix. Note that the derivatives of £p with respect to z,y, and z are decoupled
so that we can rewrite Equation 4 as a set of three differential equations in the three spatial
coordinates:
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where XY, and Z are the vectors of the z,y, and z coordinates of the vertices, and K is a
sparse matrix. In fact, for our hexagonal meshes, K turns out to be a banded matrix and this
set of equations can be computed efficiently using LU decomposition and backsubstitution. Note
that the LU decomposition need be recomputed only when « changes. When « is constant, only
the backsubstitution step is required. In practice « is computed automatically at the start of the
optimization procedure so that a prespecified average vertex motion amplitude is achieved [Fua and
Leclerc, 1990]. The optimization proceeds as long as the total energy decreases; when it increases
the algorithm backtracks and increases «a, thereby decreasing the step size.

We can optimize all three spatial components simultaneously. However, when dealing with
surfaces for which motion in one direction leads to more dramatic changes than motions in others,
as is typically the case with the z direction in Digital Elevation Models (DEMs), we have found the
following heuristic to be useful. We first fix the z and y coordinates of vertices and adjust z alone.
Once the surface has been optimized, we then allow all three coordinates to vary.

To speed the computation and prevent the mesh from becoming stuck in undesirable local
minima, we typically use several levels of mesh size—three in the examples of Section 3—to perform
the computation. We start with a relatively coarse mesh that we optimize. We then refine it by
splitting every facet into four smaller ones and reoptimizing. Finally, we repeat the split and
optimization processes one more time.

2.2 Combining the Components

The total energy of Equation 1 is a sum of terms whose magnitudes are image- or geometry-
dependent and are therefore not necessarily commensurate. One therefore needs to scale them



appropriately, that is to define the A weights so as to make the magnitude of their contributions
commensurate and independent of the specific radiometry or geometry of the scene under consid-
eration.

From Equation 4, it can be seen that the dynamics of the optimization are controlled by the
gradient of the objective function. As a result, we have found that an effective way to normalize the
contributions of the various components of the objective function is to define a set of user-specified

weights Al such that
A<,

1<i<n

These weights are then used to define the As as follows

!
o= o
| Ve(s) |
A/
AD L (5)

Ve |
/\ID = fw(z/\;)

where f,, is a monotonically decreasing function that approaches zero as y_; Ai approaches one and
SV is the surface estimate at the start of each optimization step. In our implementation, we take
fuw(z) = (1 — 2)/2)* so that the regularization term has the same influence as the sum of all the
others when Y. A = 0.5 We first proposed this normalization scheme in [Fua and Leclerc, 1990],
and it is analogous to standard constrained optimization techniques in which the various constraints
are scaled so that their eigenvalues have comparable magnitudes [Luenberger, 1984]. In practice we
have found that, because the normalization makes the influence of the various terms comparable
irrespective of actual radiometry or dimensions, the user-specified A; weights are context-specific but
not image-specific. In other words, we use one set of parameters for images of faces when combining
stereo, shape-from-shading, and silhouettes, and another when dealing with aerial images of terrain
using stereo and 3-D point constraints, but we do not have to change them for different faces
or different landscapes. In our appendix, we use synthetic data to illustrate the behavior of our
weighting scheme and its robustness, and in Section 3 we demonstrate its effectiveness in practice.

The continuation method of Section 2.1 is implemented by taking the initial value of 3, A} to
be 0.5 and then progressively decreasing it while keeping the relative values of the Als constant.
We demonstrate our method’s behavior using the aerial images of Figure 3 and evaluate our results
against the “ground truth” supplied to us by a photogrammetrist from Ohio State University. In
this example, we initialize a coarse resolution mesh by interpolating a correlation map derived using
the images reduced by a factor of four. We first apply our continuation method to this coarse mesh
using the stereo component of the objective function that is introduced in Section 2.4. Next, as
discussed in Section 2.1, we increase the resolution of both the images and the mesh, reoptimize and
repeat the process once more. At each level of resolution, as A}, decreases, the discrepancy between
our surface model and the control points diminishes. In Figure 4(a,b,c), we show the corresponding
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Figure 3: A test data set (courtesy of Ohio State University): (a,b) An aerial stereo pair. (c,d) Matched
pair of points hand-entered by a photogrammetrist. (e) Shaded view of the triangulated
surface formed by the corresponding 3-D points.

optimized meshes. In Figure 4(d), we plot the RMS! distance of the control points to the surface
at the end of each optimization step. The final error at each level of resolution, denoted by the
thick vertical lines, corresponds to an error in measured disparity that is smaller than half a pixel.
Given the fact that the control points are not necessarily perfect themselves, this is the kind of
performance one would expect of a precise stereo system [Giielch, 1988].

However, the real strength of our approach lies in the fact that it allows us to combine image-
based constraints such as stereo with geometric constraints such as the ones introduced below,
thereby making the reconstruction more robust in difficult situations.

Note that the photogrammetrist generated more control points in comparatively high-relief
areas of the images of Figure 3(a,b) so that their triangulation, shown in Figure 3(c), forms an
irregular mesh or TIN?. As shown in [Mclnerney and Terzopoulos, 1993, Koh et al., 1994], the
optimization of such irregular meshes can be achieved using a finite-element method. Our whole
approach could therefore be extended to such irregular meshes and this will be the subject of future
work.

'Root Mean Square
2Triangular Irregular Network
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Figure 4: Behavior of the continuation method of Section 2.1: (a,b,c) Shaded views of the recon-
structed surface at each level of resolution. At the coarsest level the images are 110x64 in
size and the mesh vertices form a 24x23 array. To go from one level to the next, the image
dimensions are doubled and each mesh facet is subdivided into four. (d) A plot of the RMS
distance, in meters, of the control points of Figure 3(c,d) to the surface as the optimization
proceeds. The thick vertical lines indicate a change in resolution and the dotted ones an
increase by 0.1 of the stereo weight As: and corresponding decrease in the A}, regularization
weight. At the highest resolution, an elevation error of 0.2 meter corresponds to an error of
approximately 0.4 pixel in disparity.

2.8 Geometric Constraints

We have explored the constraints generated by 3—D points, 3—D linear features, and 2-D silhouettes.

2.3.1 3-D Points

3—D Points are treated as attractors and 3-D linear features are taken to be collections of such
points. The easiest way to handle attractorsis to model each one as a spring by adding the following
term to the objective function

e = 1/2((xg — 2)* + (Yo — ¥)* + (20 — 2)?) (6)

where z;,y;, and z; are the coordinates of the mesh vertex closest to the attractor (z4,¥a, 24).
This, however, is inadequate if one wishes to use facets that are large enough so that attracting
the vertices, as opposed to the surface point closest to the attractor, would cause unwarranted
deformations of the mesh. This is especially important when using a sparse set of attractors. In
this case, the energy term of Equation 6 must be replaced by one that attracts the surface without
warping it. In our implementation, this is achieved by redefining e, as

o = 1/2d> (7)
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Figure 5: 3-D and 2-D point constraints: (a) Point attractor modeled as a spring attached to a vertex.
(b) Point attractor modeled as a spring attached to the closest surface point. (¢) Occlusion
contours are the locus of the projections of the (z;, ys, z5) surface points for which a camera
ray is tangential to the surface. (d) In practice, the (us,vs) projection of such a point
must be colinear with the projections of the vertices of the facet that produces the observed
silhouette edge.

where d, is the orthogonal distance of the attractor to the closest facet. The normal vector to a
facet can be computed as the normalized cross product of the vectors defined by two sides of that
facet, and d, as the dot product of this normal vector with the vector defined by one of the vertices
and the attractor. Letting (z;,:, 2i)1<i<3 be the three vertices of a facet, consider the polynomial

D defined as

ryoyr oz 1

Tz Yz zz 1
D =

T3 ys 23 1
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= Cpup+Cuy+C.z

where C,,C'y, and ', are polynomial functions of z;,y;, and z;. It is easy to show that the facet
normal is parallel to the vector (Cy,Cy,C.) and that the square of the orthogonal distance d? of
the attractor to the facet can be computed as

> =D*/(CZ+C;+C2)

Finding the “closest facet” to an attractor is computationally expensive in general. However, in
our specific case the search can be made efficient and fast if we assume that the 3-D points can
be identified by their projection in an image. We project the mesh in that image, generate the
corresponding Facet-1D image—which must be done in any case for other computations—and look
up the facet number of the point’s projection. This applies, for example, to range maps, edge- or
correlation-based stereo data, and hand-entered features that can be overlaid on various images.



We typically recompute the facet attachments at every iteration of the optimization procedure so
as to allow facets to slide as necessary. Since the points can potentially come from any number of
such images, this method can be used to fuse 3-D data from different sources.

2.3.2 Silhouettes

Contrary to 3—D edges, silhouette edges are typically 2-D features since they depend on the view-
point and cannot be matched across images. However, as shown in Figure 5(c), they constrain
the surface tangent. Each point of the silhouette edge defines a line that goes through the optical
center of the camera and is tangent to the surface at its point of contact with the surface. The
points of a silhouette edge therefore define a ruled surface that is tangent to the surface. In terms
of our facetized representation, this can be expressed as follows. Given a silhouette point (us, vs) in
an image, there must be a facet with vertices (2, y;, 2;)1<i<3 Whose image projections (u;, v;)1<i<3,
as well as (us,vs), all lie on a single line as depicted by Figure 5(d). This implies that the three
determinants of the form

wp U Us

vov; s |, 1<0<3i<j<3

11 1

must be equal to zero. We enforce this for each silhouette point by adding to the objective function
a term of the form )
up U Us

es=1/2 Z v v s (8)

1<i<3i<j<3| 1 1 1

where the (u;, v;)s are derived from the (z;,y;, z;) using the camera model.

As with the 3-D attractors described in Section 2.3.1, the main problem is to find the “sil-
houette facet” to which the constraint applies. Since the silhouette point (us,vs) can lie outside
the projection of the current estimate of the surface, we search the Facet-ID image in a direction
normal to the silhouette edge for a facet that minimizes e; and that is therefore the most likely to
produce the silhouette edge. This, in conjunction with our coarse-to-fine optimization scheme, has
proved a robust way of determining which facets correspond to silhouette points.

2.4 Image Constraints

In this work, we use two complementary image-based constraints: stereo and shape-from-
shading.

The stereo component of the objective function is derived by comparing the gray levels of the
points in all of the images for which the projection of a given point on the surface is visible, as
determined using the Facet-ID image. This comparison is done for a uniform sampling of the
surface, as shown in Figure 2(b). This method allows us to deal with arbitrarily slanted regions
and to discount occluded areas of the surface.

The shading component, depicted in Figure 2(c), of the objective function is computed using a
method that does not invoke the traditional assumption of constant albedo. Instead, it attempts

10
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Figure 6: Recovering the shape of a face by combining stereo and shape-from-shading: (a) (b) (c)
Triplet of face images (courtesy of INRIA). (d) Disparity map. (e) (f) (g) Shaded views of
the reconstructed surface after optimization. (h) The recovered albedo map.

to minimize the variation in albedo across the surface, and can therefore deal with both constant
albedo surfaces as well as surfaces whose albedo varies slowly.

Stereo information is very robust in textured regions but potentially unreliable elsewhere. We
therefore use it mainly in textured areas by weighting the stereo component most strongly for facets
of the triangulation that project into textured image areas. Conversely, the shading information is
more reliable where there is little texture and is weighted accordingly.

These two terms are central to our approach: they are the ones that allow the combination of
geometric information with image information. However, since their behavior and implementation
have already been extensively discussed elsewhere, we do not describe them any further here and
refer the interested reader to our previous publication [Fua and Leclerc, 1994]. In Figure 6, we
show the reconstruction of a face using only stereo and shape-from-shading.

11



3 Applications

Our framework allows us to combine geometric constraints with image-based constraints to de-
rive surface reconstructions and to refine previously computed surfaces. Here, we demonstrate its
capabilities using difficult imagery.

3.1 From 3-D Constraints to Detailed Surfaces

Our system deals with the various sources of 3-D information, whether dense, such as range maps
or correlation-based stereo disparity maps, or linear, such as hand-entered features or edge-based
stereo disparity maps, in the same fashion. Both are sampled at regular intervals to generate
collections of 3-D attractors that are used to define energy terms using Equation 6 or 7.

Especially in the case of sparse features, the “snake-type” optimization technique of Section 2.1
has proved more effective than more classical techniques such as conjugate gradient at propagating
constraints across the mesh.

3.1.1 Dense 3—D Data

In Figure 7, we show an image of a face and a corresponding range map computed using
structured light. Although it is fairly accurate, this particular method introduces artifacts that are
highlighted in Figure 7(c). We first fit a surface to these points by starting from a flat surface and
taking the total energy &7 of Equation 1 to be

Er = ApEp+ Aaéa (9)
ADED + A4 D €q

where the e, are defined for each range-data point as the attraction terms of Equation 7. Because of
the artifacts of the original range data, the resulting surface is approximately correct but excessively
wrinkly, as shown in Figure 7(d) and (e). Of course, we could simply smooth the surface but we
would then be at risk of losing important details such as the mouth or the fine structures on the
side of the nose. OQur approach provides us with a better way of dealing with this problem: we can
fuse the range information with the shading information of the intensity image of Figure 7(a). To
do so, we add to &7 the shading term defined in Section 2.4, that we denote Egp:

Er = Apép+ Aa€a+ Asnésh.

We restart the optimization from the flat initial surface. The new surface, shown in Figure 8, is
much smoother, but the mouth is well preserved and the side of the nose better defined. Note,
however, that in the side views the bottom of the nose is not flat enough. This is not surprising
since the shading information is of no use there. We address this problem in Section 3.2.

3.1.2 Sparse 3—D Data

12



Figure 7: Fitting a surface to range data: (a) Image of a face (courtesy of ETH Zurich). (b) Corre-
sponding range image computed using structured light. (c) A window of the range image
in which gray levels have been stretched to emphasize the vertical wrinkles and the his-
togram of a horizontal slice. (d) (e) Shaded views of the surface reconstructed by using the
range-data points as attractors. (f) The corresponding albedo map.

We now turn to sparse 3—D data. In Figure 9, we show a stereo pair of a rock outcrop forming
an almost vertical cliff. Note that, even though the geometry is almost epipolar, these two images
are very hard to fuse both for humans and for automated procedures. In Figure 9(c), we show the
output of a correlation result [Fua, 1993] that gives no information about the shape of the outcrop.

13
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Figure 8: Combining range-data with shape-from-shading information: (a)(b)(c) Shaded views of the
refined reconstruction of the face of Figure 7 using shading.

This can be attributed to the fact that, in the cliff area, the fundamental assumption underlying
correlation-based stereo using a fixed-shape window is violated: the depth is not constant within
a correlation window. To demonstrate the data-fusion capabilities of our approach, we supply the
3-D edges whose projections are shown in Figure 9(d) and (e). To do so, we have used the 3-D
snakes [Fua and Leclerc, 1990] that are embedded in the SRI Cartographic Modeling Environment
(CME) [Quam and Strat, 1991]: rough contours are hand-entered and treated as the projections
of polygonal 3-D curves whose x,y, and z coordinates are then optimized to maximize the average
edge strength along the projections. Alternatively, we could take advantage of the output of 3-D
edge detectors such as those described in [Ayache and Lustman, 1987, Robert and Faugeras, 1991,
Ma and Thonnat, 1992, Meygret et al., 1990].

By using the energy term of Equation 9, we attract an initially flat surface to both the stereo
data and the 3-D outlines and produce a shape estimate that is roughly correct but much too
smooth, as can be seen in Figure 10(b) and (c).

By adding either the stereo term alone to &, Figure 10(d), or both the stereo and shading
terms, Figures 10(e) and (f), we can generate a much more realistic model of the surface. Note that
in Figure 10(e) the cracks in the right side of the outcrop are well modeled. Our object-centered
representation has no trouble accommodating the sharply slanted surfaces.

In Figure 11, we show another application of our technique in a semiurban environment using
images of a model board. We have used the 3-D snakes to outline some of the linear features
visible in the images. We then generate the rough estimate of the surface shape of Figure 12(b),
and improve it using stereo as shown in Figure 12(c). In addition, we have used CME to model
the buildings as extruded objects. We exploit them to mask out occluded areas when computing
the stereo energy. This is achieved naturally in our system by using the projections of the building
models in each view to zero out the corresponding Facet-ID image. In this way, the facet samples
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Figure 9: Semiautomated cartography of a rugged site: (a) (b) A hard-to-fuse stereo pair of a rock
outcrop with an almost vertical cliff. (¢) Disparity map. Within the outcrop the correlation-
based algorithm provides almost no information; outside of it the terrain is almost flat. (d)
(€) The projections of a few 3-D features outlined using 3-D snakes.

that project at these locations are discounted during the computation of the stereo energy defined
in Section 2.4. Since buildings cannot be very well described by our smooth mesh, ignoring those
pixels amounts to assuming that the terrain is smooth below the buildings and prevents the surface
from wrinkling unduly.

3.2 Refining Previously Derived Models

So far, we have shown how our technique can be used to generate surface models “from scratch.”
However, very few vision algorithms—ours being no exception—consistently provide a perfect an-
swer across scenes using a predetermined set of information sources and analysis parameters. For
applications such as cartography or 3—D graphics, it is often important to be able to easily refine a
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Figure 10: Combining 3-D constraints with stereo and shape-from-shading: (a) The recovery of the
terrain for the aerial scene of Figure 9 starts with a flat surface that is attracted by the 3-D
outlines and the 3-D cloud of points corresponding to the disparity map. (b) (c) Shaded
views of the reconstructed surface using only those constraints. (d) Refinement using stereo.
(e) (f) Refinement using both stereo and shape-from-shading.

previously derived result, such as an old DEM or the output of a fully automated procedure, using
additional clues. This can be done using both 3-D contours and silhouettes.

We start with an example involving the two aerial images of Figure 13, at the top of which is
a very sharp cliff that casts shadows on the ground. Starting from a coarse and inaccurate DEM,
we generate the surface shown in Figure 13(e), using stereo alone. By computing the disparities
associated with that improved model, we have visually checked that it is correct except in the
immediate vicinity of the cliff, where it is too smooth. This should be expected: our objective
function &7 includes a smoothness term, and the face of the cliff is not visible in those images and
therefore provides no stereo clues. By sketching the edge of the cliff and the shadows with our
3-D snakes and using them to add an attraction term to the objective function, we can deform
the surface slightly to produce the result shown in Figure 13(f) where the ridge is better defined.
To further check the validity of our result, we have used the known sun direction to predict which
parts of the ground are in shadow. To do this we generate a sun view, that is an orthographic
view as seen from the sun’s viewpoint, and the corresponding Facet-1D image. For every facet,
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Figure 11: Semiautomated cartography of a semiurban site: (a) (b) (¢) Three images taken with differ-
ent light source directions. (d) (e) (f) Projections of hand-entered 3-D linear features and
building blocks. Note that the bases of the buildings extend below the ground.

(a) (b)

(c)

Figure 12: Combining 3—-D constraints and visibility constraints with stereo: (a) The 3-D linear features
of Figure 11 above the flat plane used as the initial surface estimate. (b) A rough estimate of
the ground-level surface (c) Surface after optimization using both stereo and hand-entered
buildings to mask occluded areas.

we compute the proportion of samples that are visible in this sun view as shown in Figure 13(g).
The facets for which a large proportion of samples is occluded are those in shadow. As can be
seen, these shadowed facets match the actual shadows fairly well, which leads us to believe that
our reconstruction is accurate.

Silhouettes are also very good indicators of the quality of a reconstruction. For example, the
reconstruction of the bottom of the nose in Figure 8 is not quite right as evidenced by its silhouette
in the side view of the same man shown in Figure 14. However, we can use the silhouette constraints
of Section 2.3.2 with the two silhouettes shown in the figure. The silhouettes are 2-D curves that
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(2)

Figure 13: Tmproving and checking a DEM: (a) (b) An aerial stereo pair of a cliff with clearly vis-
ible shadows. (c) (d) The cliff’s ridge and cast shadows outlined using 3-D snakes. (e)
Reconstructed surface using stereo alone. (f) Reconstructed surface using both stereo and
the 3-D outlines as attractors. (g) Predicted shadow areas in black. The prediction was
carried out using the reconstruction shown in (f) and the known sun direction. Note that
these hypothesized shadows closely match the actual ones. Note also that, were we to use
the original reconstruction shown in (e) to perform this computation, no shadows would be
predicted because the surface is too smooth.

have been outlined using 2-D snakes. In the manner of Section 3.1.1, we take the total energy Ep
to be

Er = Apép+ As€s + AspEsn

Es = Zes

where the e, are the silhouette attraction terms of Equation 8 and Egj, the shading term described
in Section 2.4. We use these terms to deform the nose region and generate the improved result
shown in Figure 14(c).

The face reconstruction of Figure 6 presents us with a slightly different problem. We have used
a correlation-based stereo algorithm to provide us with an initial estimate. This algorithm gave
us no information on the sharply slanted parts of the face, which are therefore missing from the
reconstruction. The silhouettes of the face, however, are clearly visible in Figure 15 and easy to
outline. To take advantage of these, we again use a coarse-to-fine strategy. We start with a larger
and coarser mesh that evolves under the influence of the silhouettes and the vertices of the original
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(b) o

Figure 14: Using silhouettes to improve a reconstruction: (a) The face of Figure 7 with a silhouette
at the bottom of the nose outlined. (b) A side view of the same face with a second nose
silhouette. (c) Shaded views of the refined reconstruction using both shading and the two
silhouettes.

reconstruction that are treated as attractors. When the mesh has been refined and optimized, we
complete the optimization procedure by turning on the full objective function:

Er = ApEp+ AsEs + Asp€sn + Asi€st,

where Egp, and g denote the shading and stereo terms presented in Section 2.4. The results are
shown in Figure 15(c),(d) and (e).

The silhouettes used in the two examples above have been entered semiautomatically. But
here again, we could take advantage of automatically extracted ones [Cipolla and Blake, 1990,
Liedtke et al., 1991, Vaillant and Faugeras, 1992].

4 Conclusion

We have presented a surface reconstruction method that uses an object-centered representation to
recover 3—-D surfaces. Our method uses both monocular shading cues and stereoscopic cues from
any number of images while correctly handling self-occlusions. It can also take advantage of the
geometric constraints derived from measured 3-D points and 2-D silhouettes. These complementary
sources of information are combined in a unified manner so that new ones can be added easily as
they become available.
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(e)

Figure 15: Using silhouettes to expand the scope of our method: (a) (b) (c) Silhouettes of the face
in the three views of Figure 6 outlined using 2-D snakes. (d) (e) (f) Shaded views of
reconstructed surface after optimization using stereo, shading, and the constraints provided
by the silhouettes.

Using a variety of real imagery, we have demonstrated that the resulting method is quite pow-
erful and flexible, allowing for both completely automatic reconstruction in straightforward cir-
cumstances, and for user-assisted reconstruction in more complex circumstances. User assistance is
provided primarily through the introduction and identification of a small number of hand-entered
linear and point features using semi-automated “snake” technology. The method is also controlled
by a small number of parameters that specify the relative importance of the various information
sources. These parameters typically do not need to be adjusted for images within a given class
(such as face images or high-altitude aerial images), but only across classes.
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The method has valuable capabilities for applications such as 3-D graphics model generation
and high-resolution cartography in which a human can select the sources of information to be used
and their relative importance. For example, in the case of mapping, one must ensure that the
terrain model conforms to the feature data and does not violate any physical constraints: roads
should be on the ground and not overly tilted, streams should stay within stream beds, buildings
should not be floating in space, and so on. Our method allows one to both satisfy these constraints
and account as well as possible for the observed image data.

In future work, we will study in a more quantitative manner the influence of the various terms
of our objective function and their relative weights. This will require the use of ground-truth
and carefully controlled conditions. We plan to set up a facility that will allow us to acquire
the necessary data. We will also strive to replace some of the hand-entered geometric cues by
automatically extracted ones and to investigate more complex topologies than the ones shown here.
A principled way to do so would be to rephrase our modeling task as one of finding the “best”
description of a scene in terms of the Minimum Description Length (MDL) principle [Rissanen,
1987, Leclerc, 1989a, Fua and Hanson, 1991]. It can be shown that the objective function that
we propose here can be reformulated in terms of the MDL principle. After optimization using
stereo and shape from shading, the surface ought to provide the best possible compromise between
simplicity of description of the surface and fit to the image data in terms of the simple vocabulary of
triangulated meshes. The extensions that we have described above allow us to enrich the vocabulary
by adding new primitives—ridges, building, roads, and so on—that allow an even more effective
description. This approach would give us a principled way to accept or reject new objects in our
overall representation.
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Appendix: Robustness of the constraint weighting scheme

In Section 2.2, we proposed a weighting scheme for the—in general noncommensurate—components
of the objective function of Equation 1. In this appendix, we use a specific example to illustrate
the ability of our method to combine stereo constraints and externally supplied 3-D and 2-D
geometric constraints in the presence of noise and the relative insensitivity of our procedure to
parameter settings.

(a)

Figure A.l: Three synthetic images generated by texture mapping the image of a face onto the hemi-
spheric surface shown in Figure A.2 as seen from three different viewpoints.

(a) (b) (c) (d)

Figure A.2: (a) Hemispheric surface used to generate the images of Figure A.1 and taken to be the
“ground truth” for the experiments described in this appendix (b) The 3-D geometric con-
straints are in the form of 25 regularly spaced 3-D points lying on the hemisphere, shown
as white crosses, some of which are occluded. (c,d) The 2-D geometric constraints are in
the form of two silhouette edges shown as thick white lines.

The images used here are shown in Figure A.1. They have been generated by texture mapping
the image of a face onto the hemispheric surface of Figure A.2(a) as seen from three different
viewpoints. We take the 3—-D geometric constraints to be given by a set of 25 regularly spaced 3-D
attractors lying on the hemisphere and shown in Figure A.2(b). The 2-D constraints are given by
the two occluding contours of Figures A.2(c) and (d). We can therefore write the total objective
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function of Equation 1 as

ET(S) = /\DED(S)—I—E(S)
E(S) = /\StESt(S)—I—/\AEA(S)—I—/\S(‘:5(S).

where Eg; is the stereo term, £4 the sum of the 3—D attraction terms of Equation 7, and &g the
sum of the silhouette attraction terms of Equation 8. At the start of each optimization step, the
A; coefficients are recomputed according to Equation 5 using a set of user-supplier A/ that specify
the relative importance of the various terms.

Here we study the influence of the user-supplied weights, X, Xy and A, on the distance
between the surface reconstructed by minimizing £r and the “ground truth” surface of Figure
A.2(a).

For each setting of the parameters, in Figures A.3, A.4, and A.5, we plot four curves corre-
sponding to four different amounts of Gaussian white noise—of respective variance 2.5%, 5.0%,
7.5% and 10% of the images’dynamic range—added to the images to degrade the stereo term. The
curves were obtained by averaging the results of several trials, all starting from a randomized flat
surface and utilizing our continuation method with five increasing values of

Sy =Ase + A+ X,

the sum of the user-supplied weights, ranging from 0.5 to 0.9. As in Figure 4, the graphs represent
the RMS reconstruction error at the end of each optimization step as a function of Sy. In this set of
experiments, we allowed only the z coordinates of the vertices to vary. We also fixed the boundary
vertices so as to eliminate the effect of the gray-level discontinuities at the border between the
texture-mapped part of the images and their black background.

The error is measured by the difference in elevation between the reconstructed vertices and the
elevation they would have if they were on the actual “ground truth” surface of Figure A.2(a). Note
that the difference in elevation between the top and the bottom of the hemisphere is 34 units of
elevation and that an error of 1 unit of elevation corresponds to a difference in computed disparities
of approximately 0.25 pixel for projections from the image of Figure A.1(a) into those of Figure
A.1(b) and (c).

In Figure A.3, we show the behavior of our continuation method using stereo alone, that is
taking Ay and A to be zero. In Figure A.3(a), we draw as solid lines the four curves derived using
all three noisy images at the same time and in Figure A.3(b,c) those obtained using only two images
at a time. For comparison’s sake, we also plot as dashed lines the curves computed using noise-free
images. As the abscissa is traversed rightwards, S\ = A, increases and A}, decreases, resulting in
curves having the same shape as that of Figure 4. Note, however, that for the higher noise values,
the best result is not achieved for the largest value of Sy but for one slightly smaller. As discussed
in Section 2, in the presence of noise, smoothing is required to prevent the surface from overfitting
the data.

In Figure A.4, we plot the equivalent curves for different values of X, and Xy. Figures A.4(a)
and (b) illustrate the use of the 3-D point constraints along with three-image stereo. Graph (a)
was generated using Ay = 0.45), N5, = 0.65, and graph (b) using Ay = 0.25,, Xy, = 0.85). In
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Figure A.3: Continuation method using stereo alone: plot of elevation errors as a function of the reg-
ularization parameters Ay, using all three images simultaneously (a), using only images 1
and 2 (b), and using only images 1 and 3 (c). The dashed curve corresponds to noise-free
images and the four solid curves to increasing amounts of white noise being added to the
images. Using all three images yields substantially better results than any of the pairs.

dz dz dz dz
5.0 5.0 5.0 : 5.0
40 40 40 : 4.0
3.0 3.0 30 3.0
@ @ @
20 20 20
@ @ 20 @ @
10 @ 10 : : @ 10 @ 10 @
Ag*Aa AgtAa Ag*As Ag*As
05 06 07 08 09 05 06 07 08 09 05 06 07 08 09 05 06 07 08 09

(a) (b) (c) (d)

Figure A.4: Combining noise-free constraints with three-image stereo: (a) Using heavily weighted 3-D
point constraints. (b) Using less heavily weighted 3-D point constraints (¢) Using heavily
weighted 2-D silhouette constraints. (d) Using less heavily weighted 2-D silhouette con-
straints.

other words, the geometric constraint is weighted more heavily in the first case than in the second.
As expected, in the absence of noise the results are indistinguishable from those of Figure A.3(a).
However, in the presence of noise, the constraints consistently improve the outcome. Since the 3—-D
points lie exactly on the constraint surface, the improvement is larger when the 3-D constraint is
weighted more heavily. The same effect can be observed by using the 2-D silhouette constraints
with Ay = 0.45), Xy, = 0.65), graph (c), and Ay = 0.25), Ny, = 0.89), graph (d). The average
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improvement is not as large because the silhouette constraints are more localized but the observed
trends are similar.
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Figure A.5: Noisy 3-D constraints using the same parameters as in Figure A.4: (a) (b) The elevation of
the attactors has been randomized by adding noise of variance 1. (c) (d) The elevation of
the attactors has been randomized by adding noise of variance 2.

Note, however, that the constraints used above were “perfect” in the sense that the 3-D points
lie exactly on the “ground truth” surface. This is not realistic in general as there always will be
some imprecision. In Figure A.5, we show the result of rerunning the same experiments as before,
after having randomized the elevation of the 3—D attractors. Since the precision of the constraints
has now degraded, their use yields an improvement over stereo alone only when enough noise has
been added to the images so that the reliability of the stereo term is less than that expected of the
constraints, and this independently of the exact weights chosen.

We have shown that, on a specific example, our method for combining the constraints is robust
in the presence of noise. The exact numbers we obtain may change slightly but the overall behavior
of the optimization procedure is fairly constant for different settings of the user-supplied weights
and yields intuitively satisfactory results.

Because of the extreme complexity of the image potentials, a full mathematical treatment of the
behavior of the objective function is beyond the scope of this paper. However, in practice, we have
observed the same relative invariance of the results with respect to changes of parameter settings.

25



References

[Ayache and Lustman, 1987] N. Ayache and F. Lustman. Fast and reliable passive trinocular stere-
ovision. In International Conference on Computer Vision, June 1987.

[Blake et al., 1985] A. Blake, A. Zisserman, and G. Knowles. Surface descriptions from stereo and
shading. Image Vision Computation, 3(4):183-191, 1985.

[Cipolla and Blake, 1990] R. Cipolla and A. Blake. The dynamic analysis of apparent contours. In
International Conference on Computer Vision, 1990.

[Cohen et al., 1991] I. Cohen, L. D. Cohen, and N. Ayache. Introducing new deformable surfaces to
segment 3D images. In Conference on Computer Vision and Pattern Recognition, pages 738-739,
1991.

[Cryer et al., 1992] J. E. Cryer, Ping-Sing Tsai, and Mubarak Shah. Combining shape from shading
and stereo using human vision model. Technical Report CS-TR-92-25, U. Central Florida, 1992.

[Delingette et al., 1991] H. Delingette, M. Hebert, and K. Ikeuchi. Shape representation and im-
age segmentation using deformable surfaces. In Conference on Computer Vision and Pattern
Recognition, pages 467-472, 1991.

[Ferrie et al., 1992] Frank P. Ferrie, Jean Lagarde, and Peter Whaite. Recovery of volumetric
object descriptions from laser rangefinder images. In Furopean Conference on Computer Vision,
Genoa, Italy, April 1992.

[Fua and Hanson, 1991] P. Fua and A.J. Hanson. An optimization framework for feature extraction.
Machine Vision and Applications, 4(2):59-87, Spring 1991.

[Fua and Leclerc, 1990] P. Fua and Y. G. Leclerc. Model driven edge detection. Machine Vision
and Applications, 3:45-56, 1990.

[Fua and Leclerc, 1994] P. Fua and Y. G. Leclerc. Object-centered surface reconstruction: Combin-
ing multi-image stereo and shading. International Journal of Computer Vision, 1994. Accepted
for publication, available as Tech Note 535, Artificial Intelligence Center, SRI International.

[Fua and Sander, 1992] P. Fua and P. Sander. Segmenting unstructured 3d points into surfaces. In
Furopean Conference on Computer Vision, Genoa, Italy, April 1992.

[Fua, 1993] P. Fua. A parallel stereo algorithm that produces dense depth maps and preserves
image features. Machine Vision and Applications, 6(1), Winter 1993.

[Giielch, 1988] E. Giielch. Results of test on image matching of ISPRS WG III / 4. International
Archives of Photogrammetry and Remote Sensing, 27(111):254-271, 1988.

[Heipke, 1992] C. Heipke. Integration of digital image matching and multi image shape from shad-
ing. In International Society for Photogrammetry and Remote Sensing, pages 832-841, Washing-
ton D.C., 1992.

26



[Kass et al., 1988] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. In-
ternational Journal of Computer Vision, 1(4):321-331, 1988.

[Koh et al., 1994] E. Koh, D. Metaxas, and N. Badler. Hierarchical shape representation using
locally adaptative finite elements. In Furopean Conference on Computer Vision, Stockholm,
Sweden, May 1994.

[Leclerc, 1989a] Y. G. Leclerc. Constructing simple stable descriptions for image partitioning.
International Journal of Computer Vision, 3(1):73-102, 1989.

[Leclerc, 1989b] Y. G. Leclerc. The Local Structure of Image Intensity Discontinuities. PhD thesis,
McGill University, Montréal, Québec, Canada, May 1989.

[Liedtke et al., 1991] C. E. Liedtke, H. Busch, and R. Koch. Shape adaptation for modelling of 3D
objects in natural scenes. In Conference on Computer Vision and Pattern Recognition, pages
704-705, 1991.

[Lowe, 1991] D. G. Lowe. Fitting parameterized three-dimensional models to images. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 13(441-450), 1991.

[Luenberger, 1984] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Menlo
Park, California, second edition, 1984.

[Ma and Thonnat, 1992] R. Ma and M. Thonnat. A robust and efficient contour-based stereo
matching algorithm. Research report (in preparation), INRIA, 1992.

[McInerney and Terzopoulos, 1993] T. Mclnerney and D. Terzopoulos. A finite element model for
3d shape reconstruction and nonrigid motion tracking. In International Conference on Computer
Vision, pages 518-523, Berlin, Germany, 1993.

[Meygret et al., 1990] A. Meygret, M. Thonnat, and M. Berthod. A pyramidal stereovision algo-
rithm based on contour chain points. In Furopean Conference on Computer Vision, pages 83—88,
Antibes, France, April 1990.

[Pentland and Sclaroff, 1991] A. Pentland and S. Sclaroff. Closed-form solutions for physically
based shape modeling and recognition. IFEFE Transactions on Pattern Analysis and Machine
Intelligence, 13:715-729, 1991.

[Pentland, 1990] A. Pentland. Automatic extraction of deformable part models. International
Journal of Computer Vision, 4(2):107-126, March 1990.

[Press et al., 1986] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical
Recipes, the Art of Scientific Computing. Cambridge U. Press, Cambridge, MA, 1986.

[Quam and Strat, 1991] L. Quam and T.M. Strat. SRI image understanding research in carto-
graphic feature extraction. In International Society for Photogrammetry and Remote Sensing,
Munich, Germany, September 1991. Also available as Tech Note 505, Artificial Intelligence
Center, SRI International.

27



[Rissanen, 1987] J. Rissanen. Minimum-description-length principle. Encyclopedia of Statistical
Sciences, 5:523-527, 1987.

[Robert and Faugeras, 1991] L. Robert and O.D. Faugeras. Curve-Based Stereo: Figural Continu-
ity and Curvature. In Conference on Computer Vision and Pattern Recognition, Maui, Hawaii,
June 1991.

[Robert et al., 1992] L. Robert, R. Deriche, and O.D. Faugeras. Dense depth recovery from stereo
images. In Furopean Conference on Artificial Intelligence, pages 821-823, Vienna, Austria,
August 1992.

[Stokely and Wu, 1992] E. M. Stokely and S. Y. Wu. Surface parameterization and curvature
measurement of arbitrary 3-d objects: five practical methods. IFEFE Transactions on Pattern
Analysis and Machine Intelligence, 14(8):833-839, August 1992.

[Szeliski and Tonnesen, 1992] R. Szeliski and D. Tonnesen. Surface modeling with oriented particle
systems. In Computer Graphics (SIGGRAPH’92), pages 185-194, July 1992.

[Terzopoulos and Metaxas, 1991] D. Terzopoulos and D. Metaxas. Dynamic 3D models with local
and global deformations: Deformable superquadrics. IEFFE Transactions on Pattern Analysis
and Machine Intelligence, 13(703-714), 1991.

[Terzopoulos and Vasilescu, 1991] D. Terzopoulos and M. Vasilescu. Sampling and reconstruction
with adaptive meshes. In Conference on Computer Vision and Pattern Recognition, pages 7075,
1991.

[Terzopoulos, 1986] D. Terzopoulos. Regularization of inverse visual problems involving disconti-
nuities. IFEF Transactions on Pattern Analysis and Machine Intelligence, 8:413-424, 1986.

[Vaillant and Faugeras, 1992] R. Vaillant and O.D. Faugeras. Using Occluding Contours for 3D
Object Modeling. IFFEFE Transactions on Pattern Analysis and Machine Intelligence, February
1992.

[Vemuri and Malladi, 1991] B. C. Vemuri and R. Malladi. Deformable models: Canonical parame-
ters for surface representation and multiple view integration. In Conference on Computer Vision
and Pattern Recognition, pages 724-725, 1991.

28



