
SURFACE RECONSTRUCTION USING 3{D MESHESAND PARTICLE SYSTEMSP. Fua (fua@ai.sri.com) 1SRI International333 Ravenswood Avenue, Menlo Park, CA 94025, USAAbstractWe present a uni�ed framework for 3{D shape reconstruction that allows us to combinemultiple information sources|such as stereo and shape-from-shading|derived from imageswhose vantage points may be very di�erent. A formal integration framework is criticalbecause, in recovering complicated surfaces, the information from a single source is ofteninsu�cient to provide a unique answer.We describe two complementary implementations of this paradigm that both rely ondeforming a generic object-centered 3{D representation of the surface so as to minimize anobjective function. The �rst implementation models the surface as a triangulated mesh.The second models it as a set of particles that interact with each other through forces thattend to align them.Using several complex scenes, we demonstrate our approach and its ability to mergeinformation and thus to go beyond what can be done with conventional techniques.1 IntroductionThe recovering of surface shape from image cues, the so-called \shape from X" problem,has received tremendous attention in the computer vision community. But no single sourceof information \X," be it stereo, shading, texture, geometric constraints or any other, hasproved to be su�cient across a reasonable sampling of images. To get good reconstructionsof a surface, it is necessary to use as many di�erent kinds of cues with as many views ofthe surface as possible. In this paper, we present and demonstrate a working framework forsurface reconstruction that combines image cues, such as stereo and shape-from-shading,obtained from multiple images whose vantage points may be very di�erent.To achieve our goal, we need a surface representation that can be used to generate imagesof the surface from arbitrary viewpoints, taking into account self-occlusion, self-shadowing,and other viewpoint-dependent e�ects. Clearly, a single image-centered representation isinadequate for this purpose. Instead, object-centered surface representations are required.Here, we advocate the use of two such representations that have proved e�ective underdi�erent circumstances:� Triangulated Meshes A regular 3{D triangulation is an example of a surface rep-resentation that meets the criteria stated above. Our approach to recovering surface1Support for this research was provided by contracts from the Advanced Research Projects Agency.1



shape and re
ectance properties from multiple images is to deform a 3{D represen-tation of the surface so as to minimize an objective function. The free variables ofthis objective function are the coordinates of the vertices of the triangulation, andthe process is started with an initial surface estimate.We have successfully used these meshes to model surfaces whose topology is known apriori, such as human faces or relatively low-resolution terrain.� Sets of 3{D Particles Real-world scenes often contain several objects whose topol-ogy may not be known in advance: some surfaces are best modeled as sheets, whileothers are topological spheres or contain holes. One cannot typically assume thatthere is only one object and one surface of interest.To deal with these complex issues, we replace the triangulations by a set of connectedsurface patches or \oriented particles" as de�ned by Szeliski and Tonnesen [1992].These particles are instantiated by �tting local surfaces to traditional stereo data,and their positions are re�ned by minimizing an objective function analogous to theone used for triangulations.We view the contribution of this paper as providing both the framework that allows usto combine diverse sources of information in a uni�ed and computationally e�ective manner,and the speci�c details of how these diverse sources of information are derived from theimages.2 Using Meshes to Model Single SurfacesWe represent a surface S by a hexagonally connected set of vertices called a mesh. Sucha mesh is shown in Figure 1(a). The position of a vertex vj is speci�ed by its Cartesiancoordinates (xj; yj; zj).For each input image, we generate a \Facet-ID" image by encoding the index i of eachfacet fi as a unique color, and projecting the surface into the image plane, using a standardhidden-surface algorithm. We use it to determine which surface points are occluded in agiven view.2.1 Objective Function and Optimization ProcedureThe objective function E(S) that we use to recover the surface is a sum of terms thattake into account the image-based constraints|stereo and shape-from-shading|that arebrought to bear on the surface. To minimize E(S), we use an optimization method that isinspired by the heuristic technique known as a continuation method [Terzopoulos, 1986] inwhich we add a regularization term to the objective function and progressively reduce itsin
uence. We de�ne the total energy of the mesh, ET (S), asET (S) = �DED(S) + E(S) with E(S) =Xi �iEi(S) : (1)2
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L(a) (b) (c)Figure 1: Mesh representation and computation of the objective function's image terms. (a)Wireframe representation of a mesh. (b) Facets are sampled at regular intervals;the circles represent the sample points. The stereo term is computed by summingthe variance of the gray level of the projections of these sample points, the gis.(c) Each facet's albedo is estimated using its normal N , the light source directionL, and the average gray level of the projection of the facet into the images. Theshading term is the sum of the squared di�erences in estimated albedo acrossneighboring facets.The Ei(S) represent the image-based constraints discussed below, and the �i their relativeweights. ED(S), the regularization term, serves a dual purpose. First, we de�ne it as aquadratic function of the vertex coordinates, so that it \convexi�es" the energy landscapewhen �D is large and improves the convergence properties of the optimization procedure.Second, in the presence of noise, some amount of smoothing is required to prevent the meshfrom over�tting the data, and wrinkling the surface excessively [Fua and Leclerc, 1994].In our implementation, we take ED to be a measure of the curvature or local deviationfrom a plane at every vertex. Using �nite di�erences, ED can be expressed as a quadraticform [Fua and Leclerc, 1994]ED(S) = 1=2(XTKX + Y TKY + ZTKZ) ; (2)where X, Y , and Z are the vectors of the x, y and z coordinates of the vertices, and K isa sparse and banded matrix.Because ED is quadratic and decouples the three spatial coordinates, our energy termis amenable to a \snake-like" optimization technique [Kass et al., 1988]. We treat S as aphysical surface embedded in a viscous medium and evolving under the in
uence of thepotential ET . We solve the minimization problem by solving the dynamics equation of thissystem. We can optimize the three spatial components X, Y , and Z either simultaneouslyor separately.To speed the computation and prevent the mesh from becoming stuck in undesirablelocal minima, we typically use several levels of mesh size to perform the computation. Westart with a relatively coarse mesh that we optimize. We then re�ne it by splitting everyfacet into four smaller ones and reoptimizing. Finally, we repeat the split and optimizationprocesses one more time.In general we optimize all three spatial components simultaneously. However, whendealing with surfaces for which motion in one direction leads to more dramatic changes3



than motions in others, as is typically the case with the z direction in Digital ElevationModels (DEMs), we have found the following heuristic to be useful. We �rst �x the x andy coordinates of vertices and adjust z alone. Once the surface has been optimized, we thenallow all three coordinates to vary.2.2 Combining the ComponentsThe total energy of Equation 1 is a sum of terms whose magnitudes are image- or geometry-dependent and, as a result, not necessarily commensurate. One therefore needs to scalethem appropriately, that is to de�ne the � weights so as to make the magnitude of theircontributions commensurate and independent of the speci�c radiometry or geometry of thescene under consideration. Since the dynamics of the optimization are controlled by thegradient of the objective function, an e�ective way to normalize the contributions is tointroduce a set of weights �0i such that �0D = 1 �P1�i�n �0i > 0 . The �s are taken to be�i = �0ik �!rEi(S0) k ; �D = �0Dk �!rED(S0) k ; (3)where S0 is the surface estimate at the start of each optimization step. In practice we havefound that, because the normalization makes the in
uence of the various terms comparableirrespective of actual radiometry or dimensions, the user-speci�ed �0i weights are context-speci�c but not image-speci�c. In other words, we use one set of parameters for images offaces when combining stereo and shape-from-shading, and another when dealing with aerialimages using stereo alone, but we do not have to change them for di�erent faces or di�erentlandscapes. The continuation method of Section 2.1 is implemented by �rst taking �0D tobe 0.5 and then reducing it while keeping the relative values of the �0is constant.2.3 Image ConstraintsIn this work, we use two complementary image-based constraints: stereo and shape-from-shading.The stereo component of the objective function is derived by comparing the gray levels ofthe points in all the images for which the projection of a given point on the surface is visible,as determined using the Facet-ID image. As shown in Figure 1(b), this comparison is donefor a uniform sampling of the surface. More speci�cally, we take the stereo component of ourobjective function to be the variance in gray-level intensity of the projections in the variousimages of a given sample point on a particle, summed over all sample points in a facet,summed over all facets. This method allows us to deal with arbitrarily slanted regions andto discount occluded areas of the surface. This term can be viewed as a 3{D generalizationto the purely image-based correlation techniques that use deformable windows [Nishihara,1984, Baltsavias, 1991, Devernay and Faugeras, 1994].The shading component of the objective function is computed using a method that doesnot invoke the traditional constant albedo assumption. Instead, it attempts to minimize4



the variation in albedo across the surface, and can therefore deal with surfaces whose albedovaries slowly. This term is depicted by Figure 1(c).
(a) (b) (c)Figure 2: Combining stereo and shape-from-shading. (a) First image of a triplet (courtesyof INRIA). (b,c) Shaded views of the reconstructed surface.Stereo information is very robust in textured regions but potentially unreliable else-where. We therefore use it mainly in textured areas by weighting the stereo componentmost strongly for facets of the triangulation that project into textured image areas. Con-versely, the shading information is more reliable where there is little texture and is weightedaccordingly.The stereo and shape-from-shading terms are central to our approach. They allowthe combination of geometric information with image information. However, since theirbehavior and implementation have been extensively discussed elsewhere, we do not describethem any further here and refer the interested reader to our previous publication [Fua andLeclerc, 1994]. In Figure 2, we show the reconstruction of a face using stereo and shape-from-shading.3 Using Particles to Model Multiple SurfacesOur approach to recovering multiple surfaces is to model them as sets of local surfaceelements that interact with one another. Following Szeliski and Tonnesen [1992], we referto the surface patches as \oriented particles." The forces that bind them can be understoodas \breakable springs" [Terzopoulos and Vasilescu, 1991] that tend to align the particleswith each other but may break for particles that are too far out of alignment.Our surface elements are disks whose geometry is de�ned by the positions of theircenters, the orientations of their normals and their radii. In theory, these disks have sixdegrees of freedom. However, in the modeling of a global surface in terms of such disks,translations along the tangent plane of the surface can be ignored as long as the disksremain roughly equidistant from one another and the radius can be chosen so that thedisks approximately cover the surface. Therefore, in practice, we deal with only threedegrees of freedom. 5



CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

x

y
z

X

Y

Z

δx

δ y

δ z
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

xj

yj

zj

n
i

X

Y

Z

(a) (b) (c)Figure 3: Data structures and metric. (a) A particle is a disk to which we associate alocal referential. We allow the center of gravity to shift along the z axis andparametrize the orientation using the projections of the normal vector on the xand y axes. (b) The input 3{D points are stored in a cube-shaped set of voxelsand we instantiate a particle in each voxel containing enough such points. (c)The \distance" between two particles is primarily a function of the distance ofthe center of gravity of one particle from the tangent plane of another.As shown in Figure 3, to achieve an orientation-independent implementation, we assignto each particle a local referential. We de�ne a particle's position by the translation of thecenter along the local vertical and its orientation by the x and y projections of the normalon the local x and y axes. This particular parametrization is most favorable when the localvertical is relatively close to the normal of the surface under consideration for two reasons.First, the x and y projections of the particle's normal vector will then be relatively smalland the interaction forces between particles almost quadratic in terms of those parameters.Second, displacements along the local z axis will be close to being normal to the underlyingsurface and thus precisely the ones that are most signi�cant in terms of recovering its shape.Our procedure involves three steps: (1) instantiating a set of particles from raw stereodata, (2) re�ning their position and orientation by minimizing an image-based objectivefunction, and (3) eliminating spurious particles and clustering those that appear to belongto the same global surfaces.3.1 InitializationWe typically start with a set of stereo pairs or triplets, and corresponding disparity maps,of a given scene as our input data. We then turn each valid disparity into a 3{D point.These points typically form an extremely noisy and irregular sampling of the underlyingglobal 3{D surfaces.To generate a set of regularly spaced particles from such data, we pick spatial step sizes6



�x,�y, and �z along the X, Y and Z axes of an absolute referential. We use them to de�nea cube-shaped set of 3{D buckets, such as the one of Figure 3(b). We then store the 3{Dpoints computed from our initial correlation data into the appropriate buckets. By �tting alocal surface to every bucket containing enough points, we generate particles whose centeris the projection of the bucket's center onto the surface and whose orientation is given bythe surface's normal at that point. In the presence of very noisy data, the projection mayfall outside the bucket. In this case, we reject the particle, thereby ensuring that there isonly one particle per bucket and that the particles are regularly distributed.In general, most of the 3{D buckets will be empty. Therefore we do not store the setof 3{D buckets as a cube but as a hash-table allowing for both compact storage and easycomputation of neighborhood relationships.For the initialization phase to be successful, it is important both to choose the right kindof surface model and to use a robust method to perform the �tting. We have used bothplanar and quadric models. The quadrics, even though they involve more computation,have proven very e�ective because they allow the use of larger sets of points than planeswithout introducing any appreciable bias. In our implementation, we take advantage ofthis by �tting, to each bucket containing enough points, a plane of formax+ by + cz = h ;when x, y and z are coordinates in the absolute referential. We then �t a quadric of formz0 = ax0x0 + bx0y0 + cy0y0 + dx0 + ez0 + f ;where x0, y0, and z0 are coordinates de�ned by the plane. We use not only the points in thebucket under consideration but also in the buckets that are its immediate neighbors. Thismethod allows us to �t local surfaces of arbitrary orientation using a relatively large set of3{D points, and tends to enforce consistency of orientation among neighboring particles.Because of the noisiness of the input data, a robust surface-�tting method is essential.In this implementation, we use a variant of the Iterative Reweighted Least Squares [Beatonand Turkey, 1974] technique.3.2 ClusteringTo cluster the isolated particles into more global entities, we de�ne a simple \same surface"relationship R between particles Pi and Pj as follows:PiRPj () dpart(Pi; Pj) < maxd ; (4)where dpart is a distance function and maxd a distance threshold. We could take dpart tobe the Euclidean distance between particle centers. However, such a distance would notbe discriminating enough for our purposes because it is circularly symmetric and does nottake the particles'orientation into account. It has proved much more e�ective to de�ne adistance function that penalizes more heavily the distance of one particle's center from the7



tangent plane of the other than the distance along the tangent plane. The simplest way toachieve this result is to de�ne dpart as follows:dj = kz2j + (1� k)(x2j + y2j ) ;di = kz2i + (1� k)(x2i + y2i ) ; (5)dpart(Pi; Pj) = max(di; dj)where xj,yj and zj are the coordinates of the center of Pj in a referential whose Z directionis the normal of Pi and whose origin is the center of Pi, as shown in Figure 3(c), and kis a constant larger than 0.5. In this paper, we take k = 0:9; xi, yi, and zi are de�nedsymmetrically.In essence, the threshold maxd on dpart limits the curvature of the common underlyingsurface to which particles may belong. As such it is domain-dependent; here we take maxdto be a multiple, typically 1.5, of the median value of dpart for all pairs of neighboringparticles in the cube-shaped structure of Figure 3(b).The data set equipped with the relationship R can now be viewed as a graph whoseconnected components are the surfaces we are looking for. In practice, there will usuallybe spurious particles that are weakly linked to legitimate clusters. In such cases, we havefound that removing all points that do not have a minimum number of neighbors allows usto throw away the gross errors and generate meaningful clusters.To demonstrate the e�ectiveness of our initialization and clustering methods given rela-tively clean stereo data, we use the sequence of forty 512x512 images depicted by Figure 4.The images were acquired with a video camera over a period of a few seconds by turningaround the subject who was trying to stand still. Camera models were later computed usingstandard photogrammetric techniques at the Institute for Geodesy and Photogrammetry,ETH-Z�urich.We ran a correlation-based algorithm|once for each consecutive pair of images in thesequence|stored the resulting 3{D points in a 80x80x80 set of voxels, and instantiatedparticles in all voxels containing at least 200 points. The results are shown in the secondrow of Figure 4. Because we use a large number of images, the main features of thehead|including the nose, mouth, chin, ears, and even the boundary of the skullcap|areclearly captured by our representation. However, because the correlation-based algorithmproduced erroneous, but not random, disparities around occlusion boundaries, we also �nda number of spurious particles around the nose, chin, and back of the head. To get rid ofthem we computed the interparticle distance described above and eliminated all particlesnot having at least four neighbors within 1.2 times the median distance between neighbors,as shown in the third row of Figure 4.3.3 Re�ningBecause it is extremely di�cult to design a stereo algorithm that never produces correlatedartifacts, we cannot expect any robust �tting technique to exclude all erroneous 3{D points.Furthermore, �tting local surfaces to the initial data amounts to smoothing and may result8



(a)
(b)
(c)Figure 4: Modeling a complete head. Row (a): A stereo pair of a person's head and leftimages of two additional stereo pairs taken from di�erent viewpoints (courtesy ofETH-Z�urich). Row (b): Four shaded views of the particles instantiated by �ttinglocal surfaces to the 3{D points derived by correlating the images of Figure 4.Row (c): Similar views of the subset of particles that belong to the same globalsurface. Erroneous ones have been eliminated.in spurious particles that appear to line up with legitimate ones and become very hard toeliminate. To resolve such problems, it is necessary to return to the original images andassess the quality of each particle. For each disk-shaped particle, we de�ne a stereo term byprojecting the 3{D disks into 2{D elliptical patches in each image and measuring how wellthese patches correlate. This term is equivalent to the one de�ned in Section 2.3, exceptthat it is now a disk as opposed to a triangular facet that is sampled at regular intervals[Fua, 1994]. It is a function of the three degrees of freedom of each particle and can there-fore be used to perform optimization. We allow the particles to interact with one anotherand to rearrange themselves to minimize an energy term that is the sum of the multi-imageintensity correlation term and of a deformation energy term that tends to enforce consis-9



tency between neighboring particles [Szeliski and Tonnesen, 1992]. While optimizing theenergy term, the particles that actually correspond to the same underlying global surfaceswill \stick together" and the ones that do not will tend to move in separate directions, stoplining up with each other, and be easily eliminated by the clustering technique of Section3.2.Formally, we write the total energy of a set of particles ET asET = ESt + �DED ; (6)where ESt is the multi-image intensity correlation term, ED the deformation energy term,and �D a weighting coe�cient that is dynamically adjusted using the method of Section 2.2.To de�ne ED, we follow Szeliski and Tonnesen [1992], and de�ne a conormality potentialE ijcn and a coplanarity potential E ijcp between particles i and j by writingE ijcn = 1=2jj~ni � ~njjj2 = 1 � ~ni ~nj ;E ijcp = 1=2((~ni ~rij)2 + ( ~nj ~rij)2) ; (7)where ~ni and ~nj are the normal vectors and ~rij the vector joining the centers of the twoparticles. These terms control the surface's resistance to bending and we take our overallregularization terms ED to be ED =Xi;j f(E ijcn + E ijcp) ; (8)where the summation over i and j denotes a summation over all pairs of particles that areneighbors in the cube-shaped structure of Section 3.1, and f is a monotonically increasingfunction. In practice we implement the concept of breakable springs by taking f to bef(x) = log(1 + x=s) ;with s being a �xed constant so that, as in Section 3.1, the interaction forces have aLorentzian behavior [Black and Rangarajan, 1994]. As the particles move out of alignment,the strength of the interaction increases up to a point, after which the interaction strengthdecreases and eventually vanishes.In our implementation, we have not found it necessary to weight the interactions: Byconstruction, our particles tend to be equidistant and cannot slide along the surfaces becausethey have only three degrees of freedom.3.4 Global OptimizationRecall that the total energy of a set of n particles is written asET = ESt + �DED :Since each particle has three degrees of freedom, ET is a function of 3n state variables. Thisis di�erent from the case of meshes; ED is not quadratic and we cannot use the \snake-like"10



optimization technique of Section 2.1. Instead, we use more conventional techniques, suchas conjugate gradient, that tend to be much slower, especially for large sets of particles.An e�ective way to alleviate this problem and to achieve a desirable minimum of theobjective function is to cluster the particles into smaller subsets, to optimize each subsetindependently, and to reiterate the process until a stable solution is found. In practice, thiscan be achieved either by using the metric of Section 3.2 to break the set of particles intosmaller subsets or by histogramming the median gray levels of the particles|computedusing the gray-levels of the projections of sample points on the disks|and grouping thosethat fall into the same histogram peaks. The latter makes sense in the absence of surfacemarkings because particles that have similar gray levels are more likely to belong to thesame underlying surfaces than particles that do not.
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5(a) (b) (c) (d)Figure 5: Modeling a pile of rocks. (a) The �rst image of a triplet (courtesy of INRIA).(b) The same image with the �ve largest rocks labeled from 1 to 5. (c) Shadedview of the particle set after re�nement and clustering seen from a viewpointlocated on the left side of the rock pile. (d) The same view with the �ve largestrocks labeled as in (b). Note that the overhang of rock number 1 is well recovered,a result that would be di�cult to achieve using a 2-1/2{D representation.In our �nal example, shown in Figure 5, we used all three steps of our surface reconstruc-tion procedure to reconstruct a ground-level scene using three triplets of images acquiredby the INRIA mobile robot and the precomputed robot's ego-motion. Note that the �vemain rocks in the scene, including one that overhangs, appear in the reconstruction.4 ConclusionWe have presented a surface reconstruction framework that uses object-centered represen-tations to recover geometry and re
ectance properties from multiple images.When the surface's topology is known a priori, we represent it as a triangulated meshand are able to handle self-occlusions while merging information from several viewpoints,thereby allowing us to eliminate blindspots and make the reconstruction more robust wheremore than one view is available. The reconstruction process relies on both monocular shad-ing cues and stereoscopic cues. We use these cues to drive an optimization procedure thattakes advantage of their respective strengths while eliminating some of their weaknesses.11



When the surfaces's topology is unknown or there may be more than one surface in thescene, we replace the triangulation by a set of oriented particles that allow us to achievesimilar results, but with a higher computational cost.References[Baltsavias, 1991] E. P. Baltsavias. Multiphoto Geometrically Constrained Matching. PhDthesis, Institute for Geodesy and Photogrammetry, ETH Zurich, December 1991.[Beaton and Turkey, 1974] A. E. Beaton and J.W. Turkey. The Fitting of Power Series,Meaning Polynomials, Illustrated on Band-Spectroscopic Data. Technometrics, 16:147{185, 1974.[Black and Rangarajan, 1994] M. J. Black and A. Rangarajan. The Outlier Process: Uni-fying Line Processes and Robust Statistics. In Conference on Computer Vision andPattern Recognition, pages 121{128, Seattle, WA, June 1994.[Devernay and Faugeras, 1994] F. Devernay and O. D. Faugeras. Computing Di�erentialProperties of 3{D Shapes from Stereoscopic Images without 3{D Models. In Conferenceon Computer Vision and Pattern Recognition, pages 208{213, Seattle, WA, June 1994.[Fua and Leclerc, 1994] P. Fua and Y. G. Leclerc. Object-Centered Surface Reconstruc-tion: Combining Multi-Image Stereo and Shading. International Journal of ComputerVision, 1994. In press, available as Tech Note 535, Arti�cial Intelligence Center, SRIInternational.[Fua, 1994] P. Fua. Reconstructing Complex Surfaces from Multiple Stereo Views. TechNote 550, Arti�cial Intelligence Center, SRI International, December 1994.[Kass et al., 1988] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Mod-els. International Journal of Computer Vision, 1(4):321{331, 1988.[Nishihara, 1984] H.K. Nishihara. Practical Real-Time Imaging Stereo Matcher. OpticalEngineering, 23(5), 1984.[Szeliski and Tonnesen, 1992] R. Szeliski and D. Tonnesen. Surface Modeling with OrientedParticle Systems. In Computer Graphics (SIGGRAPH), volume 26, pages 185{194, July1992.[Terzopoulos and Vasilescu, 1991] D. Terzopoulos and M. Vasilescu. Sampling and Re-construction with Adaptive Meshes. In Conference on Computer Vision and PatternRecognition, pages 70{75, 1991.[Terzopoulos, 1986] D. Terzopoulos. Regularization of Inverse Visual Problems InvolvingDiscontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8:413{424, 1986. 12


