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Abstract 
In this paper, we propose a snake-based approach 

that lets a user specify only the distant end points of 
the curve he wishes to delineate without having to sup- 
ply an almost complete polygonal approximation. We 
achieve much better convergence properties than those 
of traditional snakes by using the image information 
around these end points to provide boundary condi- 
tions and by introducing an optimization schedule that 
allows the snake to take image information into ac- 
count first only near its extremities and then, progres- 
sively, towards its center. 

These snakes could be used to alleviate the often 
repetitive task practitioners have to face when seg- 
menting images by abolishing the need to sketch a fea- 
ture of interest in its entirety, that is, to perform a 
painstaking, almost complete, manual segmentation. 

1 Introduction 
In recent years snakes, have emerged as a very 

powerful tool for semiautomated object delineation. 
They have been originated by Terzopoulos, Kass, and 
Witkin [l, 21 and have since given rise to a large body 
of literature ([3, 4, 5 ,  61 among many others) that ex- 
plores theoretical and implementation issues as well as 
new applications. 

In most of these papers, however, it is assumed that 
the initial position of the snake is relatively close to the 
desired solution. While this is a reasonable assump- 
tion for applications such as motion tracking [7, 81, 
it is ineffective for delineating complex objects from 
scratch. 

The optimization of the traditional snakes is typi- 
cally global and takes edge-information into account 
along the whole curve simultaneously. When the 
snake’s initial position is far away from the desired 
result, this often results in the snake getting stuck in 
an undesirable local minimum because it uses irrel- 
evant edge information. The minimization problem 
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is solved by treating the snake as a physical system 
evolving under the influence of the potential that is 
the sum of an objective function and a dissipation po- 
tential that enforces convergence. This potential tends 
to prevent the snake from moving far away from its 
current position, thereby contributing to forcing the 
snake’s initial position to be close from the desired 
solution in order to achieve convergence and not get 
stuck in an undesirable local minimum. In the re- 
mainder of the paper, we will refer to  these snakes as 
“dynamic snakes” because their position is computed 
by solving the dynamics equation of a physical system. 

Here, we describe a snake approach that allows a 
user to specify only the end points of the curve he 
wishes to delineate instead of a complete polygonal 
approximation. This way we may abolish the need to  
outline the desired structure very precisely, that is, to  
perform a painstaking, almost complete, manual seg- 
mentation. The optimization progresses from the end 
points towards the center thereby effectively propa- 
gating edge-information along the curve without the 
need for a dissipation potential. The user-supplied end 
points and the automatically computed edge gradient 
in their vicinity serve as anchors. They are first used 
to compute an initial state that is approximately cor- 
rect in the anchors’ vicinity. While the image term is 
“turned on” progressively from the snake’s extremities 
towards its middle section, the snake’s position is iter- 
atively recomputed. As a result, the snake eventually 
finds the smooth path, as defined by the regulariza- 
tion term, that best matches the edge connecting the 
two end points and has the right orientation at these 
points. We will refer to these snakes as “static” snakes. 

In the following section, we describe the traditional 
or dynamic snakes. Next, we introduce our own breed 
of static snakes. Finally, we present results on both 
synthetic and real images that demonstrate the im- 
proved performance of the static snakes for initidiza- 
tions that are far away from the desired result. 
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Figure 1: 111 conditioned behavior of the dynamic snakes with respect to initialization . (a) Slightly different initializations: the 
snake is initialized using a polygon with five vertices. While the third vertex moves closer to the shape, the other vertices are 
the same for all six situations. (b) The corresponding results: the snake detects the correct contour (6th image pair) when the 
third vertex is close enough to the object's border. However, it is not intuitively obvious what the threshold is. 

2 Dynamic snakes 
The original snakes [2] are modeled as time depen- 

dent 2-D curves defined parametrically as 

v'(% t )  = (d% t ) , y ( s ,  t))o<s<l 7 (1)  

where s is proportional to the arc length, t the current 
time and 5 and y the curve's image coordinates. The 
snake deforms itself as time progresses so as to min- 
imize an image potential E I ( ~ ' )  = - Ji P(v'(s, t))  ds, 
where P($((s,t)) is a function of the image. One typi- 
cal choice is to take P(G(s, t)) to be equal to the mag- 
nitude of the image gradient. However, because the 
gradient magnitude can vary rapidly due to contrast 
changes and to noise, it has proven effective to either 
clip the derived potential force [4] or replace the gra- 
dient magnitude by its logarithm [3]. Alternatively, 
one can take P(v'(s,t)) to be the Euclidean distance 
to the closest edge-point in an edge-map computed us- 
ing an operator such as the Canny edge-detector [9]. 
The results of all these approaches are very similar. 
In our implementation, described in section 3, we use 
the latter where the Euclidean distances are computed 
using the Danielsson distance transform [lo]. Unfor- 
tunately, whatever the choice of P ,  EI(G) is typically 
not a convex functional.. 

To perform the optimization, following Terzopou- 
10s et aJ., one must minimize an energy E($) that is 
the sum of El($) and of a regularization term ED($). 
Using the thin-plate model, ED($) is taken to be 

where o(s)  and P ( s )  are arbitrary functions that reg- 
ulate the curve's tension and rigidity. In the imple- 
mentation described in section 3, CY and p are taken 

to be constant and are supplied by the user. We have 
shown [3] that they can be chosen in a fairly image- 
independent way. Several techniques, however, have 
been proposed to dynamically adjust the values of a 
and p along the curve (see [ll] for example). 

Variational calculus shows that if v minimizes E = 
ED + EI and is sufficiently regular, that is at least 
C4(0,1), then it must be a solution of the Euler dif- 
ferential equation 

-VP(v'(s, t ) )  = 
a -5 +-g (p(s)-) (3) 

Note that, in order to have a unique solution for this 
equation, one must specify boundary conditions such 
as the values and derivatives of v'(s, t)lsEiO,l). 

In practice, to minimize E($), one must discretize 
the curve v' by sampling it at  regular intervals. We 
therefore take v' to be a polygonal curve defined by a 
set of vertices G t  = ( z f , y ~ ) o ~ i ~ n .  

Using finite differences, the snake energy E($) be- 
comes E(G) = E I ( ~ ' )  + ED(;) where 

El(;*) = - P(zf, y f )  
i 

a 

Note,  ED(^'') is quadratic and can be rewritten as 

(4) 
1 1  ED(^'^) = 5X,TKXt + -Y;rKyt,  2 
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Figure 2: Sensitivity of dynamic snakes to nearby contours. (a) Different initializations: the snake is initialized using a polygon 
with an increasing number of vertices. (b) The corresponding results: The fact that the two objects are lying close to each other 
forces the user to outline the desired contour segment precisely. I f  the snake touches the influence region of a nearby object i t  
will get stuck on the wrong contour. 

where K is a (n+l) x (n+l) penta-diagonal matrix, 
and X = (zo,z1,. . . ,z,) and Y = (yo,yI,. . . , y,,) are 
the vectors of the x and y vertex coordinates. 
A curve that minimizes the energy E must be such 

( 5 )  

Since the deformation energy ED in equation (4) is 
quadratic and decouples the x and y coordinates of 
the curve, equation ( 5 )  can be rewritten as a system 
of equations .(:)=(E) whereFx=--, ~ E I  F y = - -  dEI ( 6 )  

dX dY 

which are coupled by the “image forces,” FX and Fy. 
Note that FX and Fy depend on the snake’s posi- 
tion, making the system semi-linear. The matrix K, 
however, is not invertible and these equations cannot 
be solved directly. This stems from the fact that the 
Euler differential equation (3) has a unique solution 
only when boundary conditions are supplied. In sec- 
tion 3, we will show how we can solve this system of 
equations by supplying the boundary conditions. This 
will be one of the key differences between our approach 
and more traditional snake implementations in which 
the minimization of E($) is achieved by embedding the 
curve into a viscous medium and solving the equation 
of the dynamics. This amounts to adding a Rayleigh 
dissipation functional to the energy and leads to solv- 
ing the following differential equation: 

dE dv’ 
dv’ - +‘;ti: = 0 ,  

where 7 is the viscosity of the medium. As in the case 
of equation (6), after time discretization, this can be 

rewritten as a set of two equations in X and Y: 

where K, FX and Fy are defined in equation (6). The 
matrix (K + 71) is positive definite for y > 0. The 
dynamic snakes are effective when t8he initial position 
of v’ is close from the desired solution. However, as il- 
lustrated by figures l and 2, they are very sensitive to 
initial conditions. They can easily get caught in local 
minima when the desired outline presents large con- 
cavities that force the snake to extend itself or when 
there are other edges in the vicinity of the desired 
one that may “catch” the snake. In the next section, 
we introduce a different breed of snakes, the “static 
snakes” that alleviate these problems by replacing the 
viscosity term by boundary conditions that produce 
better solutions of equation (3). 

3 Static snakes 
To improve upon the snakes’ convergence proper- 

ties, we must use constraints that better reflect the 
image properties than the Rayleigh dissipation func- 
tional of section 2. In our implementation, we assume 
that the user specifies snake end points in the vicinity 
of clearly visible edge segments, which implies a well 
defined edge direction. It becomes natural to use these 
points and their associated edge directions as anchor 
points and to propagate the edge information along 
the curve starting from them. 

We use these anchor points to derive an initial po- 
sition for the snake which will, in general, be close to 
the desired answer in the vicinity of those points but 
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Figure 3: Evolution of a static snake on the synthetic images of figures 1 and 2. The circles denote the farthest vertices away 
from the end points for which the image forces are turned on. The optimization stops when the two circles meet (section 3.3). 

nowhere else. We will therefore “turn on” the image 
forces (6) in those areas and compute a new position 
for the snake using the same boundary conditions as 
before. A longer part of the new solution will be closer 
to the actual image edge than before; the image forces 
can then turned on on this longer part and the snake’s 
position recomputed. By iterating this process, we 
eventually turn on the image forces over the whole 
length of the snake, thereby achieving the propaga- 
tion of the edge information from the anchor points 
to the snake’s middle. Our approach is closely related 
to perturbation theory [12]: we start with an unper- 
turbed solution of our minimization problem and pro- 
gressively perturb it by considering more and more of 
the image forces. 

Dynamic programming provides an alternative ap- 
proach to find an optimal path between selected 
points. However, there are strict contrains for the 
applicable cost function and the method is basically 
restricted to 2-D path finding problems. The lack of 
these limitations in the snake approach allows the gen- 
eralization of our method to a broader class of prob- 
lems. 

3.1 Solving the minimization problem 
with boundary conditions 

As discussed in section 2, minimizing the snake’s 
energy amounts to solving the Euler differential equa- 
tion (3) which leads, after discretization, the semi- 
linear system of the two equations (6). By fixing the 
curve’s end points ($0, yo) and (z,,, y,,) and giving the 
curve’s tangent at those points, the above system of 
equations reduces to: 

K ‘ X ’ = F f ,  ; K‘Y‘=FG 

where X’ is the n -  1 vector (21,. . . , xn-l), Y’ the 

n - 1  vector (y1, . . . , yn - l )  and K’ an ( n - l ) x ( n -  
1) penta diagonal matrix that is now invertible. The 
system is still semi-linear and cannot, in general, be 
solved in closed form. Instead, one must still use a 
time discretization and iteratively solve the system 

K‘X,’ 

3.2 Initialization 
In order to successfully optimize our snake, we must 

start from an initial position that is approximately 
correct in the neighborhood of the end points. The 
easiest way to achieve this result is to solve the ho- 
mogeneous equations that correspond to the system 
of Euler equations (3). As discussed in section 2, we 
take a and /3 to be constant, and the homogeneous 
system becomes 

d2w(s )  d4w(s) -a- ds2 +pT =’ 

where v stands for either 2 or y and 0 5 s 5 1. 
We assume, that the user has chosen the snake’s 

head and tail close to dominant edge fragments. In 
order to find the true edge location in the near neigh- 
borhood of the selected start and end points we first 
perform a linear search. The snake tangent at its head 
and tail is then given by the valley direction in the 
potential surface corresponding to the selected con- 
tour fragments. It is obtained from the orientation 
map that can be computed at  the same time as the 
Canny edge-map. While the tangent direction at the 
end points can be computed, its orientation cannot be 
determined. By default, the boundary conditions are 
chosen so that the initial snake defines acute angles 
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Figure 4: Outlining roads in an aerial image. (a) Static snakes initializations. (b) Final results. All the road edges are correctly 
outlined except the bottom left one. (c) The erroneous result is corrected by adding a new control point, 

with the line joining the two end-points. Since this 
heuristic may fail, we provide the user with the possi- 
bility to flip the orientation at  both ends. This could 
be automated by initializing the snake in the four pos- 
sible ways (2 possible orientations at  each end) and 
retaining the best final result. 

By construction, this solution has the right tan- 
gent at  the end points and is close to the right answer 
near these points. It can therefore serve as an ini- 
tial curve for the following minimization of the energy 
functional. 

is the Danielsson distance map. We shift both 
boundaries across the contiguous vertices whose 
potential does not exceed the one of the currently 
active ones by more than 1. 

This strategy allows the snake to leave valleys and to 
close small gaps. However, further investigation is re- 
quired to better control this “gap closing” mechanism. 
We are also working on modifying these heuristics to 
deal with a potential surface derived directly from the 
image gradients. 

3.3 Optimization procedure 4 Results 
We start the optimization of the energy term by 

defining the initial snake as the solution of the homo- 
geneous differential system of equation (8). At this 
stage the snake “feels” absolutely no external poten- 
tial forces. During the ongoing iterative optimization 
process the image potential is turned on progressively 
for all the snake vertices, starting from the extremi- 
ties. Assuming that the user selects the end points 
nearby dominant edge fragments in the image, this 
initialization ensures that the snake lies already close 
to its optimal position at  both ends. We define the 
“force boundaries” as the location of the vertices far- 
thest away from the end points that feel the image 
forces. These boundaries approach each other during 
the ongoing optimization process according to the fol- 
lowing rule: 

a Each boundary is moved at  every iteration step 
by at least one vertex. To speed up the conver- 
gence, we use the fact that our potential surface 

In this section, using both synthetic and real im- 
ages, we compare the dynamic snakes with our sta- 
tic snakes and show that the formers’ initialization 
must typically be much closer to the desired answer 
to achieve comparable results. To achieve a fair com- 
parison, we use the same tension and rigidity parame- 
ters, a! and p defined in equation (2), for both kinds 
of snakes. 

Figure 3 illustrates a static snakes’ behavior on two 
synthetic images and its ability to outline the cavity 
and distinguish between two nearby objects. Figure 4 
shows that our static snakes can be used to delineate 
roads in an aerial image using very distant end-points. 
Note, however, that our snakes can still become con- 
fused in the presence of junctions. This is the case 
for the snake drawn in the bottom left corner of fig- 
ure 4(b), which is being trapped by an undesirable lo- 
cal minimum. In practice, when such problems arise, 
our interface allows the user to add a new point in 
the middle of the curve, thereby splitting it into two 
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snakes (see figure 4(c)). Figures 5 and 6 show the 
snake’s performance on an image of an apple and il- 
lustrate similar results on a low contrast face image. 

Figure 5: Detection of  different image features by static 
snakes. The apple’s outline is detected in (a) whereas (b) 
shows the detection of the projected shadow. 

Figure 6: Outlining facial features. (a) Three pairs of end 
points on a face image (Courtesy of INRIA). (b) Final results. 

5 Conclusion 
We have proposed a snake-based approach to semi- 

automated delineation that allows a user to outline 
an open contour by only specifying very distant end 
points and allowing the computer to propagate edge- 
information from the ex.tremities towards the center. 
This yields excellent convergence properties for the 

snakes and diminishes very substantially the probabd- 
ity getting trapped into an undesirable local minimum. 
By sequentially defining end points of adjoining open 
snake fragments we are able to segment more complex 
shapes. 

Intelligent initialization of snakes is required to 
make them into an operational tool for image segmen- 
tation where existing implementations leave almost all 
the work to an ”expert user” [2]. Our method has been 
designed for practitioners of image evaluation without 
a professional background in image understanding. 

We concentrate our future research on generalizing 
our approach to handle more general constrains and 
problems of higher dimensionality. 
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