
Robust Contention Management
in Software Transactional Memory

Rachid Guerraoui
School of Computer and Communication

Sciences, EPFL

rachid.guerraoui@epfl.ch

Maurice Herlihy
Microsoft Research Cambridge and Brown

University

mph@cs.brown.edu

Michał Kapałka
School of Computer and Communication

Sciences, EPFL

michal.kapalka@epfl.ch

Bastian Pochon
School of Computer and Communication

Sciences, EPFL

bastian.pochon@epfl.ch

ABSTRACT
Software transactional memory (STM) systems use
lightweight, in-memory software transactions to address
concurrency in multi-threaded applications, ensuring safety
at all times. A contention manager is responsible for the
system as a whole to make progress (liveness).

In this paper, we study the impact of transaction failures
on contention management in the context of STM systems.
The failures we consider include page faults as well as actual
process or thread crashes. We observe that, even with a
small number of failures, many of the previously defined
contention managers do not behave well, in the average case,
and none provides worst case guarantees.

We introduce FTGreedy, a new contention manager that is
able to cope with faulty transactions. In short, FTGreedy (a)
compares well with previous contention managers when no
failures occur, (b) has good performance in the face of fail-
ures, and (c) provable worst case properties even if transac-
tions can fail, as long as the system features some synchrony
assumptions (which need only be weak and eventual).

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems—
Sequencing and scheduling

General Terms
Algorithms, Theory, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keywords
Concurrency, software transactional memory, contention
management

1. INTRODUCTION
In modern multi-core architectures, multi-threaded ap-

plications are the norm. Software transactional memory
(STM) systems provide an appealing approach to address
the concurrency raised by multi-threading. The basic idea
consists in accessing shared memory through lightweight, in-
memory transactions. A transaction is a basic unit of com-
putation, which can either abort (the effects of the transac-
tion are rollbacked and do not appear to other transactions)
or commit (the effects of the transaction appear to take place
atomically to other transactions).

In STM systems, safety is ensured at all times despite
concurrency conflicts among transactions hosted by dis-
tinct threads and processes. Progress guarantees (liveness)
are delegated to a contention manager, a separate, possi-
bly external, user-provided module (we consider here only
obstruction-free STM systems; for lock-free ones it is the
STM that provides progress guarantees, not a contention
manager). The approach adopted by STM systems thus
completely decouple safety from liveness, enabling the pro-
grammer to test various liveness strategies, under the form
of distinct contention managers, while always guaranteeing
safety. Roughly speaking, when two transactions encounter
a conflict by accessing the same memory location, the con-
tention manager will decide to abort or delay one of them,
and later restart or resume it.

Many contention managers have been proposed in the lit-
erature. These include simple ad-hoc contention managers
(e.g., Backoff) [8], contention managers using more sophis-
ticated priority schemes among transactions [9, 4], and ran-
domized contention managers [7]. One of these contention
managers, which we introduced earlier and called Greedy,
actually ensures an upper bound on the time to commit
transactions [4].

As we show in this note through various benchmarks, pre-
vious contention managers may not be able to cope well
with transaction failures. Although some contention man-

agers, like Karma, Polka [9] or Aggressive [5], seem to be quite
fault-tolerant, none of them provides any worst case guaran-
tees. On the other hand, Greedy [4], a contention manager
with provable properties, may tolerate only small number of
failures.

In practice, there are indeed reasons for transactions to
fail. Clearly, a thread might encounter an illegal instruction
(for instance, when it dereferences a null pointer), producing
a segmentation fault. The thread silently dies, and by the
same occasion, the transaction.

In addition, most if not all traditional operating systems
offer a memory paging mechanism, i.e., a mechanism for
moving pages of main memory into secondary storage, when
these pages are not supposed to be accessed by any thread
in a very near future. In presence of paging, a thread may
experience a page fault when the page containing the desired
data has been swapped out of main memory, and needs to be
moved back into memory before it can be accessed. In the
case of a page fault, a thread that executes in a transaction
needs to wait for the page to be available. Waiting for a
transaction that experiences a page fault is a waste of time,
as the time for a page to be moved back into memory is
several orders of magnitude higher than the time between
two successive instructions for a transaction that executes
normally.1 In that sense, the transaction experiencing a
page fault is considered to have failed.

In this note, we extend the concept of Greedy [4], and we
introduce a new contention manager, called FTGreedy. This
new contention manager is able to cope with faulty transac-
tions using an adaptive timeout mechanism when aborting
a transaction. Basically, a slow transaction that is aborted
because it is considered faulty, is given more time the next
time a conflict is encountered. As the timeout grows expo-
nentially, a slow transaction is eventually not aborted: it
eventually commits.

We show that the performance of FTGreedy is comparable
to those of contention managers like Karma or Polka. In ad-
dition, FTGreedy retains some worst case provable properties
of Greedy, even in presence of failures.

In the following sections we first compare Greedy, FT-

Greedy and other contention managers experimentally to
highlight the main issues and show the practicality of our
results. Next, we prove that FTGreedy guarantees global
progress, even when failures occur, under the assumption
that the system is eventually synchronous. Then we focus
on executions without failures and prove upper bounds on
the time to complete n concurrent transactions (through-
put) and on the time to commit every transaction despite
the conflicts it might encounter (latency). We do so under
the assumptions that the system is synchronous from the
beginning and transactions are not preemptive.

Our benchmarks were all performed on two machines: a
4-processor Intel Xeon and a uniprocessor Pentium IV, both
with HyperThreading turned on (this gives 8 and 2 virtual
processors, respectively). We used SXM [6], an STM sys-
tem provided as a C# library. We considered the .NET
C# platform, with an update ratio of 20% for transactions,
and a varying number of failures. We measured the number
of committed transactions per second as a function of the

1We discuss in Section 4 how we may optimize contention
management to address this situation when the operating
system is able to tell whether a transaction experiences a
page fault [1] or not.

number of threads (either a total number or the maximum
number of threads that could crash inside a transaction at
some point at the beginning of the experiment2). In cases
when performance was measured as a function of the max-
imum number of failures, the total number of threads was
constant and equal to 32.

2. FAULT-TOLERANT GREEDY
If a transaction T accesses an object that is already used

by another transaction T ′, it has two choices: it can either
wait for some time and retry later or abort T ′. A con-
tention manager is a module which tells T what to do and
all thransactions behave accordingly, some progress proper-
ties might be guaranteed. The simplest contention manager
one can imagine is Aggressive. It always tells T to abort the
conflicting transaction. Obviously, it is fault-tolerant as no
transaction ever blocks on waiting for a faulty one. How-
ever, not only it does not provide any liveness guarantees,
but also in practice it often leads to livelocks, in which case
no transaction makes any progress.

A more complicated scheme is used by the Backoff con-
tention manager. Here, a transaction T can abort a conflict-
ing transaction T ′ only after waiting for some random time,
the maximum of which grows exponentially with each abort
of T ′. Backoff does not give any deterministic guarantees
and, what is more important, does not perform very well in
practice (as will be shown later). However, it should be, at
least in theory, quite resistant to transaction failures.

The idea behind the Karma [9] contention manager is that
the transactions which have already done a lot of work and
have almost finished should not be aborted by transactions
that have just started or are very short. The number of ob-
jects that a transaction has opened is taken as its priority.
When a transaction T encounters a conflict with a transac-
tion T ′, it checks whether the number of times it attempted
to open an object is higher than the difference in priorities
between itself and T ′. If yes, it can abort T ′. Otherwise,
it waits for a fixed period of time. The Polka contention
manager [9] works in a similar way, but it also incorporates
a randomized exponential backoff scheme instead of waiting
for predefined amount of time. Both contention managers
are very efficient and should be fault-tolerant; however, they
do not have any provable progress properties, even in failure-
free systems.

The algorithm of Greedy [4] is the following. Each trans-
action, upon its start, gets a timestamp. The timestamps
are unique and monotonically increasing over time. A trans-
action T can abort a conflicting transaction T ′ only if the
timestamp of T is lower than the one of T ′ or T ′ is wait-
ing for another transaction. This simple scheme is clearly
not resistant to failures, as a faulty transaction with a very
low timestamp can force all other ones to wait indefinitely
long. However, it has been proved in [4] that Greedy has the
following properties:

1. Every transaction commits within a bounded time.

2. The time to complete n concurrent transactions that
share s objects is within a factor of s(s + 1) + 2 of the
time that would have been taken by an optimal off-line
list scheduler.

2It is worth noting that, for some contention managers, all
threads were blocked after the first crash and could not per-
form any steps, including a subsequent crash.

To evaluate the performance of abovementioned conention
managers in presence of failures we use three benchmark ap-
plications: List, RBTree and RandomBenchmark. The first
two model the classical data structures of a linked list and a
red-black tree, respectively, both containing integer elements
in the interval [0, 255]. In RandomBenchmark, transactions
access randomly chosen objects. They, however, respect de-
fined limits on the maximum number of objects they can
read or update. This benchmark corresponds to applica-
tions for which the object access pattern is not regular.

In presence of failed transactions, Aggressive performs well
(though it compares poorly when transactions do not fail
on a multiprocessor machine where it livelocks pretty of-
ten). On the other hand, Backoff and Greedy behave rather
badly. For the former one, surprisingly, the performance
often grows with the number of failures (more or less expo-
nentially). The latter one, on the contrary, performs well
only when there is no or very few failures. Karma and Polka

perform very well in general and seem to be quite resistant
to failures. Figures 1, 2 and 3 illustrate our results for List,
RBTree and RandomBenchmark, respectively.

Greedy was the first contention manager that combined
non-trivial provable properties with good practical perfor-
mance [4]. However, Greedy loses its guarantees in situations
in which transactions may fail. We introduce here FTGreedy

– an extended version of Greedy that can deal with failures.
A transaction T is given a timestamp ts when it starts:

T retains ts over its whole lifecycle. Each timestamp is
unique, and timestamps monotonically grow as transactions
are created. For each transaction Ti we also define a delay δi

initialized to δ0. In the benchmarks that follow, we assume
δ0 = 1 millisecond.

In case a conflict is encountered, FTGreedy behaves as
follows. Consider that a transaction Ta is executing, and a
transaction Tb tries to access the same object. Therefore,
there is a conflict between Ta and Tb that has to be resolved
by the contention manager. We say that Tb is the attacking
transaction and Ta is the victim one. FTGreedy obeys the
following two simple rules:

1. If tsb < tsa or Ta is waiting, then Tb aborts Ta.

2. If tsb > tsa and Ta is not waiting, then Tb starts wait-
ing, until Ta commits, aborts, starts waiting, or a time-
out of δa expires. Afterwards, if Ta starts waiting, see
Rule 1; if timeout δa has expired, Tb aborts Ta and
doubles δa.

Figures 4, 5, 6 depict the very fact that FTGreedy performs
well in presence of failed transactions, with one exception.
FTGreedy seems to perform poorly for RandomBenchmark

with a high number of failed transactions, but only on the
4-processor machine (see Figure 6). This might be due to
the fact that the timeouts of the transactions reached such
a high level that they exceeded the length of the benchmark
(30 seconds).

Interestingly, FTGreedy performs equally well as Greedy

in case no transaction fails in the execution, as shown in
Figures 7, 8 and 9. Its performance does not also diverge
much from the performance of Karma and Polka.

3. PROPERTIES OF FAULT-TOLERANT
GREEDY

3.1 Global Progress
We assume here that the system is eventually syn-

chronous, i.e., that at some point in time (called global stabi-
lization time and denoted by GST) there is an upper bound
on the time it can take to entirely execute and commit any
non-faulty transaction (with no conflict). The bound does
not need to be known and, in practice, needs only to hold
long enough for a correct (i.e., non-faulty) transaction to
commit. Denote by N the number of threads or processes
that can execute transactions concurrently.

Theorem 1. FTGreedy guarantees that at any time after
GST, if there is at least one correct transaction, at least one
correct transaction will eventually commit.

Proof. By contradiction, let us assume that after GST
the correct transaction T with the lowest timestamp never
commits. This means that it is always aborted by another
transaction. By the algorithm of FTGreedy, T cannot wait
for other transactions because it has the lowest timestamp.
Therefore, it can be aborted only by a transaction T ′ in
a situation in which T ′ was waiting for T and its waiting
timeout expired. But each time T is aborted, the related
timeout is increased (note that the timeout value is stored
at T , not at T ′).

T has the lowest timestamp so it will abort all conflict-
ing transactions. Therefore, if no other transaction performs
steps for sufficiently long time, T will commit. Furthermore,
as the system is synchronous after GST, there is an upper
bound tmax on the time it can take to perform the trans-
action T and commit it. If T is aborted sufficiently many
times, the related timeout δT will be larger than (N−1)tmax.

Let us denote by t a point in time after GST in which
δT > (N − 1)tmax and in which T is restarted after be-
ing aborted by a transaction T0. T has to be aborted by
a transaction T1 at latest at time t1 ∈ (t, t + tmax); oth-
erwise, it would commit. T1 can no longer abort T once
again earlier than at time t1 + δT > t + (N − 1)tmax, be-
cause it has to wait for period of δT before doing so. For
the same reason, T0 cannot abort T once again before time
t+ δT > t+(N −1)tmax. However, another transaction, T2,
can abort T at time t2 ∈ (t1, t1 + tmax). But also T2 has
then to wait for δT > (N − 1)tmax before aborting T once
again. We can apply analogous reasoning to transactions
T3, . . . , TN−2. T can be aborted by a transaction TN−2 at
time tN−2 ∈ (tN−3, tN−3 + tmax). As we have maximum
of N concurrent transactions, after tN−2, T can be aborted
not earlier than at time t′ ≥ t + (N − 1)tmax (recall that
we number transactions from 0 and T also counts for N).
But tN−2 < t + (N − 2)tmax and T cannot be aborted be-
tween tN−2 and t′. Therefore, as the time between tN−2

and t′ is at least tmax, T have enough time to commit – a
contradiction.

It is worth noting that after a correct transaction T

commits, another one becomes the one with the lowest
timestamp and will also eventually commit (unless there
are no correct transactions anymore). As the timestamps
are unique and monotonically increasing (older transactions
have lower timestamps than new ones), the proven property
implies global progress, under the stated assumption that

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Maximum number of failures

4-processor machine

Greedy
Karma
Polka

Aggressive
Backoff

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Maximum number of failures

1-processor machine

Greedy
Karma
Polka

Aggressive
Backoff

Figure 1: List with failed transactions

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Maximum number of failures

4-processor machine

Greedy
Karma
Polka

Aggressive
Backoff

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Maximum number of failures

1-processor machine

Greedy
Karma
Polka

Aggressive
Backoff

Figure 2: RBTree with failed transactions

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Maximum number of failures

4-processor machine

Greedy
Karma
Polka

Aggressive
Backoff

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Maximum number of failures

1-processor machine

Greedy
Karma
Polka

Aggressive
Backoff

Figure 3: RandomBenchmark with failed transactions

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Maximum number of failures

4-processor machine

FT Greedy
Karma
Polka

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Maximum number of failures

1-processor machine

FT Greedy
Karma
Polka

Figure 4: FTGreedy performs well against failures with List

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Maximum number of failures

4-processor machine

FT Greedy
Karma
Polka

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Maximum number of failures

1-processor machine

FT Greedy
Karma
Polka

Figure 5: FTGreedy performs well against failures with RBTree

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Maximum number of failures

4-processor machine

FT Greedy
Karma
Polka

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Maximum number of failures

1-processor machine

FT Greedy
Karma
Polka

Figure 6: FTGreedy performs sometimes well against failures in RandomBenchmark

the system is eventually synchronous. This also means that
FTGreedy guarantees wait-freedom in a sense that every cor-
rect transaction will eventually commit.

3.2 Worst Case Performance
In general, in the periods of asynchrony of the system or

when failures occur, it is not possible for FTGreedy to guar-
antee anything besides the global progress proved in Sec-
tion 3.1. However, one would like to know, what the con-
tention manager can provide in the most common scenarios
in which the system is synchronous from the beginning and
no failure occurs. This might seem to be a very optimistic
view, but in real systems such assumptions will usually hold
most of the time and for sufficiently long periods of time.

In the following proofs we will assume that:

1. All transactions are correct (there are no faulty ones),

2. The system is synchronous from the beginning, i.e.,
there exists an upper bound tmax on the time it can
take for a transaction to commit when it runs without
conflicts,

3. Transactions are not preemptive.

In FTGreedy a transaction Ti with a timestamp tsi might
be aborted by a transaction Tj with a timestamp tsj > tsi

only when Tj , after waiting for time δi, has suspected Ti

of having crashed. However, if Ti is not faulty, its timeout
δi will double each time it is aborted. Therefore, at some
point δi > tmax. Let us denote by K the maximum number
of aborts after which this condition will always hold (as the
system is synchronous, K will always exist). It is worth
noting that FTGreedy cannot determine that the system is
synchronous and has no knowledge of K.

3.2.1 Throughput
We gave in [4] a worst case analysis of the class of con-

tention managers that have the following property, called
pending commit : at any time, some running transaction will
run uninterrupted until it commits (of course, provided that
there is at least one running transaction at that time). For
this kind of contention managers the following theorem is
proved:

Theorem 2. The time to complete n concurrent transac-
tions that share s objects is within a factor of s(s+1)+2 of
the time that would have been taken by an optimal off-line
list scheduler.

This holds under the following assumptions:

1. All the n transactions start at the same time and there
are no other transactions in the system,

2. Transactions are not preemptive,

3. There is at least as many processors as transactions.

Although Greedy has the pending commit property, FT-

Greedy does not and so the proof does not directly hold for
it. However, under the synchrony assumptions we make, we
can define a weak pending commit property in the follow-
ing way: at any time, some running transaction will abort
at most K times and then commit. Let us first prove the
following lemma:

Lemma 3. FTGreedy has the weak pending commit prop-
erty.

Proof. Let us assume, by contradiction, that at some
point in time t there is no transaction that will commit after
at most K aborts. Let us take the transaction Ti that at
time t has the lowest timestamp tsi from all the transactions
running at time t. Therefore, Ti is aborted more than K

times after t. By the algorithm of FTGreedy, Ti can be
aborted only by a transaction Tj after Tj waited for the
timeout δi. However, after K aborts of Ti, by the algorithm,
δi > tmax and so every transaction has to wait at least tmax

before it can abort Ti once more. But in this time, by the
synchrony assumptions for the system, Ti will commit – a
contradiction.

Once Ti commits, all transactions that were waiting for
it are woken up (notification mechanism) and some other
transaction Tj becomes the one with the lowest timestamp
(note that timestamps are unique and monotonically in-
creasing).

To prove Theorem 2 for contention managers that satisfy
the pending commit property, we proceeded in [4] as follows.
The transactions are divided into actions. The last action
commits and all previous ones abort. The pending com-
mit property guarantees that at any time there is at least
one action that will commit. After introducing some addi-
tional shared objects that track indirect dependencies be-
tween transactions, the schedule obtained with a contention
manager and last (commiting) actions can be mapped to
a valid schedule for a list scheduler. Then, the rest of the
proof becomes analogous to the results of Garey and Gra-
ham presented in [2].

Unfortunatelly, this schema cannot be applied directly
when only weak pending commit property is satisfied. In-
stead, one has to consider the worst case scenario in which
every transaction aborts at least K times before it commits.
Then we do the mapping using not only the last action,
but also the K preceding ones. The resulting task has the
length of at most (K + 1)τi, where τi is the length of the
last action. That is because the transaction with the lowest
timestamp does not wait after it is aborted (wrongly sus-
pected of having crashed), but immediately restarts. Using
so defined tasks, we can follow the same arguments as used
in [4] and prove the following theorem:

Theorem 4. Every contention manager that has the
weak pending commit property guarantees that the time to
complete n concurrent transactions that share s objects is
within a factor of (K + 1)[s(s + 1) + 2] of the time that
would have been taken by an optimal off-line list scheduler.

3.2.2 Time to Commit
For many applications an important metric is a maximum

time between a transaction is started and committed, even
in presence of conflicts with other transactions. Let us call
it a time to commit. Obviously, it is bounded only when the
time every transaction needs to commit without conflicts
(i.e., without being aborted) is bounded. For Greedy this a
sufficient requirement [4]. However, for FTGreedy we have to
assume additionally, what has already been mentioned, that
we have no failures3, the system is not preemptive and is
3Note that for Greedy it was implicitly assumed that there
are no failures, as this contention manager is not fault-
tolerant.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Number of threads

4-processor machine

FT Greedy
Greedy
Karma
Polka

Backoff

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Number of threads

1-processor machine

FT Greedy
Greedy
Karma
Polka

Backoff

Figure 7: FTGreedy and Greedy perform equally well where there is no failure (List application)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Number of threads

4-processor machine

FT Greedy
Greedy
Karma
Polka

Backoff
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Number of threads

1-processor machine

FT Greedy
Greedy
Karma
Polka

Backoff

Figure 8: FTGreedy and Greedy perform equally well where there is no failure (RBTree application)

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Number of threads

4-processor machine

FT Greedy
Greedy
Karma
Polka

Backoff

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 [1

00
0/

s]

Number of threads

1-processor machine

FT Greedy
Greedy
Karma
Polka

Backoff

Figure 9: FTGreedy and Greedy perform equally well where there is no failure (RandomBenchmark application)

synchronous from the beginning. Under these assumptions
we can prove the following theorem:

Theorem 5. FTGreedy guarantees that every correct
transaction that starts at time t will commit at latest at time
t + M(K + 1)tmax, where M is the number of threads (K
and tmax are defined in Section 3.2).

Proof. By Lemma 3, FTGreedy has a weak pending com-
mit property. This means, that at each time t′ there is
a transaction Tj that will commit after at most K aborts
from this point in time. The maximum time it can take for a
transaction Tj to abort K times and commit is (K +1)tmax.

Now let us assume that at time t there is a transaction
Ti with timestamp tsi. As there are M threads, each of
which can run a single transaction, there can be maximum
M − 1 running transactions with timestamps lower than tsi

at time t. Furthermore, by the algorithm, every transaction
that will start after t will have a timestamp greater than tsi.

Let us denote by T ′

1, T
′

2, . . . , T
′

k, k < M , the transac-
tions that are running at time t and have the timestamps
ts′1, ts

′

2, . . . , ts
′

k, respectively, such that ts′1 < ts′2 < . . . <

ts′k < tsi. By weak pending commit property, T ′

1 will have
to commit at latest at time t + (K + 1)tmax. Then T ′

2 will
have the lowest timestamp from all the running transactions
and will commit by the time t+2(K +1)tmax. Analogously
T ′

3, . . . , T
′

k. The transaction T ′

k will commit at latest at time
t+k(K +1)tmax. Then Ti will become the transaction with
the lowest timestamp and so it will commit at latest at time
t + (k + 1)(K + 1)tmax ≤ t + M(K + 1)tmax. This finishes
the proof.

4. CONCLUDING REMARKS
One might consider a simpler variant of FTGreedy that

only uses a single timeout δ for all transactions performed
by a single thread and in which the attacker’s timeout (not
the victim’s one) is taken when the attacker transaction has
to wait. This variant of FTGreedy, which is simpler from
an implementation perspective, degrades, however, signifi-
cantly with respect to the implementation we considered.

In some operating systems, we might consider a notifi-
cation mechanism to indicate that a transaction is waiting
because of a page fault [1]. Clearly, such a notification might
directly lead to aborting such a transaction, transforming a
system with paging into one without it (from the perspective
of contention management).

To conclude, it is important to notice that we do not
claim FTGreedy to be the universal contention manager.
Even if it does perform well in many cases we considered,
it does not, for instance, in the case of the RandomBench-

mark (with a high number of failed transactions), and does
not deal with transactions that might execute forever (e.g.,
those with infinite loops). Different applications might re-
quire different contention managers and the same applica-
tion might even sometimes benefit from mixing contention
managers [3]. Identifying a manager like FTGreedy helps,
however, better understand the space of contention man-
agement, in particular in our quest of combining worst case
guarantees with good average case performance. Such un-
derstanding will help choosing the right contention manager
for a specific situation and come up with new managers.

5. ACKNOWLEDGEMENTS
We are very grateful to Marc Moir, Victor Luchangco, Nir

Shavit, and Bill Scherer for useful discussions during PODC
2005 in Las Vegas.

6. REFERENCES
[1] B. Bershad, D. Redell, and J. Ellis. Fast mutual

exclusion for uniprocessors. In ASPLOS’92:
Proceedings of the Fifth Architectural Support for
Programming Languages and Operating Systems, pages
223–233, October 1992.

[2] M. R. Garey and R. L. Graham. Bounds for
multiprocessor scheduling with resource constraints.
SIAM J. Comput., 4(2):187–200, 1975.

[3] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic
contention management. In DISC’05: Proceedings of
the nineteenth International Symposium on Distributed
Computing, September 2005.

[4] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a
theory of transactional contention managers. In
PODC’05: Proceedings of the twenty-fourth ACM
Annual Symposium on Principles of Distributed
Computing, July 2005.

[5] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer,
III. Software transactional memory for dynamic-sized
data structures. In PODC’03: Proceedings of the
twenty-second annual symposium on Principles of
distributed computing, pages 92–101. ACM Press, 2003.

[6] M. Research. C# software transactional memory.
Available at: http://research.microsoft.com/
research/downloads/default.aspx.

[7] W. Scherer and M. Scott. Private Communication.

[8] W. Scherer and M. Scott. Contention management in
dynamic software transactional memory. In Workshop
on Concurrency and Synchronization in Java
Programs, July 2004.

[9] W. Scherer and M. Scott. Advanced contention
management for dynamic software transactional
memory. In PODC’05: Proceedings of the twenty-fourth
Symposium on Principles of Distributed Computing,
July 2005.

