
Fast Non-Blocking Atomic Commit:

An Inherent Trade-off

Partha Dutta, Rachid Guerraoui, Bastian Pochon ∗

Distributed Programming Laboratory, EPFL
CH-1015 Lausanne, Switzerland

Abstract

This paper investigates the time-complexity of the non-blocking atomic commit
(NBAC) problem in a synchronous distributed model where t out of n processes
may fail by crashing. We exhibit for t ≥ 3 an inherent trade-off between the fast
abort property of NBAC, i.e., aborting a transaction as soon as possible if some
process votes “no,” and the fast commit property, i.e., committing a transaction
as soon as possible when all processes vote “yes” and no process crashes. We also
give two algorithms: the first satisfies fast commit and a weak variant of fast abort,
whereas the second satisfies fast abort and a weak variant of fast commit.

Key words: Distributed algorithms, complexity, atomic commit

1 Introduction

The synchronous model. We consider a set Π = {p1, p2, . . . , pn} (n ≥ 3)
of processes in a synchronous crash-stop model [5]. 1 The processes may fail
by crashing and do not recover from a crash. Any process that does not crash
in a run (any execution of an algorithm) is said to be correct in that run;
otherwise the process is said to be faulty. In any given run, at most t < n
processes may crash, and we denote by f the effective number of processes
that crash in that run. The processes proceed in rounds. Each round consists
of two phases: (a) in the send phase, all processes (that did not crash) send
messages to all processes; (b) in the receive phase, the processes receive the
messages sent in the send phase of that round and update their local states.
If some process pi completes the send phase of the round, every process that
completes the receive phase of the round receives the message sent by pi in

∗ Corresponding author: Bastian.Pochon@epfl.ch
1 We refer the reader to [5] for details on the model.

Preprint submitted to Information Processing Letters 6 April 2004

the send phase. If pi crashes during the send phase, then any subset of the
processes might not receive the message sent by pi in that round.

The Non-blocking Atomic Commit Problem. In the non-blocking atomic
commit problem [1,6] (NBAC), each process is supposed to cast a vote, either
0 or 1, proposing to either abort or commit a distributed transaction. Each
process is supposed to eventually decide 2 on either 0 (abort the transaction)
or 1 (commit the transaction), such that the following properties are satisfied:
(uniform agreement) no two processes decide differently, (termination) every
correct process eventually decides, (abort validity) 0 is the only possible deci-
sion if some process proposes 0, and (commit validity) 1 is the only possible
decision if every process is correct and proposes 1.

The abort validity property of NBAC states that, if any process proposes
0, then 0 is the only possible decision value. This leads to an interesting
observation: if a process pi receives a message from any process that proposes 0,
then pi can immediately decide 0. Clearly, there is an algorithm which ensures
a global decision 3 by round 1 in any run in which some process proposes 0
(no matter how many crashes occur in that run). This property, which we call
fast abort, allows the processes to quickly retry committing a transaction in
case of a “logical” abort. 4

On the other hand we would also like to commit a transaction as fast as
possible when all processes propose 1. In [2,4], it is shown that in runs with
at most f crashes (0 ≤ f ≤ t), min(f + 2, t + 1) 5 is a lower bound for a
global decision. An algorithm that achieves this bound, for 0 ≤ f ≤ t, is said
to be early deciding. We say that a NBAC algorithm satisfies the fast commit
property, if it globally decides by round 2 in every run in which all processes
propose 1 and no process crashes. Note that early decision implies fast commit.

Contribution. Interestingly, for t ≥ 3, we show that fast abort is incom-
patible with fast commit. More precisely, while fast abort and fast commit
can both be individually achieved (as we discuss later in the paper), we prove
that no single NBAC algorithm can have both properties. We also present
two NBAC algorithms, each of these satisfying one of the properties and a
weaker form of the other one. We say in this context that a NBAC algorithm
satisfies weak fast abort if it globally decides by round 2 in every run in which
some process proposes 0, and a NBAC algorithm satisfies weak fast commit
if it globally decides by round 3 in every run in which all processes propose

2 Throughout this paper, our bounds are for decision events, not halting events.
3 A run globally decides in round k if every process that decides in that run, decides
by round k, and some process decides in round k.
4 I.e., some process proposes 0. This could occur for instance because of a concur-
rency control problem.
5 For the sake of brevity we are being slightly imprecise here; the lower bound really
is f + 2 for f ≤ t− 2, and f + 1 for f ≥ t− 1. The special case is f = t− 1.

2

1, and no process crashes. Our first algorithm satisfies fast commit and weak
fast abort, and our second algorithm satisfies fast abort and weak fast com-
mit. Additionally, both algorithms match the bounds of [2,4] for the runs with
process crashes, namely, they both globally decide in min(f + 2, t + 1) rounds
in runs with at most f crashes, provided f ≥ 1.

2 Incompatibility of Fast Commit and Fast Abort

As previously mentioned, it is possible to globally decides by round 1 in every
run in which some process proposes 0. However, observe that if a process pi

is required to decide in round 1 in any run in which some process proposes 0,
then pi has to decide 0 in round 1 if pi does not receive the round 1 message
from any other process pj, because pi does not know whether pj proposed 0
or 1.

Proposition 1 For 3 ≤ t ≤ n − 1, no NBAC algorithm can satisfy both the
fast abort and the fast commit properties.

Proof. Consider by contradiction a NBAC algorithm A which satisfies both
fast abort and fast commit. We exploit indistinguishability between five dif-
ferent runs of A, and derive a contradiction.

1. In run R1, process p1 proposes 0, and all other processes propose 1. Process
p1 crashes before sending any message in round 1. By abort validity, the only
possible decision in this run is 0. By fast abort, every process distinct from p1

decides 0 at the end of round 1, in particular p2.

2. Run R2 starts from the initial configuration in which all processes propose
1 (including p1). Process p1 crashes in round 1 after sending a message to all
processes but p2. Clearly, p2 cannot distinguish R1 from R2. Thus p2 decides
0 at the end of round 1 in R2.

3. Run R3 is identical to R2, except that p2 now crashes at the beginning
of round 2, before sending any message in round 2, and p3 crashes at the
beginning of round 3. All remaining processes are correct. Clearly, at the end
of round 1, R2 and R3 are indistinguishable for p2, and hence, p2 decides 0 at
the end of round 1 in R3, and then crashes.

4. Run R4 is failure-free, starting from the initial configuration in which all
processes propose 1. By fast commit, and commit validity, all processes decide
1 at the end of round 2 in R4, in particular p3.

5. Finally, run R5 is similar to R4, but processes p1 and p2 crash in the send
phase of round 2, such that both processes send a message to only p3 in round

3

2, and process p3 crashes at the beginning of round 3. Clearly, R4 and R5 are
indistinguishable for p3 at the end of round 2. Thus p3 decides 1 at the end of
round 2, and then crashes.

In R3, process p2 decides 0 and crashes. In R5, process p3 decides 1 and crashes.
Runs R3 and R5 are however indistinguishable for all processes distinct from
p1, p2, and p3. To see why, observe that R3 and R5 are different only at p1 and
p2 at the end of round 1, and p1 and p2 send messages only to p3 in round 2.
None of the three processes send any messages after round 2. This contradicts
uniform agreement. 2

In the next section, we circumvent this incompatibility by weaking one of the
properties when t ≥ 3. We give two algorithms: the first algorithm satisfies
weak fast abort and fast commit, whereas the second algorithm satisfies fast
abort and weak fast commit. For t ≤ 2, it is possible to design an NBAC algo-
rithm that satisfies both fast commit and fast abort: we give that algorithm
in [3].

3 Fast NBAC Algorithms

In this section we assume that t ≥ 3. We first give a NBAC algorithm in
Fig. 1, which satisfies fast commit and weak fast abort. The algorithm is
called FCWFA. It is a flooding algorithm, optimized for the fast commit and
the weak fast abort properties, and the special case where f = t− 1. In round
1, the processes exchange their estimate est, initialized to their proposal value,
and try to adjust their estimate in anticipation of a weak fast abort: if a process
does not receive est = 1 from all processes, it changes its estimate to 0, as it
might be the case that some process proposed 0. In round 2, after exchanging
their estimate, the processes decide 0 if they are certain that any other process
will either decide 0 or continue with a 0 estimate. Otherwise, the processes
decide at the end of round 2 if they notice a failure-free run. From round 2
on, each process pi records, in a set Halti, the identity of the processes known
to have crashed. In the next rounds, processes exchange their estimate with
each other, and update their set Halti with the identity of the processes from
which no message has been received. A process pi decides in a round r ≥ 2
whenever its set Halti does not contain more than r − 2 processes.

Interestingly, FCWFA can easily be adapted to a binary uniform consen-
sus algorithm reaching all known global decision lower bounds, by removing
lines 7, 8, 19, and 20. Additionally, for the case f = t − 1, the resulting uni-
form consensus algorithm, can be viewed as a drastic simplification of the
Treet algorithm of [2].

With FCWFA, every process which decides, decides by round f + 2, for f ≤

4

1: At process pi:
2: esti := ⊥; decidedi := false; Halti := ∅ ; Sr := ∅, 1 ≤ r ≤ t + 1 % Sr is a multiset %

3: procedure propose(vi)
4: esti := vi

5: send(1, esti) to all
6: S1 := { estj | (1, estj) has been received in round 1}
7: if |S1| < n or ∃estj ∈ S1 : estj = 0 then

8: esti := 0 {8’: decide(0) ; decidedi := true}

9: for r = 2 . . . t + 1 do
10: if decidedi then send(r,Dec, esti) to all ; return
11: else send(r,Est, esti) to all
12: Sr := { estj | (r,Est, estj) has been received in round r}
13: if receive any message (r,Dec, estj) for some estj then
14: esti := estj ; decide(esti) ; decidedi := true
15: else
16: Halti := Π\{ pj | estj ∈ Sr}
17: if ∃estj ∈ Sr : estj = 0 then
18: esti := 0
19: if r = 2 and ∀estj ∈ S2 : estj = 0 then {19’: if r = 2 and |S2| < n then}
20: decide(0) ; decidedi := true {20’: esti := 0}
21: else if r ≤ t − 1 and |Halti| ≤ r − 2 then {21’: else if 3 ≤ r ≤ t − 1 and |Halti| ≤ r − 2 then}
22: decide(esti) ; decidedi := true
23: else if r = t and |St| ≥ n − t + 1 then
24: decide(esti) ; decidedi := true

25: decide(esti) ; return

Fig. 1. A fast commit, weakly fast abort, early deciding NBAC algorithm (FCWFA).
Replacing line 8, 19, 20 and 21 with 8′, 19′, 20′ and 21′ gives a fast abort, weakly
fast commit NBAC algorithm (FAWFC).

t − 2, or round f + 1, for f ≥ t − 1, in every run where there are at most
f processes that crash (early deciding). For an intuition of why FCWFA is
faster when f = t− 1 (vs. f ≤ t− 2), consider a run in which no process has
decided by round t−1. At the end of round t−1, two processes have different
estimates only if there remains at most a single process that may crash (that
is, f ≥ t − 1). Hence, any process can decide on its estimate at the end of
round t, if it receives n− t + 1 messages in round t. For the sake of clarity, we
omit the obvious optimization where any process which proposes 0 can decide
0 before taking any step in the algorithm.

Interestingly, a slight modification of FCWFA results in a second NBAC algo-
rithm that satisfies weak fast commit and fast abort properties. This second
algorithm is called FAWFC. The corresponding modifications are shown be-
tween brackets directly in Fig. 1.

We prove the correctness of the algorithms and their complexity properties.
In both algorithms, variable Sr, for 1 ≤ r ≤ t + 1, denotes sets which can
hold duplicate values at the same time. In the following proofs, we denote the
local copy of a variable var at process pi by vari, and the value of vari at
the end of round r by varr

i . We call a message carrying an estimate est = 1
a commit message, and similarly, a message carrying an estimate est = 0 an

5

abort message. We denote by crashedr the set of processes that crash before
completing round r. We first prove two general claims which hold for both
algorithms.

Claim 2 In FCWFA and FAWFC, if no process has decided by round r−1 ≥
1 and at the end of round r two distinct processes pi and pj are such that
estri 6= estrj , then |crashedr| ≥ r.

Proof. We prove the claim by induction on the round number. We note that
if no process decides by round r − 1, then processes do not receive any dec
message in round r, and hence update their estimate in round r. For the base
case r = 2, assume that the conditions of the claim hold, and that, w.l.o.g.,
est2i = 1 and est2j = 0. It follows that est1j = 1; otherwise, upon receiving the
abort message from pj in round 2, pi would have changed its est to 0. In round
2, since pj changed its est from 1 to 0, pj received at least one abort message
that pi has not received. Hence some process pk sent an abort message in round
2 and crashed in the send phase of round 2 before sending the message to pi.
Thus, est1k = 0. Furthermore, since est2i = 1, est1i is also 1, and it follows that
pi received commit message from all n processes in round 1. Since est1k = 0 and
all process have sent commit messages in round 1, pk has received less than n
message in round 1. Thus, some process distinct from pk has crashed in round
1. Hence |crashed2| ≥ 2. Assume now the claim for round r − 1 (induction
hypothesis). We prove the claim for round r. Suppose that no process decides
by round r and consider two distinct processes pk and pl such that estrk = 1
and estrl = 0. Clearly, estr−1

k = 1. As both processes completed round r, pk

received round r message from pl, hence estr−1
l = 1. Thus there is a process px

which sent an abort message to pl in round r, and crashed before sending a
round r message to pk. Thus, estr−1

x = 0. Since estk−1
k = 1 and estr−1

x = 0 and
no process has decided by round r − 2, from induction hypothesis it follows
that |crashedr−1| ≥ r − 1. As px crashes in round r, |crashedr| ≥ r. 2

Claim 3 In FCWFA and FAWFC, for any round r ≥ 2 and any process pi

that completes round r without receiving a dec message, crashedr−1 ⊆ Haltri .

Proof. Since pi completes round r without receiving a dec message, it updates
Halti in line 16. If a process pj crashes by round r−1, then pi does not receive
round r message from pj, and hence, includes pj in Halti. 2

The next two propositions assert the correctness and efficiency of FCWFA.
(The corresponding proofs for FAWFC can be obtained by straightforward
modifications; for space limitation, we give those proofs in [3].)

Proposition 4 FCWFA solves NBAC.

Proof. We prove here the termination, commit validity, abort validity, and
agreement properties of NBAC in FCWFA.

6

Termination. All correct processes decide by round t+1, and no process blocks
in any round.

Abort-Validity. If any process proposes 0 then, every process that completes
round 1, either receives less than n messages or receives at least one abort
message, and hence, executes line 8. Thus, in round 2, only abort messages are
exchanged amongst processes. Every process that completes round 2 executes
line 20 and decides 0.

Commit-Validity. Consider a run in which every process proposes 1 and no
process fails. At the end of round 1, every process receives commit messages
from n processes, and hence, does not executes line 8. Thus, in round 2, only
commit messages are exchanged amongst processes. Consequently, processes
receive n commit messages in round 2 as well, and for all processes, Halt2 = ∅.
Thus every process decides 1 at line 22.

Uniform Agreement. We consider the lowest round r in which at least one
process decides. Let pi be one of the processes that decides in round r, say
on value v. We show that every process that decides in round r, decides v,
and processes that complete round r without deciding, have estr = v. This
immediately implies uniform agreement. We consider four cases: (1) r = 2,
(2) 3 ≤ r ≤ t− 1, (3) r = t, and (4) r = t + 1. (Notice that no process decides
in round 1.)

Case 1. Consider the subcase (1a) where v = 1. Since pi decides 1, it did not
receive any abort message. Furthermore, as pi decides in round 2, |Halt2i | ≤ 0,
i.e., pi received round 2 messages from all processes. In other words, pi received
n commit messages in round 2. Hence, all processes received n commit mes-
sages in round 1, and no process crashes before completing round 1. Therefore,
only commit messages are sent in round 2. Thus, no process decides 0 in round
2, and every process that completes round 2, has est2 = 1. Consider now the
subcase (1b) where v = 0. Thus pi receives only abort messages in round 2,
including from itself. Since pi completes round 2, any process that completes
round 2, receives the abort message from pi. Thus no process can decide 1 in
round 2, and every process that completes round 2 without deciding, changes
its est to 0 on receiving the abort message from pi.

Case 2. We note that pi must have decided at line 22. (Process pi cannot
decide at line 14 because r is the lowest round in which some process decides.)
Suppose by contradiction that some process pj decides 1 − v in round r, or
completes round r with estr = 1 − v. Since both pi and pj complete round
r, they receive each other’s round r messages. If any of them has est = 0
at the end of round r − 1, then both processes would have estr = 0. Hence,
estr−1

i = estr−1
j = 1. Thus in round r, some process px sent an abort message to

one of the processes (pi or pj) and not to the other one. Thus estr−1
x = 0, and,

7

by Claim 2, |crashedr−1| ≥ r − 1. Thus, at the end of round r, by Claim 3, 6

|Haltri | ≥ r− 1. A contradiction with the fact that pi decides in line line 22 of
round r.

Case 3. No process has decided by round t − 1. If all processes that com-
plete round t− 1 have the same est, then uniform agreement trivially follows.
Suppose two processes have different est at the end of round t − 1. Then by
Claim 2, |crashedt−1| ≥ t − 1; i.e., there are at most n − t + 1 processes that
complete round t− 1. Since pi decides in round r = t, so pi decides in line 24
and has received at least n− t + 1 message in round t. Thus exactly n− t + 1
processes complete round t − 1. If any other process decides in round t, it
receives the same n− t + 1 messages as pi, and hence, decides v. If a process
pj completes round t without deciding, then it has received n− t messages in
round t, and hence, t processes crash by round t. Then, pi is a correct processes
(as it has completed round t), and pj receives the dec message sent by pi in
round t + 1, and decides v.

Case 4. If no process decides by round t and two processes have distinct est at
the end of round t+1, then from Claim 2, |crashedt+1| ≥ t+1. A contradiction.
2

Proposition 5 FCWFA satisfies weak fast abort, fast commit, and early de-
cision.

Proof. For weak fast abort, consider a run that starts from an initial con-
figuration where at least one process pi proposes 0. Every process pj which
completes round 1 sets its estimate estj to 0 at the end of round 1 (because
either pj receives pi’s abort message, or pj does not receive any message from
pi). Thus processes receive only abort messages in round 2. Thus, every process
that completes round 2, decides 0 at that round (line 20).

Notice that, early decision for f = 0, implies fast commit. We now show that
the algorithm satisfies early decision. Suppose, f ≤ t − 2 in a run, and some
process pi completes round f + 2 without deciding. Then pi has not received
any dec message by round f + 2. We claim that every process in Haltf+2

i is
faulty. Suppose otherwise; if some correct process pj is in Haltf+2

i , then pj has
halted after deciding, and it has sent a dec message in round f +2 or a lower
round. Since pi has not received any dec message by round f + 2, no correct
process is in Haltf+2

i . Thus |Haltf+2
i | ≤ f . Thus, in round f + 2, pi evaluates

the condition in line 21 to true, and decides in line 22. For the case where
f = t−1, observe that, if f = t−1 processes crash in a run, and some process
does not decides by round t = f +1, then at the end of round t = f +1, every
process that is not crashed, either receives a dec message or receives at least

6 Since r is the lowest round in which some process decides, pi does not receive any
dec message in round r.

8

n− t + 1 messages, and hence, decides on its estimate. If f = t, clearly, every
process that decides, decides by round f + 1 = t + 1. 2

4 Concluding Remarks

In the decentralized (non-blocking) three-phase commit (D3PC) algorithm
of [6], which is the fastest NBAC algorithm we knew of so far (in terms of
number of rounds), all processes decide in round 1 in every failure-free run
where some process proposes 0, and in round 2 in the failure-free run where
all processes propose 1. In D3PC however, no process decides in round 1 in a
run where some process proposes 0 and crashes before sending any message.
This means, in our terminology, that D3PC satisfies fast commit but not fast
abort, which is consistent with our incompatibility result. Moreover D3PC
does not satisfy early decision provided f ≥ 1.

5 Acknowledgments

We thank the anonymous reviewers for their suggestions that significantly
helped us to improve the presentation of the paper and specifically the algo-
rithms.

References

[1] Bernstein P.A., Hadzilacos V. and Goodman N., Concurrency Control and
Recovery in Database Systems (Addison-Wesley, 1987).

[2] Charron-Bost B. and Schiper A., Uniform Consensus Harder than Consensus,
EPFL Technical Report DSC/2000/028 (EPFL, 2000).

[3] Dutta P., Guerraoui R., Pochon B., Fast Non-Blocking Atomic Commit:
An Inherent Trade-off, EPFL Technical Report, ID IC/2004/29, School of
Computer and Communication Sciences, EPFL, 2003. Available at:
http://ic2.epfl.ch/publications/documents/IC_TECH_REPORT_200429.pdf

[4] Keidar I. and Rajsbaum S., On the Cost of Fault-Tolerant Consensus when
There are No Faults: a Tutorial, MIT Technical Report MIT-LCS-TR-821 (MIT,
2001). Also Information Processing Letters (IPL), 85(1): 47–52, 2003.

[5] Lynch N., Distributed Algorithms (Morgan Kaufmann, San Francisco, 1996).

[6] Skeen D., Nonblocking commit protocols, ACM SIGMOD International
Symposium on Management of Data, pages 133–142, 1981.

9

