
GETCO 2004 Preliminary Version

The Complexity of Early Deciding Set
Agreement: How can Topology help?

Rachid Guerraoui

Distributed Programming Laboratory
EPFL

Switzerland

Bastian Pochon

Distributed Programming Laboratory
EPFL

Switzerland

Abstract

The aim of this paper is to pose a challenge to the experts of (algebraic) topology
techniques. We present an early deciding algorithm that solves the set agreement
problem, i.e., the problem which triggered research on applying topology techniques
to distributed computing. We conjecture the algorithm to be optimal, and we
discuss the need and challenges of applying topology techniques to prove the lower
bound.

Key words: Distributed algorithms, algebraic topology, set
agreement.

1 Introduction

Results about the set agreement problem are intriguing, in the sense that they
present an intrinsic trade-off between the number of processes in a system,
the degree of coordination that these processes can reach, and the number
of failures that can be tolerated [3]. Set agreement is a generalization of
the widely studied consensus problem [4], in which each process is supposed
to propose a value, and eventually decide on some value that was initially
proposed, such that every correct eventually decides (just like in consensus).
In contrast with consensus however, processes may not decide on more than
k distinct values. Hence set agreement is also referred to as k-set agreement.

K-set agreement was introduced in [2]. The paper also introduced k-set
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Guerraoui and Pochon

agreement algorithms in the asynchronous model 1 when less than k processes
may crash. In [7], techniques borrowed from algebraic topology were first
used to prove the impossibility of k-set agreement in an asynchronous model
where k processes may crash. In [3,6], tight lower bounds were derived for set
agreement in the synchronous model prone to process crash. The framework
presented in [6] uses the tools from algebraic topology introduced in [7] and
allows for proving lower bounds in both the asynchronous and the synchronous
models.

Early deciding algorithms are those the efficiency of which depends on the
effective number of failures in a given run, rather than on the (total) number
of failures that can be tolerated. The effective number of failures is tradi-
tionally denoted by f , whereas the total number of failures that are tolerated
is denoted by t. In practice, failures rarely happen, and it makes sense to
devise algorithms that decide earlier when fewer failures occur. For uniform
consensus, Charron-Bost and Schiper [1] have shown that there is a signifi-
cant improvement on the efficiency when considering the effective number of
failures. More precisely, they propose a uniform consensus algorithm in which
every process that decides, decides by round f + 2 in any run with f failures.
This bound is shown to be tight [1,8].

To the best of our knowledge, no result for set agreement have been pre-
sented in the context of early deciding algorithms. In the present paper, we
give an early deciding set agreement algorithm. We discuss the need and chal-
lenges of applying topology techniques to prove optimality of the algorithm.

The rest of the paper is organized as follows. Section 2 gives our system
model. Section 3 presents our early deciding algorithm. Section 4 discusses
the optimality of this result.

2 Model

We consider a set of N = n + 1 processes Π = {p0, . . . , pn}. Processes com-
municate by message-passing. We consider that communication channels are
reliable. Processes execute in a synchronous, round-based model [9]. A run
is a sequence of rounds. Every round is composed of three phases. In the
first phase, every process broadcasts a message to all the other processes. In
the second phase, every process receives all the messages sent to it during the
round. In the third phase, every process may perform a local computation,
before starting the next round. Processes may fail by crashing. A process
that crashes does not execute any step, and is said to be faulty. Processes
that do not crash are said to be correct. When process pi crashes in round r,
a subset of the messages that pi sends in round r (possibly the empty set) is
received by the end of round r. A message broadcast in round r by a process

1 In the asynchronous model, there is no bound on process relative speed and message
communication delay.

2

Guerraoui and Pochon

that does not crash in round r is received, at the end of round r, by every
process that reaches the end of round r. We consider that there are at most
t < N processes that may fail in any run.

3 Algorithm

Figure 1 presents an early deciding k-set agreement algorithm. For t < N − k
(or equivalently, t ≤ n − k), this algorithm achieves the following bounds:
(1) for 0 ≤ bf/kc ≤ bt/kc − 2, every process that decides, decides by round
bf/kc+ 2, and (2) for bf/kc ≥ bt/kc − 1, every process that decides, decides
by round bf/kc+1. Note that this is a strict generalization of the tight lower
bounds on uniform consensus [1,8]. 2

In the algorithm, every process pi sends its estimate value esti in every
round. At the end of every round, pi updates esti with the minimum estimate
value received from any other process. The intuition behind set agreement
achieved by the algorithm is as follows. In round r, if pi observes that k − 1
processes, or less, crash in that round, then process pi knows all but at most
k − 1 values among the smallest values remaining in the system. Process pi

can thus safely decide on esti if pi reaches the end of the next round.

We give an intuition of why the algorithm is faster when bf/kc = bt/kc−1.
Note that in this case, every process that decides, decides by round bf/kc+1.
At the end of round bt/kc−1, the processes have more than k distinct estimate
values only if there remain 2k − 1 processes or less that are still allowed to
crash. In round bt/kc− 1, every process that detects k− 1 or less new crashes
may safely decide at the end of round bt/kc. The reason is the following.
First, if k − 1 or less processes crash in round bt/kc, then at most k − 1
distinct estimate values remain in the system, and it is safe to decide for any
process. In contrast, if more than k − 1 processes crash in round bt/kc, then
k − 1 or less processes may still crash. Denote by x the number of processes
that detect less than k − 1 process crashes in round bt/kc. These x processes
decide at the end of round bt/kc. Assume that they immediately crash after
deciding. Thus there are at most k − 1 − x processes that may still crash in
the last round bt/kc + 1. At the end of that round bt/kc + 1, at most k − x
values may be decided (if k−1−x processes crash). In total, processes decide
at most on x + (k − x) distinct values.

In the following proofs, we denote the local copy of a variable var at process
pi by vari, and the value of vari at the end of round r by varr

i . crashedr denotes
the set of processes that crash before completing round r, estsr denotes the
set of estimate values of every process at the end of round r. By definition,
round 0 ends when the algorithm starts. No process decides by round 0. We
first prove three general claims about the algorithm of Figure 1.

2 For uniform consensus, the tight lower bound is f + 2, for 0 ≤ f ≤ t − 2, and f + 1, for
f ≥ t− 1 [1].

3

Guerraoui and Pochon

At process pi:

1: halt := ∅ ; decided := deciding := false
2: Sr := ∅, 1 ≤ r ≤ bt/kc+ 1

3: procedure propose(vi)
4: esti := vi

5: for r from 1 to bt/kc+ 1 do
6: if decided or deciding then send (r,Dec, esti) to all
7: else send (r,Est, esti) to all
8: if deciding then
9: decide(esti) ; return

10: else if decided then
11: return
12: else if received any (r,Dec, estj) then
13: esti := estj ; deciding := true
14: else
15: Sr := {(estj, j) | (r,Est, estj) is received in round r from pj}
16: halt := Π\ ∪(estj ,j)∈Sr {j}
17: esti := min{estj|(estj, j) ∈ Sr}
18: if r = bt/kc and |Sr| ≥ N − kbt/kc+ 1 then
19: decided := true ; decide(esti)
20: else if |halt| < rk then
21: deciding := true
22: decide(esti)
23: return

Fig. 1. An early deciding k-set agreement algorithm (code for process pi)

Claim 3.1 estsr ⊆ estsr−1.

Proof. The proof of the claim is straightforward: for any process pi, estri ∈
estsr−1. 2

Claim 3.2 If at the end of round 0 ≤ r ≤ bt/kc no process has decided, and
at most l processes crash in round r + 1, then |estsr+1| ≤ l + 1.

Proof. Consider that the conditions of the claim hold and assume by contra-
diction that |estsr+1| ≥ l + 2. By assumption, there are l + 2 processes with
distinct estimate values at the end of round r+1. Denote by q0, . . . , ql+1 these
processes, such that estr+1

qi
≤ estr+1

qi+1
, for 0 ≤ i ≤ l + 1. Processes q0, . . . , ql do

not send estr+1
q0

, . . . , estr+1
ql

in round r + 1; otherwise, ql+1 receives one of the
smallest l + 1 estimate values in round r + 1. Thus there are l + 1 processes
which send values corresponding to estr+1

q0
, . . . , estr+1

ql
in round r+1 and which

crash in round r +1; otherwise, ql+1 receives one of the smallest l +1 estimate
value in round r+1. This contradicts our assumption that at most l processes
crash in round r + 1. 2

4

Guerraoui and Pochon

Claim 3.3 If, at the end of round 1 ≤ r ≤ bt/kc, no process has decided, and
|estsr| ≥ k + 1, then |crashedr| ≥ rk.

Proof. We prove the claim by induction. For the base case r = 1, assume that
the conditions of the claim hold. That is, at the end of round 1, there exist
k +1 distinct processes q0, . . . , qk with distinct estimate values. By Claim 3.2,
|crashed1| ≥ k. Assume the claim for round r − 1, and assume the conditions
of the claim hold at round r. We prove the claim for round r. By assumption,
there are k + 1 processes q0, . . . , qk at the end of round r with k + 1 distinct
estimates. By Claim 3.1, k + 1 processes necessarily reach the end of round
r − 1 with k + 1 distinct estimates. Thus Claim 3.3 holds at round r − 1
(induction hypothesis), and thus, |crashedr−1| ≥ (r − 1)k. By Claim 3.2, at
least k processes crash in round r. Thus |crashedr| ≥ k + |crashedr−1| ≥ rk.2

The next proposition asserts the correctness of the algorithm.

Proposition 3.4 The algorithm in Fig. 1 solves k-set agreement.

Proof. Validity and Termination are obvious. To prove k-ket agreement, we
consider the lowest round r in which some process decides. Let pi be one of
the processes that decides in round r. We consider three mutually exclusive
cases: (1) pi decides in round 2 ≤ r ≤ bt/kc − 1, (2) pi decides in round
r = bt/kc, and (3) pi decides in round r = bt/kc + 1. (In the algorithm, no
process decides before round 2.)

Case 1. pi necessarily decides at line 9, and thus executes line 21 in round
r − 1, where deciding is set to true. (Because no process decides before pi, pi

may not receive any dec message before deciding; and because r ≤ bt/kc− 1,
pi may not decide at line 19.) In round r − 1, pi executes line 21 only if pi

evaluates |crashedr−1| < rk at line 20. Thus, from Claim 3.3, there are at
most k distinct estimates at the end of round r− 1, which ensures agreement.

Case 2. There are two cases to consider: (1) pi decides at line 9, after
executing line 21 at the end of round r − 1, or (2) pi decides at line 19.
(Because no process decides before pi, pi may not receive any dec message
before deciding.) In case (1), pi executes line 21 in round r − 1 only if pi

evaluates |crashedr−1| < rk at line 20. Thus, from Claim 3.3, there are at most
k distinct estimates at the end of round r−1, which ensures agreement. In case
(2), we consider estsr−1. If |estsr−1| ≤ k, agreement is ensured thereafter. Thus
consider that |estsr−1| ≥ k+1. By Claim 3.3, there exist k+1 distinct processes
with different estimates at the end of round r− 1 only if |crashedr−1| ≥ k(r−
1) = k(bt/kc−1) ≥ t−2k+1, or, equivalently, only if at most 2k−1 processes
may crash in the two subsequent rounds (rounds bt/kc and bt/kc+1). In round
bt/kc, pi decides at line 19 only if pi receives at least n− kbt/kc+1 messages.
Thus, by Claim 3.2, the processes that decide at the end of round bt/kc,
including pi, decide on at most k distinct values. Denote by x the number
of processes that effectively crash in round bt/kc, and by y the number of
processes that decide at the end of round bt/kc. We distinguish two cases: (a)

5

Guerraoui and Pochon

x ≤ k−1, and (b) x ≥ k. In case (a), by Claim 3.2, k−1 values or less remain
in the system at the end of round bt/kc; agreement is then ensured. In case
(b), at most 2k− 1−x ≤ k− 1 processes may crash among the processes that
decide at the end of round bt/kc and the processes that take part to round
bt/kc + 1. We claim that the total number of distinct decision values is at
most k. Indeed, denote by ycrash the number of processes that decide at the
end of round bt/kc and then immediately crash. In round bt/kc+ 1, at most
k − 1 − ycrash may crash. By Claim 3.2 processes that decide at the end of
round bt/kc + 1 may decide on at most k − ycrash distinct estimate values.
Hence the maximum number of decided values is (k − ycrash) + ycrash = k.

Case 3. By contradiction, consider that, at the end of round bt/kc + 1,
there exist k + 1 distinct processes q0, . . . , qk with different estimates, and
which decide on their estimates. By Claim 3.1, there exist k + 1 processes
with distinct estimates at the end of round r − 1. By Claim 3.3 and because
r = bt/kc + 1, |crashedr−1| > k(r − 1) = kbt/kc > t − k. By Claim 3.2,
there exist k processes that crash in round bt/kc + 1. Thus |crashedr| ≥
k + |crashedr−1| = k + kbt/kc > t. A contradiction. 2

The next proposition asserts the efficiency of the algorithm.

Proposition 3.5 In any run with 0 ≤ f ≤ t failures, any process that decides,
decides

(i) by round bf/kc+ 2, if 0 ≤ bf/kc ≤ bt/kc − 2, and

(ii) by round bf/kc+ 1, if bf/kc ≥ bt/kc − 1.

Proof. We proceed by separating both cases.

Case i. Assume a run with f failures, such that bf/kc ≤ bt/kc − 2. By
contradiction, assume that there exists a process pi for which |haltri | ≥ rk, for
r = bf/kc + 1. (If |haltri | < rk, then pi decides at line 9 in the next round.)
Process pi does not decide in round r; in particular, pi does not receive any dec
message in round r. We have |haltri | ≥ rk = (bf/kc+ 1)k = bf/kck + k > f .
A contradiction.

Case ii. Assume a run with f failures, such that bf/kc ≥ bt/kc − 1. First
assume that bf/kc = bt/kc−1, and assume by contradiction that there exists
a process pi that does not decide by round r = bf/kc + 1. Thus pi does not
receive any dec message in round r. Assume by contradiction that pi does
not decide at line 19. Thus |Sr| < N − kbt/kc+ 1, and f > kbt/kc − 1. This
implies in turn that bf/kc > bt/kc−1. A contradiction. When bf/kc = bt/kc,
then any process that decides, decides by round bf/kc+ 1 = bt/kc+ 1. 2

4 Towards the Optimality Proof

For the case k = 1, the optimality of our algorithm falls back to the results of
uniform consensus, for which the lower bound of f + 2, for 0 ≤ f ≤ t− 2, and
f + 1, for f ≥ t− 1, was proven to be tight in [1,8].

6

Guerraoui and Pochon

In [5], and for k > 1, we propose a proof of optimality based on the
reduction of our problem to set agreement in the asynchronous model, which
was proven to be impossible [7]. More precisely, we prove that, for any value of
k and f , there exists no algorithm such that (i) a process that sees f failures,
decides at the end of bf/kc+ 1, and (ii) in runs in which eventually no more
than k−1 processes fail in each round, every correct process eventually decide.
Whereas it is impossible to design a uniform consensus algorithm, in which
any process decides after round 1, even in a failure-free execution, it is easy
to see that it is possible to design a k-set agreement algorithm, in which any
process that sees no failure (or, more generally, that sees k−1 failures or less)
at the end of round 1, decides, and eventually every correct process decides
(not necessarily at the end of round bt/kc+ 1).

Our proof in [5] does not directly rely on algebraic topology. Roughly
speaking, we reduce the problem of early deciding set agreement in a syn-
chronous, message-passing model, to the problem of set agreement in an asyn-
chronous, shared-memory model, and show how this implies a contradiction.
We introduce a simulation algorithm (detailed in [5]), which enables processes
in a synchronous, message-passing model, to simulate, with the help of a
(supposely existing) set agreement algorithm satisfying (i) and (ii) above, an
execution of a wait-free 3 set agreement algorithm in an asynchronous, shared-
memory model. In [7], wait-free set agreement was proven to be impossible in
an asynchronous, shared-memory model. This leads to the desired contradic-
tion.

The remaining part of the optimality is still left open. It consists in proving
that, for any value of k, and any value of bf/kc, no algorithm can decide in
bf/kc+1 rounds. In this case, we envisage a proof along the lines of [7,6], based
on notions of algebraic topology. We discuss why the techniques presented
in [7,6] do not however directly apply, and we propose a possible line of research
to address this open question.

The principle behind the proofs in [7,6] is (1) to associate a so-called pro-
tocol complex to the set of all executions of the processes of a full-information
protocol in a given model, and (2) to observe that such a protocol complex
presents a topological obstruction that prevents it to be mapped onto the
output complex of k-set agreement. 4 The abstraction that is used is (k − 1)-
connectivity. Indeed, Theorem 6 in [6] relates the (k − 1)-connectivity of a
protocol complex for k-set agreement in any model, with the impossibility of
solving k-set agreement in that model.

Connectivity leads to impossibility because we assume that the processes
all need to decide at the end of the same round. Indeed, one can apply
Sperner’s lemma to show that there exists at least one execution where more
than k values are decided, when the protocol complex is (k−1)-connected [7,6].

3 In a wait-free implementation of an algorithm, all processes but one may fail.
4 The output complex represents the set of all possible final states of the processes, accord-
ing to the specification of k-set agreement.

7

Guerraoui and Pochon

On the other hand, in the algorithm presented in this paper, the processes
may actually decide faster than bt/kc + 1, the tight lower bound for k-set
agreement [3,6]. 5 Why is that possible? Is there any contradiction?

In fact, there is no contradiction. Processes may actually decide faster
than the lower bound of bt/kc + 1, because, in the early deciding case, the
processes are not forced to necessarily decide all at the end of the same round.
In other word, even so the protocol complex is still (k − 1)-connected after,
say, round r < bt/kc + 1, some processes may already decide, provided that
these processes span a subcomplex within the full protocol complex that is,
at least, not (k − 1)-connected.

References

[1] B. Charron-Bost and A. Schiper. Uniform consensus harder than consensus.
Technical Report DSC/2000/028, École Polytechnique Fédérale de Lausanne,
Switzerland, May 2000.

[2] S. Chaudhuri. More choices allow more faults: set consensus problems in totally
asynchronous systems. Information and Computation, 105(1):132–158, July
1993.

[3] S. Chaudhuri, M. Herlihy, N. A. Lynch, and M. R. Tuttle. Tight bounds for
k-set agreement. Journal of the ACM, 47(5):912–943, 2000.

[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[5] E. Gafni, R. Guerraoui, and B. Pochon. From a static impossibility to an
adaptive lower bound: the complexity of early deciding set agreement. In
Proceedings of the 37th ACM Symposium on Theory of Computing (to appear),
May 2005.

[6] M. Herlihy, S. Rajsbaum, and M. Tuttle. Unifying synchronous and
asynchronous message-passing models. In Proceedings of the 17th ACM
Symposium on Principles of Distributed Computing, pages 133–142, 1998.

[7] M. Herlihy and N. Shavit. The topological structure of asynchronous
computability. Journal of the ACM, 46(6):858–923, 1999.

[8] I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there
are no faults – a tutorial. Technical report, MIT Technical Report MIT-LCS-
TR-821, 2001. (Preliminary version in SIGACT News, Distributed Computing
Column, 32(2):45–63, 2001).

[9] N. A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.

5 For example, in the failure-free run, all processes decide by the end of round 2, for any t
and any k.

8

	Introduction
	Model
	Algorithm
	Towards the Optimality Proof
	References

