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Abstract

This paper contributes to the characterization of synchronous models of distributed
computing using topological techniques. We consider a generic synchronous model
with send-omission failures and use a topological structure corresponding to a
bounded number of rounds of the model. We observe some nice properties of the
structure and derive from these properties necessary and sufficient conditions to
solve consensus in this model.

1 Introduction

Motivations

Several distributed computing models have proliferated in the last decades.
Results that have been proven in these models are difficult to compare, essen-
tially because relationships between these models are not clear. Quite recently,
some preliminary steps have been taken towards providing a mathematical
framework to unify these models: basically, the observation that connectivity
is at the heart of many distributed computing lower bounds has led to some
topological (or graph-based) characterizations of distributed models [4J7]. To
our knowledge, however, the only complete characterization has been given so
far for the asynchronous model with process crash failures [7]: the idea is to
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represent a set of global states of the system as a mathematical structure called
a simplicial complex [9]. Interestingly, the iterative model based on the im-
mediate snapshot memory [2] has a very regular structure, corresponding to a
subdivision of a simplicial complex, and is used to completely characterize the
asynchronous model [7]. Very few problems are solvable in the asynchronous
model however, and it is very tempting to seek characterizing models with
some synchrony assumptions. Some topological constructs characterizing par-
ticular executions of a synchronous model have indeed been proposed [6], and
were used to derive nice and succinct proofs of various lower bounds results.
These were however only partial characterizations (i.e., considering particular
executions only) and concerned a completely synchronous systeml2 An open
and rather challenging question is how to completely characterize a generic
model, parametrized with some synchrony assumptions, in a comprehensible
and easy-to-use way.

Contributions

Our approach is based on the iterative round-by-round failure detector
model [5], where we consider send-omissions as the only source of failures.

In this preliminary attempt, we illustrate our characterization with a no-
tion of graph sequences, and we (1) give a proof of the lower bound of f + 1
rounds for consensus in the f-resilient omission model and (2) derive from our
characterization an algorithm that matches the lower bound. We believe that
the main contribution of this note is the way we derive the algorithm: we use
two observations from our characterization about connected components con-
taining omission-free executions. The first observation is a sufficient condition
for a connected component to contain a omission-free execution, and the sec-
ond observation relates, for a connected component with a certain number of
rounds, the number of faulty processes with the existence of an omission-free
execution in that component.

Our graph-based characterization has a major limitation, however: it is
based on the indistinguishability of two global states for one process (it is, in
a sense, customized for consensus), and its extension (e.g., to set agreement)
is not trivial. We show that such a characterization allows us to reason about
executions of an omission model with f possible faulty processes.

Roadmap

Section @ introduces our system model. Section B presents the characteri-
zation. Section Hl presents an application of our characterization to consensus
by showing that f + 1 rounds are necessary and sufficient to solve consensus
in the f-resilient model.

2 A semi-synchronous model is also considered in [6], but the difference with a synchronous
model is rather small.
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2 Model

We consider a distributed system of n processes II = {py,...,pn}. Processes
communicate by message-passing, and each pair of processes is connected by
a reliable channel. Processes may however fail by send-omissions. We assume
that, in any execution of the system, at most f processes may lose messages,
and we call such processes faulty processes. We call such a model the f-
resilient omission model [5]. An execution of the f-resilient omission model is
omission-free, if and only if all messages are sent and received in every round.

We represent executions in our model as in the communication graphs
approach of [4)8]. We assume that processes execute a full-information proto-
col [[7]: in each round, every process sends its entire local state to every other
process. One round of any such execution can be described by a directed
graph, the vertexes of which are labeled by the process ids and their local
state in that round [4)8]. There is a directed edge in this graph from process
p; to process p;, whenever p; receives the message from p;. A lack of an edge
between processes means that the message is lost. We always assume that a
process receives its own message, and we omit the corresponding edge. There-
fore, a multi-round execution of such a system is represented by a sequence of
graphs, one graph per round.

We call an r-round execution an execution in which all processes execute
a full-information protocol for r rounds and do not execute any step for any
round 7' > r. An r-sequence is the sequence of graphs corresponding to an
r-round execution.

3 Topological characterization

Before presenting our characterization, we first recall some basic concepts
borrowed from algebraic topology (formally defined, for instance, in [9]). The-
se concepts have been recently used in distributed computing, for instance,
in [BA6L7].

YRy

3.1 Background

We represent a global state of our system of n processes by a (n—1)-dimensional
simplex S" ! = {s1,...,s,} of n vertexes, where each vertex s; = (p;, v;) cor-
responds to a process p; and its local state v; [[]. A non-empty simplex T
is a face of a simplex S if and only if all vertexes of T" are vertexes of S. A
simplicial complex C'is a set of simplexes, closed under containment, such that
any face of any simplex of C' is also part of C.

In our model, we consider an initial configuration (i.e., an initial global
state) where processes have generic input values. The state of the system
at the end of an execution in which processes started with generic values is
represented by a simplex.
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3.2 Mowes

A move from an execution e consists in adding or removing a single arrow to
e. For an execution e and a move s, we denote by s(e) the execution resulting
from applying s to e.

An elementary move s from an r-round execution e to an r-round execution
e’ is a move such that ¢’ = s(e), and there exists at least one process p; such
that p;’s local state after round r in e or €' is identical when starting from the
same initial state in both executions.

A process p; can change its mind at the beginning of a r-round execution e
if and only if there exists a process p; such that p;’s local state after r rounds
does not depend on p;’s initial state.

We define a notion of path between two executions as in [4] (called a
similarity chain in [4]). For a given execution e, a k-path P is a sequence
{si}%_, of elementary moves, such that s; is an elementary move for e, s, is
an elementary move for s;(e), etc. We denote by length(P) the length of the
sequence and we simply say a path when the length of the sequence is not
relevant.

For any execution e, we denote by P(e) the execution resulting from suc-
cessively applying the elementary moves of P to e (that is, applying s; to e, sq
to s1(e), etc.). For two executions e and €, we say that €' is reachable from e,
and we write e ~ €, if and only if there exists a path P such that P(e) = ¢€'.

3.3  Characterization and Connectivity

The characterization takes into account all possible executions of a full-infor-
mation protocol running in the f-resilient omission model, and corresponds to
a generalization of [T]. The generalization is threefold: (i) we consider an arbi-
trary number of failures f ([I] considers only one failure), (i¢) we generalize the
failures to send-omissions (which allows for some synchrony assumptions [5])
and (7i4) we have a notion of degree of similarity between two global states
(the degree of similarity corresponds to the dimension of the intersection of
the two corresponding simplexes) [6].

We established a correspondence between a set of r-sequences of graphs
and a simplicial complex, by identifying an r-sequence of graphs in our model
with a simplex of dimension n — 1. In our characterization, we thus consider
the simplicial complex that represents all possible r-executions of our system.

For any given r-execution e and elementary move s, consider the execution
e/ = s(e). Executions e and €' both correspond to simplexes in a simplicial
complex. By definition of s, there exists at least one process p; which does
not distinguish between e and €', so we can glue the simplexes corresponding
to e and e’ on the vertex corresponding to p; (or on the simplex determined
by processes that do not distinguish the two global states).

Figure [M gives an example of how simplexes are glued together. A tetra-
hedron represents an execution of a 4-process protocol. The different ways of

4
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Fig. 1. Gluing simplexes

gluing two simplexes are given by the following three situations. In case (a),
process py is the only process that cannot distinguish between the two exe-
cutions. In case (b), processes ps and ps cannot distinguish between the two
executions. In case (c), processes ps, p3 and p; cannot distinguish between
the two executions.

Two simplexes S; and S; are said to be adjacent in a simplicial complex
if their corresponding executions e; and e; differ by at least one elementary
move. Two adjacent simplexes S; and S; always have a face, corresponding
to S; NS}, in common.

A k-path for an execution e implies a sequence of k+1 simplexes Sy, ..., Sk
in a simplicial complex, of dimension (n — 1) each, such that Sy corresponds
to execution e, for every i € [1,k — 1], S; and S;;; are adjacent.

Two simplexes of a simplicial complex are congruent if and only if there ex-
ists a path in the simplicial complex that connect both simplexes. Congruency
is a reflexive, symmetric and transitive relation, and we can therefore parti-
tion a simplicial complex into congruency classes, which form the connected
components of the complex. In the rest of the paper, we interchangeably use
the notion of execution, simplex, or sequence of graphs.

3.3.1 On the sufficiency for omission-freedom

The following lemma gives a sufficient condition for a connected component
to contain the omission-free execution. Roughly speaking, it says that if a
component includes a path in which every process can change its mind, then
the component also includes the omission-free execution.

Lemma 3.1 If a connected component contains executions e; (1 < i < n),
such that process p; can change its mind in e;, then this component contains
the omission-free execution €.

Proof. Let C' be any connected component satisfying the condition of the
lemma, i.e., there exists an execution e € C and a path P = {s;} of ele-
mentary moves, defined on e, that passes through executions ey, ..., e, where,
respectively, processes pi,...,p, change their mind. We want to show that

5
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there exists a sequence of elementary moves that connects e with the omission-
free execution eg.

Consider an elementary move s, defined on an execution e, that modifies
(adds or removes an arrow in) the r-th round of e. Let ¢’ be an execution that
is identical to e in rounds 7' > r. Obviously, s applied to €’ is also elementary,
as the same process cannot distinguish e’ and the result of applying s to €.

Now it is easy to see that if we drop from P all elementary moves which
remove arrows in the first round of executions, then we still obtain a path P’
of elementary moves. The corresponding execution €} differs from e; in the
first round only. Thus p; can change its mind at the end of the first round of
e}, and some process does not see it at the end of the execution (otherwise p;
could not change its mind in e;). So we can let p; receive all messages in the
first round of e}, i.e., adding arrows from all processes to p; in the first round
is an elementary move. We then continue applying the moves of P’ until we
reach e}, and so on.

As aresult, we obtain a path that connects e to an execution in which every
message is received in the first round. Moreover, the sequence passes through
executions e}, ..., el where, respectively, processes py, ..., p, can change their
states at the end of the first round.

Inductively applying the argument to the second round etc., we finally
obtain a path that connects e to the omission-free execution. Note that we
modify the elementary moves only by adding arrows, i.e., we do not introduce
more failures. As a result, we cannot violate the limit of at most f faulty
processes in every execution of our model. O

3.3.2  On the necessity of omissions

We observe another property of connected components. Roughly speaking,
this property gives the least number of faulty processes in some execution of
a connected component which contains at the same time (i) the omission-
free execution and, (7) an execution in which the initial local state of several
processes is never received by some process.

Lemma 3.2 Any path P that connects the r-round omission-free execution
eo with an execution €' in which i processes can simultaneously change their
minds (i < n), passes by an execution in which at least r +1i — 1 processes are
faulty.

Proof. We proceed by induction on r. The case r = 1 is trivial: a process
can change its mind in a 1-round execution only if it is faulty. Now assume
that the claim holds for r-round executions, for any i. Consider a path P
that satisfies the condition of the lemma, namely, P connects the (r + 1)-
round omission-free execution ey with an execution e’ in which 7 processes can
simultaneously change their minds.

(i) Assume that a set X of 7 processes can change their minds in €’. It is not
difficult to see that we can remove all the links departing from the set X

6
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in the first round in an elementary way: for any process p € X, there is a
process ¢ that cannot see the change of p’s initial value. Thus, ¢ cannot
see that a link from p is removed. We define by P an extension of path
P by adding the moves in which all the links from X are removed. The
last execution of P is & in which no message from X is ever received.

(ii) It is important to notice that the set of processes that are faulty in all
executions between e’ and €' are also faulty in e’. Indeed all processes of
X are already faulty in e’ and no more faulty processes can be obtained
by removing links from them.

(iii) Consider the last move of P in which the last link from X to some process
p € IT\ X is removed. We denote the resulting execution by e’ and the
last  rounds of it by e’.

(iv) Since the removal of the link to p in the first round is an elementary
move, then p can change its initial value in the beginning of the second
round. As a result, p can change its mind in e’. Since all processes from
X can change their minds in e’ 41, they can change their minds also in et.
As a result, path P restricted to the last r rounds leads to an execution

el in which 7 + 1 processes from the set X U {p} can change their minds.

(v) By the induction hypothesis, P passes through an execution e, in which
at least 7 + 7 processes are faulty. The executions obtained by the moves
15\P do not contain more faulty processes than e!. Thus, P also passes
through an execution in which at least r +47 = (r + 1) + 4 — 1 processes
are faulty.

O

4 Application to Consensus

Informally, in the consensus problem, each process proposes a value, and all
processes must then agree (or decide) on a single value among the proposed
ones. More precisely, we require that (validity) every decided value is a pro-
posed value, (agreement) no two process decide differently, and (termination)
every process eventually decides|3| In particular, if all processes propose the
same value, then by the validity requirement this value must be decided. As
an immediate consequence we obtain the following proposition.

Proposition 4.1 Consensus cannot be solved if and only if there exists a
connected component C containing, for every i € [1,n], an r-round execution
e;, such that process p; can change its mind in e;.

Proof. “If” direction («<):
Consider a connected component C' that satisfies the condition of the propo-
sition, namely, C' contains, for every i € [1,n], execution e; in which process

3 Note that a process is not allowed to halt in our model, and thus, every process must
eventually decide.
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p; can change its mind. Consider the initial state of the system in which all
processes propose the value 0. By validity, all processes decide 0, in any exe-
cution, and in particular in e;. Consider executions {e;} for increasing values
of i, starting from e;, and ending at e,. Considering execution e;, one can
change the initial value of process p; to a different value, say 1. After consider-
ing execution e,, all processes now propose 1. By validity, they all decide 1 in
en- There are two cases to consider: (i) there exists two adjacent executions
e/, where processes decide 0, and e”, where processes decide 1, or (ii) there
exists an execution e; after which processes decide on 0 if p; proposes 0 and
decide 1 if p; proposes 1. For case (i) and because of adjacency, there exists
at least one process p; which has the same local state at the end of executions
e’ and €” and which decide 0 in € and 1 in €” — a contradiction. For case
(71), by definition there exists a process pj whose local state at the end of
execution e; does not contain p;’s local state, thus p; decides the same value
in e; independently of p;’s value — a contradiction.

“Only if” direction (=):

We prove the contrapositive of the claim, namely that if there is no connected
component which contains executions e; (1 < i < n), such that process p; can
change its mind in e;, then consensus is solvable.

For any connected component C', we denote by K the set of processes
such that for any execution e € (', processes in K cannot change their minds.
For any connected component C' satisfying the condition of the proposition,
|K| > 1 and every process is aware of the initial values of processes in K, in
any execution e € C. We can thus define a deterministic decision function d¢
of the initial values of processes in K. Function dc outputs the decision value
associated with the component C. By construction, dc outputs just a single
decision value within C, and thus ensures agreement. Validity follows from the
fact that dc only takes as arguments initial values of processes. Termination
follows from the fact the each process executes a bounded number of rounds
before deciding (each execution in C' is composed of 7 rounds). a

4.1 Application to Consensus: Necessity

In this section, we observe another specific property of a connected component.
Basically, in any connected component containing the omission-free r-round
(1 <r < f) execution ey, there exists a path from ey to an r-execution where
a process can change its mind. This allows us to deduce a lower bound of
f + 1 rounds for solving consensus in the f-resilient omission model.

Theorem 4.2 If a connected component C contains the omission-free r-round
(1 <r < f) execution eq, there exists an execution e € C, such that a process
p can change its mind in e.

Proof. First note that it suffices to prove the proposition for » = f, as this
proof immediately leads to the case where r < f. By symmetry, as C' contains

8
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Round 1 Round 2 Round 3
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Fig. 2. Execution e withn =4 and f =3

the failure-free execution ej, the theorem implies that any process can change
its mind in some execution in C.

Consider now the f-round execution e where, in each round k, exactly k
processes fail by omission. (An execution e is given in Fig. 2 for the case where
n=4and f=3.)

Round 1: Exactly one process p;, fails by omitting all its messages.

Round 2: Exactly two processes p;,, p;, fail by omitting all their messages.

Round f: Exactly f processes pj, ..., pi, fail by omitting all their messages.

In execution e, as p;, fails by omitting all its messages, it can clearly change
its mind. We show how one can construct a path P from the omission-free
execution eg to execution e. In round f, it is easy to see that we can remove any
arrow of any execution so that some process cannot notice it. As a result, we
can construct a sequence of elementary moves that connect ¢, to an execution
e; in which no arrows depart from processes pj,, ..., p;;-

Suppose by induction that, for any k+1 processes p;,, . . ., Di,,, there exists
an execution ey j (ef_x ~ €g) in which p;,,...,p; , fail by omitting all their
messages in round &' > k£ + 1. We exhibit a sequence of elementary moves to
reach execution ey 1, where k processes p;,, ..., p;, fail by omitting all their
messages in round k.

Denote by e(}_k 41 the execution identical to e;_, except that, in round
k, no message is exchanged among processes p;,,...,p;,. Indeed, all these
processes are silent starting from the next round. Thus, e j ~ e?tk 41- We
also denote by m,,...,m;,...,m; the messages sent in round k, from pro-
cesses Pj,,-...,P; to the remaining processes. We consider the sequence of
elementary moves that successively remove messages my,...,m;,...,my, and
we denote by e} ,,..., €% ;. the corresponding executions (in €}_,,, mes-
sages my, ..., m; are lost). We show, by induction on j, that ey ~ eg}_kﬂ.

Initially, we have seen that execution e;_j ~ e(}_k 4+1- By the induction
hypothesis, there is an execution efcjc 11~ €} py1- Consider execution efc_,c 41

9
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Diy mpm
B W
Diy
11
From e% to e% Execution ea
Pug D =
p“ i,

Fig. 3. Induction step for round 2 with n =4 and f =3

where messages my, ..., m; are lost. Denote by p;, , the process that receives
m; in ejcjc +1- As p;, ., does not send any message starting from round k+1, by
construction, then ejtk 41 is indistinguishable from ejcjc +1- By the induction
hypothesis, e;ik_’_l ~ ejcjcﬂ ~ e(}_kH, which implies in turn that egc_kﬂ ~
e(}_kﬂ. For j = [, we have ef_, ~ ey_p41. We conclude by considering
execution ey = e.

The example presented in Fig. Bl considers round 2 of executions e; and e
for the case where n = 4 and f = 3. Figure Bl illustrates the inductive step to
connect e; to e;. The two graphs at the top illustrate the connection from e)
to el, by considering that process p;, fail by omitting all its messages in round
3. The two graphs at the bottom illustrate the connection from e} to €2, by
considering that process p;, fail by omitting all its messages in round 3. The
resulting execution corresponds to es.

O

From Proposition ELT] we immediately obtain the following corollary.

Corollary 4.3 In an f-resilient omission model, no protocol can solve con-
sensus in f rounds.

10
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4.2 Application to Consensus: Sufficiency

In this section, we show how one can reason about the solvability of consensus
by using the properties on connected components previously observed. We
establish a contradiction with the base assumption on our f-resilient omission
model, which allows us to conclude that consensus is solvable in the f-resilient
model in exactly f + 1 rounds.

Precisely, Lemma Bl gives a sufficient condition for a connected component
to contain the omission-free execution, whereas Lemma gives a character-
istic of the connected component containing the omission-free execution. We
deduce an upper bound on the number of rounds to solve consensus by using
the two lemmas in a complementary way.

Theorem 4.4 There is a protocol that solves consensus in an f-resilient omis-
ston model processes in f + 1 rounds.

Proof. Assume no protocol solves consensus in f + 1 rounds. By Propo-
sition LTl there exists a component that, for every process p;, contains an
execution in which p; can change its mind. By Lemma Bl the component
also contains the omission-free execution. Thus there is a path P that links
the omission-free execution with an execution in which one process can change
its initial value. By Lemma B2 P passes through an execution in which f+1
processes are faulty. This contradicts with the assumption that at most f
processes can omit messages in any execution of our model. O
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