Abstracting Remote Object Interaction in a Peer-to-Peer
Environment:

Patrick Thomas Eugster
Distributed Computing and Systems
Research Group
Chalmers University of Technology
Goteborg, S-412 96 Sweden

peugster@cs.chalmers.se

ABSTRACT

Leveraged by the success of applications aiming at the “free”
sharing of data in the Internet, the paradigm of peer-to-peer
(P2P) computing has been devoted substantial considera-
tion recently.

This paper presents an abstraction for remote object inter-
action in a P2P environment, called borrow/lend (BL). We
present the principles underlying our BL abstraction, and its
implementation in Java. We contrast our abstraction with
established abstractions for distributed programming such
as the remote method invocation or the tuple space, illus-
trating how the BL abstraction, obviously influenced by such
predating abstractions, unifies flavors of these, but also how
it captures the constraints specific to P2P environments.

Categories and Subject Descriptors

C.2 [Computer Systems Organization]: Computer
Communication; C.2.4 [Computer Communication
Networks]: Distributed Systems—distributed applica-
tions; D.2 [Software]: Software Engineering; D.2.11
[Software Engineering]: Software Architectures—Pat-
terns; D.3 [Software]: Programming Languages; D.3.3
[Programming Languages]: Language Constructs and
Features—concurrent programming structures

General Terms

Distributed Programming

Keywords

Borrow/lend, peer-to-peer, abstraction, type, Java

*This research was supported by the Swiss National Science
Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

JGI’' 02, November 3-5, 2002, Seattle, Washington, USA.

Copyright 2002 ACM 1-58113-599-8/02/0011 ...$5.00.

Sébastien Baehni
Distributed Programming Laboratory
Swiss Federal Institute of Technology in
Lausanne
CH-1015 Lausanne, Switzerland

sebastien.baehni@epfl.ch

1. INTRODUCTION

Through the overnight success stories of many non-profit
programs enabling the collaboration of users, by lending
data resources and inversely borrowing resources of interest,
in the goal of distributing media throughout the Internet
(e.g., Gnutella [27], Freenet [14]), the paradigm of peer-to-
peer (P2P) [22] computing has become extremely popular.
Under the name of P2P, most authors in the field agree upon
a completely decentralized distributed setting in which basi-
cally any of the potentially many hosts plays the same role.

While the moral promoted by some of the applications
which stand behind the recent success of P2P computing
is sometimes dubious and has been the source of much
polemics, the practical value of the P2P paradigm is un-
questionable. This observation has led to many important
contributions in the field, and is emphasized by the very
fact that the striving for decentralizing applications, with
the avoiding of bottlenecks and single points of failure in
mind, has been a major concern in the distributed and
dependable systems community for a long time already.

Ever since, P2P computing has been the subject of more
profound studies, also benefitting from previous research in
that community. For instance, many predating application-
level protocols for data routing or membership management,
especially such with focus on scalability, have been adapted
to P2P environments. However, the P2P paradigm has some
characteristics of its own, leading to new challenges. The
addressing of these challenges by the research community
has led also to novel protocols (e.g., [24, 25]), which capture
precisely the characteristics of P2P environments.

Similarly to the underlying protocols, abstractions es-
tablished in distributed object programming, such as the
remote method invocation (RMI, typical for client/server
interaction), the tuple space (emerged from parallel
computing based on distributed shared memory) or the
publish/subscribe (for mass dissemination of events) ab-
stractions, do indeed also make sense in P2P settings, and
have already been used successfully in such contexts. In
particular, the publish/subscribe abstraction captures many
characteristics of P2P environments, and has been widely
employed to model and implement remote interaction in
P2P settings (e.g., [12]).

In this paper we present an abstraction called bor-
row/lend (BL)' we have implemented in the Distributed

'The term query/share (QS) appeared in a previous version

Asynchronous Computing Environment (DACE) together
with protocols [11, 9] specifically for P2P object program-
ming. We present the implementation of the BL abstraction
in Java, which has been chosen as implementation language
mainly because it includes many basic mechanisms and
specifications for distributed programming already, and
provides an all to rare combination of genericity®> and
reflection. As we illustrate in this paper through the BL
abstraction, these concepts are very useful for the imple-
mentation of abstractions for distributed programming in
statically typed object-oriented programming languages.

Emerging from DACE, a general framework for dis-
tributed object programming, it is not surprising that
our BL abstraction combines, and unifies, flavors of many
other previous abstractions, its main contributor being a
variant of the publish/subscribe abstraction implemented
in the DACE framework [10]. Nevertheless, we believe our
BL abstraction, which can be pictured as representing a
general service for interchanging resource objects (or simply
resources), has some considerable differences to previous
abstractions, which we illustrate by contrasting it with such
“classic” abstractions. For instance, (1) it embraces a form
of (asynchronous) RMI but at the same time incorporates
the functionality of a distributed lookup service, (2) offers
borrowers a fine-grained encapsulation-preserving means of
expressing the kind of resources of interest (based on the
methods of application-defined resource types), (3) makes
transmission protocols and parameters governing Qualities
of Service (QoS) explicit, and since lended resources are not
perpetual, (4) gives the possibility of explicitly recalling (in
the sense of canceling) or replacing such resources, aiding
garbage collection and hence improving scalability.

The remainder of this paper is structured as follows. Sec-
tion 2 illustrates the notions of resource borrowing and lend-
ing. Section 3 characterizes the nature of resources. In Sec-
tion 4 we discuss implementation issues. Section 5 compares
our BL abstraction with related abstractions and specifica-
tions for distributed programming. Section 6 concludes this
paper.

2. BASIC ABSTRACTION

With the BL abstraction, peers, which are in the following
also viewed as remote components,’> communicate anony-
mously and indirectly by making objects available to each
other.

2.1 Model

An indirect interaction of two peers through such resource
objects, or simply resources (see next section) can be seen
as a contract with distinct roles and actions for the respec-
tive peers. (1) A source peer (playing the role of lender)
exports a resource by indicating that it is willing to lend
that resource to peers, and (2) a peer willing to import such
resources (acting as borrower) must express the desire to
borrow that “kind” of resources.

of this report.

2Genericity is foreseen for Java 1.5. [26]. Our implementa-
tion relies on the compiler prototype available from Sun.
3For presentation simplicity we view one peer as correspond-
ing to exactly one application component. This is however
not a necessity.

public final class Lender<R implements Resource>
java.io.Serializable
{
public Lender(R lent, Stringl[] key)
throws InvalidResourceTypeException {...}
public void activate()
throws ActiveException, RemoteException {...}
public void deactivate()
throws InactiveException, RemoteException {...}
public void replace(R by)
throws RemoteException {...}

)

public final class Borrower<R implements Resource>
java.io.Serializable
{
public Borrower(Inbox<R> in, String[] key)
throws InvalidResourceTypeException {...}
public void activate()
throws ActiveException, RemoteException {...}
public void deactivate()
throws InactiveException, RemoteException {...}
public R constrain() throws
InvalidConstraintException {...}

,

public interface Inbox<R> {
public void deliver(R r);

}

Figure 1: Borrowers and lenders (excerpt)

2.1.1 Lenders

More precisely, when a resource is lent, it is made available
to any party which expresses interest in it. There is no
inherent exclusive access to resources.

For a P2P application to scale properly, it is important for
individual peers to be aware of, and to indicate, the expira-
tion of resources. Lenders, in the sense of the interaction, are
hence activated as well as deactivated, and lended resources
can also be replaced by new resources. This is expressed in
the Lender type in Figure 1 through corresponding methods,
and assists the underlying protocols in performing efficient
distributed garbage collection (see Section 4.2).

Note that lenders are not resources themselves, meaning
that they can not be lent to others. However, lends (as well
as borrowers) can be made persistent, e.g., by saving them to
stable storage and reactivating them later. The identity of
a lender depends on the hosting peer and a unique identifier
for that peer.

2.1.2 Borrowers

Through the desire of borrowing resources, one expresses
interest in particular objects. Borrowers (can) express which
objects they are precisely interested in through the following
criteria:

Type: The type of a resource, in the sense of its static de-
scription as a set of public members, can be used to ex-

press what resources are of interest. The criteria for type
conformance can range from explicit type conformance
to less strict structural (implicit) conformance (see Sec-

tion 3.1.3).

Predicates: Borrowers can also describe predicates ex-
pressed in a statically type-safe manner based on the
public members of the type of the resources of interest.
The best example in Java, in which methods usually
have a single return value, and the equals() method
is used to verify value equality of objects, are nested
method invocations ending by a call to that method, e.g.,
resource.ml() .m2() .equals(expectedValue).

Key: When lending a resource, one can explicitly attach a
key in the form of an array of strings to it. Though
this could easily be put inside the resources themselves
(e.g., as field with access methods involved in predicates),
we have preferred to isolate this criterion, because pro-
grammers of distributed applications are used to explicit
names, the resulting string matching can be performed
extremely quickly, and, last but not least, this key can be
used also to enforce security barriers, an important aspect
in P2P computing. Note that type safety is hereby not
compromised.

While the type of resource to borrow is indicated by a
type parameter provided upon creation of an instance of
Borrower, and the key is provided as an array of strings
to the constructor, a predicate is expressed in a type-safe
manner through a dynamic prozy acting as formal argument,
obtained through the constrain() method (see Section 4.1).

When objects, i.e., resources, correspond to the criteria
expressed through a borrower, they can become accessible
on that corresponding peer in two ways. In the most com-
mon case, they are delivered by a call-back to an object of
type Inbox registered by that peer upon description of the
borrower. If the new resource was made available by the ex-
porting peer through the replace() method, that resource
can also become (somewhat invisibly) accessible through
variables pointing to the replaced resource.

2.2 Concurrency and Synchronization

When a previously unavailable resource is made available
(or vice versa) through a corresponding instance of class
Lender, there is no direct synchronization with other peers.
For instance the execution of activate() through a lender
returns “immediately”, and the unavailability of a borrow-
ing peer does not necessarily result in an exception. An
exception might however be thrown if the exporting peer
experiences communication problems of a more general na-
ture (indicated through an instance of a subclass of the Java
RMI RemoteException), e.g., when trying to communicate
with immediate neighbor peers.

In a large scale and completely decentralized setting, it is
inherently difficult to achieve strong consistency guarantees,
when considering the possibility of partial failures. Since
the hiding of distribution beyond a level where transparency
can be absolutely ensured (e.g., location transparency of
resource exporters/importers, or transparent marshal-
ing/unmarshaling of resources) has never been a goal when
designing the BL abstraction, neither has the addition of
an inherent mechanism for concurrency control such as
provided by the in() primitive known from tuple spaces
(see Section 5.1.3).

However, a concurrency control mechanism can be indeed
very useful in scenarios such as the replication of a resource.
In such a case, some support from the developer of the re-
source is required, and this issue is addressed by viewing
such a type of resource as a specific one (see Section 6).

2.3 Qualities of Service and Protocols

While different levels of consistency are imaginable for
such resources, different levels of reliability are advisable for
different scenarios.

These different degrees can be seen as QoS, which are in-
trinsically tied to the protocols used underneath for commu-
nication. In P2P environments, which manifest a flavor of
self-organization, it has proven interesting to provide differ-
ent protocols for the underlying remote communication, and
to make their choice explicit. Since sometimes the choice is
restrained by the nature of a single interaction, it is neces-
sary to handle protocols and QoS expressions in isolation
from the resource types.

Protocols and QoS are hence reflected as first-class con-
structs, as shown in Figure 1. Due to space restrictions,
these are however not further discussed in this paper.

3. RESOURCES

Borrowers and lenders are created with respect to re-
sources, which are instances of application-defined types.
We overview the guidelines for the design of such types, and
illustrate these through examples.

3.1 Common Characteristics

Resource types are subtypes of the Resource interface pre-
sented in Figure 2, and are further divided into different
kinds of resources (see Section 3.2).

3.1.1 Abstract vs Concrete Types

All resource types, including subtypes defined by P2P ap-
plications, have in common that they have to be defined
as abstract types, i.e., interfaces. Similarly, return types of
methods should be abstract types, etc. In particular, the
examples introduced later on make use of our own “primi-
tive object types”, all defined with corresponding interfaces
(e.g., String and StringImpl).

This restriction is not a consequence of our abstraction,
but rather of its implementation in Java. The dynamic prox-
ies used to “access” resources from remote peers, whether
these resources are passed by value or by reference, are
namely not available for classes. In short, a dynamic proxy
class CP for a class C would be implemented as a subclass
of C, making the overriding (in the goal of intercepting) of
final or private methods, and any fields, impossible (see
Section 4.1.1). Interfaces, whose declaration can not con-
tain any of the above, but mainly public methods, are easily
supported.

For the same reason Java RMI is also restricted to inter-
faces. The associated rmic pre-compiler generates namely
proxies (and skeletons) according to a similar scheme than
the above-described.

Hence, our abstraction complies with Java's specification
for pass-by-reference remote object interaction, i.e., Java
RMI. By furthermore making remotely invocable resource
types implement the very java.rmi.Remote interface (Fig-
ure 2), our abstraction seemlessly integrates with Java RMI,

interface Resource {

void setConformance(int depth) throws NotSupportedException;
void setProtocol(Protocol p) throws NotSupportedException;

void setQoS(QoS qos) throws NotSupportedException;

void setReplacement(boolean transparent) throws NotSupportedException;

)

interface ValueResource extends Resource, Serializable {}

interface ReferenceResource extends Resource, Remote {

void setSynchronization(boolean lazy) throws NotSupportedException;

}

interface DownloadResource<R extends ValueResource> extends RemoteResource {
void setDownload(boolean automatic) throws NotSupportedException;

R download(Protocol p) throws NotSupportedException;

}

interface DynamicResource extends Resource {

DynamicResource invoke(String methodName, Object args[]) throws InvalidMethodException;

ResourceDescription getDescription();

}

Figure 2: Basic resource types (excerpt)

though not using it underneath.

Similarly, our abstraction complies with Java’s spec-
ification for pass-by-value remote interaction (serializa-
tion), by making resources passed by value subtype
java.io.Serializable.

3.1.2 Contract Methods

The basic resource types have predefined methods, some-
what reflecting the “contracts” introduced by the use of such
resources. These methods, called contract methods in the
following, hence differ between resource types, and some-
times can be implemented by a resource class, but do not
have to be. Depending on the return type, such methods
can have empty bodies, or return specific values to indicate
the “absence” of an implementation.

The basic resource type Resource for instance contains
methods allowing borrowing peers the setting of prefer-
ences, such as QoS parameters, transmission protocols to be
used, or the policy of replacement of resources (transparent
replacement vs re-delivering, see Section 4.2.2). These
methods are used when expressing borrower criteria through
the constrain() method of an instance of Borrower, and
have been put into the resource types rather than into the
Borrower type itself since every resource type potentially
defines own methods. Note however that though one would
expect many of these parameters to be expressed on a
per-type base, they are set through instance methods. This
is mainly a consequence of the fact that static methods
can not be declared in Java interfaces.

3.1.3 Type Conformance

A contract method of primary importance is the
setConformance() method. Through that method, the

conformance strictness between the types of resources
queried by a peer and the effectively corresponding, and
hence assigned, resources can be set.

In fact, in our context of resource lending, we are mostly
concerned with static type safety of individual components.
The goal is to be able to add/remove new components at
run-time, each of these components being able of incarnating
multiple resource importers (borrowers) and/or exporters
(lenders), and to provide developers with static type safety
with respect to the resources lent and borrowed by individ-
ual components as a tool to safely devise those components.
Providing a form of global or distributed static type safety
would require an a priori agreement on types, i.e., an explicit
global type hierarchy, offering only little flexibility. The BL
abstraction aims at providing support for static type safety
of individual components, yet avoids an explicit global type
hierarchy, by supporting different “levels” of type confor-
mance between these components. This is achieved through
the setConformance() contract method. When invoked by
a component describing a borrower, that component pro-
vides an integer value representing the minimum depth of
conformance expected. A depth of 0 represents explicit type
conformance, meaning that a resource which is an instance
of a class C is only accessible through a borrower parame-
terized by an interface I if C explicitly (in the sense of Java)
implements I (or an interface explicitly subtyping I).

What could be called implicit type conformance is further
divided. With a depth of 1, class C above would not have
to implement I, but would have to provide a method for
each method of I, with a corresponding signature. A depth
of 2 would further relax restrictions on parameter types of
methods in C, such that they would themselves only have to
be implicitly compatible, more precisely, with a depth of 1,
with those of the respective methods in I, etc.

3.1.4 Exceptions

When defining methods for custom resource types, appli-
cation developers are encouraged to follow the Java RMI
“philosophy” for exceptions, consisting in reflecting possible
failures occasioned by the distributed nature of interaction
through the RemoteException type (which we borrow from
Java RMI) in corresponding method signatures.

Java’s strong support for exceptions in fact allows two
ways of dealing with such distribution-related issues, namely
explicitly, such as explained above for RMI, or by “hiding”
resulting exceptions: the possible throwing of exceptions of
type java.lang.RuntimeException (or any subtypes) does
not have to be reflected by a method’s signature, and hence
the invocation of such a method does not require an enclos-
ing try...catch statement. This approach has been cho-
sen by many authors of libraries for distributed program-
ming in Java, including the authors of the Java mapping for
CORBA [21], which use such exceptions to improve trans-
parency.

We provide the programmer with the choice between
the two ways of handling exceptions. A failure occurring
upon invocation of a resource method declaring the possible
throwing of a RemoteException is signalled as an instance of
that type, otherwise as a RuntimeException. The examples
given in the following illustrate the use of both kinds of
exceptions.

Note that when forcing resources to make use of
RemoteException, which would definitely be a better prac-
tice, violations could only be detected at run-time, since,
unlike Java RMI, the BL abstraction is not implemented
with a pre-compiler.

3.2 Variations

The identification of the different natures of resources and
their translation to abstract types is an ongoing issue. We
present here a preliminary set of basic resource types out-
lined in Figure 2.

3.2.1 Value Resources

ValueResources represent generally fine-grained, statefull
objects, which, as their name suggests, are passed by value
to components with corresponding borrowers.

A simple example for such resources are informations con-
cerning upcoming talks (presentations, or also meetings),
shared between researchers working in an industrial research
laboratory or a university. In both contexts, researchers can
be invited and asked to give talks. A typical type in Java
whose instances would be used to incarnate talk advertise-
ment could look like the following (OutputStream refers to
the class defined in java.io):

interface VTalk extends ValueResource {
String getTitle();
String getSpeaker();
String[] getAbstract();
Long getStartTime();
Long getExpectedDuration();
void prettyPrint(OutputStream os);

Advertising such a talk requires the implementation of a
corresponding class, and its instantiation:

class VTalkImpl implements VTalk {
public VTalkImpl(String title, ...) {...}

.

VTalk t = new VTalkImpl("BL", ...);
Lender<VTalk> tLender =
new Lender<VTalk>(t, new StringImpl[]1{"Chalmers",
"CS"}) ;
tLender.activate();

Interest in any talks could then be expressed like the fol-
lowing (by omitting the catching of exceptions for simplic-

ity):

class VTalkInbox implements Inbox<VTalk> {
public void deliver(VTalk t)
{ t.prettyPrint(System.out); }

Borrower<VTalk> talks =
new Borrower<VTalk>(new VTalkInbox(),
new StringImpl[]{"Chalmers",
"CS"});
VTalk t = talks.constrain();
t.setConformance(0) ;
t.getSpeaker() .equals ("Patrick Eugster");
talks.activate();

The third-last line illustrates the use of contract meth-
ods. In this case, the borrowing peer indicates that it is
only interested in receiving instances of classes which ex-
plicitly implement the VTalk interface. This invocation is
“trapped”, and not performed on any effective resource.

With this talk example, the practical benefit of the
replace() method for “overriding” lent resources can
also be demonstrated. Indeed, who has never had one of
her/his talks pre- or postponed? By calling the replace()
method with a new VTalk instance, a previously issued
talk notification can be replaced. This does not mean that
a previously issued talk can not be delivered first to a
borrower’s Inbox anymore. However, if the order of the
two talks is permuted during routing, the previous one is
dropped.

3.2.2 Remote Resources

If the abstract of a talk is very long, or the speaker has
written an article which corresponds exactly to the contents
of that talk and could be added to the advertisement, it
might be of interest to leave such a talk resource on the ex-
porting peer, and instead advertise it as a remote reference,
through which desired information can be obtained though
remote invocations.

In general, as resources gain in size, and maybe become
location-bound, it might be more adequate to view them
as services and access them from a distance. In that case,
a peer offering such a service would rather lend it as a
RemoteResource, providing interested peers access to it
through a proxy:

4The example illustrates a logical and of two constraints. A
logical or of two (or more) constraints requires these to be
expressed on individual proxies obtained by several calls to
constrain().

interface RTalk extends RemoteResource {
String getTitle() throws RemoteException;
String getSpeaker() throws RemoteException;
String[] getAbstract() throws RemoteException;
Long getStartTime() throws RemoteException;
Long getExpectedDuration() throws RemoteException;
void prettyPrint(QutputStream os)

throws RemoteException;

Instances of the RemoteException type declared in the
throws clause of all methods of the RTalk type are used
here to indicate problems in remote interactions.

3.2.3 Downloadable Resources

When implementing the above talk example with remote
resources however, one problem becomes apparent. The
prettyPrint () method does not make any sense anymore,
since its input argument of type OutputStream represents
an object local to the borrower, and is whether serializable
nor remotely accessible.

A Dbetter solution than implementing a remotely accessible
output stream consists in making talk advertisements down-
loadable on demand. Indeed, the prettyPrint() method
will most probably print all information related to a talk,
i.e., all fields of such an instance. Transferring a copy of a
talk advertisement to be printed from the exporting peer to
a borrowing peer will be even more efficient than having the
exporting peer make several remote calls back to an output
stream on a borrowing peer to pass the individual fields.

To support lazy pass-by-value semantics for resources, we
introduce the DownloadResource type, which combines fla-
vors of both pass-by-value and pass-by-reference semantics.
Resources implementing that type usually represent larger
objects than pure value resources, and are hence only down-
loaded when really required (lazy pass-by-value).

interface DTalk extends DownloadResource<DTalk>,
ValueResource

{
String getTitle() throws RemoteException;
String getSpeaker() throws RemoteException;
String[] getAbstract() throws RemoteException;
Long getStartTime() throws RemoteException;
Long getExpectedDuration()

throws RemoteException;

void prettyPrint(OutputStream os);

The type parameter representing the resource that can be
downloaded through the download() method is not neces-
sarily the same than the type of the resource itself. Though
in general this applies, like in the case of the DTalk type
shown below, one could indeed imagine a resource acting as
a service, through which other, possibly smaller, resources
could be downloaded on demand.

A similar effect could be achieved without explicitly in-
troducing such a resource type. For instance, one could
equip the RTalk with a method returning an array of strings,
which, invoked from a remote peer on a proxy to such a talk
resource, would automatically transfer a formatted represen-
tation of the talk by value. The advantage of introducing a
type for downloadable resources appears when the instances
of a resource type such as DType are both serializable and re-
motely accessible. One could, like in Java RMI give priority

to the remote nature of objects, which we also advocate if a
resource type explicitly subtypes both RemoteResource and
ValueResource. However, we want the flexibility of being
able to specify if and when to download a remotely acces-
sible resource, and how, i.e., which protocol to exploit for
the downloading (e.g., ftp, http, or own ones), which is in
fact one of the characteristics of P2P programming. Also,
in case the resource type is parameterized by itself, such as
the DTalk type above, a borrowing peer can decide that re-
sources are to be automatically downloaded upon their first
invocation.

3.2.4 Dynamic Resources

In certain cases, more late binding is required than pro-
vided by implicit type conformance, in the sense that even at
compilation of a component, the types of imported and/or
exported resources are not known. A dynamic form of inter-
action, already supported to some extent by Java through
introspection, is then advisable. Similar forms of dynamic
interaction have already proven useful in distributed con-
texts, in combination with both pass-by-value (e.g., self-
describing messages [20]) but also pass-by-reference (e.g.,
dynamic invocation interface (DII) and dynamic skeleton in-
terface (DSI) [21]) semantics.

To that end, we introduce the DynamicResource type.
Lending such a resource means mainly implementing a gen-
eral method invoke() through which the resource can be
invoked. A method getDescription() returns a descrip-
tion of the functionalities implemented by a resource at run-
time, and is required for the communication infrastructure
to be able to match such resources against borrower’s cri-
teria. Similarly, that method can be used for borrowers to
express interest in resources, without compile-time knowl-
edge of the interfaces of those resources. Single constraints
on the interfaces offered at run-time by resources are also
intrinsically specified by expressing predicates through the
invoke () method of a proxy obtained via the constrain()
method.

Consider for example a borrower relying on such a dy-
namic interaction for the talks presented above (again omit-
ting exceptions):

class DynInbox implements Inbox<DynamicResource> {
public void deliver(DynamicResource d) {
d.invoke ("prettyPrint",
new Object[]{System.out});
}
}

String[] s = new StringImpl[]{"Chalmers", "CS"};
Inbox<DynamicInbox> inbox = new DynamicInbox();
Borrower<DynamicResource> talks =

new Borrower<DynamicResource>(inbox, s);
DynamicResource d = talks.constrain();
Object[] args = new Object[]{"Patrick Eugster"};
d.invoke("getSpeaker", null).invoke("equals", args);
talks.activate();

Note that the invoke () and getDescription() methods,
though seeming somewhat redundant to the methods de-
fined by Java’s introspection classes, are necessary. Latter
methods would only reflect methods that are defined “stat-
ically” by a resource class, while DynamicResources will

in the general case only implement the invoke() method
(through which further dispatching is done explicitly).

4. IMPLEMENTATION ISSUES

This section elucidates implementation issues of the cur-
rent prototype of the BL abstraction, focusing on mecha-
nisms of the Java language and P2P protocols.

4.1 Java

The static type safety provided by the BL abstraction
is a merit of two very “recent” Java mechanisms, namely
dynamic prozies and genericity.

4.1.1 Dynamic Proxies

With version 1.3 of Java, dynamic prories have been
added as part of the Java core reflection API. Dynamic
proxies provide a limited form of behavioral reflection (a.k.a.
computational reflection) in combination with static type
safety as “library”, that is, without specific support from
the Java compiler or virtual machine. A dynamic proxy
object created for an interface I can be used in a consistent
manner wherever an object of that type I or any supertype
is expected, except that a method invocation performed
on such a dynamic proxy object is in a first step reified,
somehow enabling the passing from a typed context to an
untyped one where any action can be performed in the
confines of such a method invocation.

The implementation of our BL abstraction relies heavily
on this concept of dynamic proxies (see Figure 3).

Borrower criteria: Through the constrain() method of the
Borrower class, a dynamic proxy object can be obtained
for a queried type. Such an object acts as formal argu-
ment for expressing queries (Figure 3(a)). Furthermore,
the interception of contract methods is performed by these
proxies. The thereby implemented decorator pattern, in
contrast to the regrouping of implementations of such
contract methods in abstract resource classes to be sub-
classed by application-defined resource classes, has the
advantage of not polluting the single inheritance resource
class hierarchy.

Lent resources: Copies of resources delivered to consumers
are dynamic proxies, in the case of value resources “hid-
ing” the effective collocated resources. This has several
benefits. First, a form of weak synchronization can be im-
plemented when invoking resources through proxies (Fig-
ure 3(b)), but also when dealing with automatically down-
loaded resources. Second, when replacing a lent resource
by a new one, the reference to a local copy of such an
object can be kept valid (Figure 3(c)). Without addi-
tion of hooks into the virtual machine, this is in fact the
only way of “changing” transparently the instance of a
user type pointed to by a variable. Third, the wrapper
pattern implemented by dynamic proxies can be used to
implement the structural conformance provided as part
of borrowers. Indeed, a class C can be instantiated in the
virtual machine of a consumer, possibly after transferring
it from its exporting peer, with a dynamic proxy of a non-
explicitly related type I (see Section 3.1.3) pointing to it
and giving access to it (Figure 3(d)).

As mentioned in Section 3.1.1 however, dynamic proxies
are only available for interfaces, which restricts the use of
the BL abstraction in Java.

T T

m2()

N !
|
A
3
)
ot

Proxy2 \'r:“yv

Proxy1

M MMV,
WM e

3
%m10.m2() %
S =15)

(Y PRRY TIRYY)
(A M)

Resource

(a) Borrower criteria

¢ m1() m1()
[e]e]el]} ;
m2()® ollolo
é Proxy2

Proxy1 Resource

(b) Lazy remote synchronization

m()
-
Proxy
Resource'
(c) Replacing a resource
m() m'()

Proxy Resource

(d) Structural conformance

Figure 3: Dynamic proxies in the BL abstraction

4.1.2 Genericity

Besides dynamic proxies, genericity has been heavily used
in the BL abstraction to provide static type safety without
pre-compilation. In fact, the addition of genericity to the
Java language has represented a very vivid research field
for several years, leading to a wide variety of approaches.
Sun’s own efforts to finally integrate genericity into the Java
language [26] for version 1.5 is based on the solution de-
scribed in [3], which provides F-bound polymorphism, en-
abling the parameterization of a type by itself (e.g., DTalk
in Section 3.2). Its implementation originally relies on a ho-
mogenous translation [3], meaning that type parameters are
“erased” at compilation, variables of such types are changed
to the corresponding bounds (possibly the very root type
java.lang.0Object), and type casts inserted wherever nec-
essary. The drawback of such an approach is however that
run-time type information is usually lost, meaning that an
instance of a parameterized type does not know the value(s)
of its type parameter(s). This, fortunately by now recog-
nized and repaired lack [26], at first represented an impor-
tant drawback in the implementation of the BL implemen-
tation, as queries are expressed through dynamic proxies,
which are created for specific, reified, types at run-time. An
instance of class Borrower parameterized by type VTalk, in
order to create a dynamic proxy for that type VTalk, must
pass a reification of that type in the form of an instance of
java.lang.Class to the java.lang.reflect.Proxy class.

4.2 Protocols

One of the basic building blocks of a P2P communication
infrastructure is made up of multicast protocols. Basically,
an event such as the activation or deactivation of a borrower
or a lender has to be disseminated among those peers for
which that event is of importance.

4.2.1 Wanted: Reliability AND Scalability

To offer a compromise between reliability and scalability,
such protocols must ensure that relevant knowledge is re-
ceived and stored by sufficient peers, but not by unnecessar-
ily many. There are several faces of this tradeoff:

Peer knowledge: Not every peer should know every other
peer, however, a peer should be known by at least a min-
imum number of other peers.

Borrower knowledge: The action and deactivation of bor-
rowers should be notified to those peers concerned, but
should not flood the network. They should be stored at
a reasonable number of peers.

Resource knowledge: Similarly, the activation, deactivation
and modification of a resource should be notified to, and
stored by, a subset of peers only.

A seminal protocol we have implemented which addressed
these issues was based on a broadcast protocol [11] offering
probabilistic guarantees, meaning that with very high prob-
ability a peer would acquire some of the above-mentioned
knowledge, though every peer would only know a subset of
the other peers. To further limit the amount of acquired
knowledge for a given peer, a second probabilistic protocol
for multicasting knowledge has been proposed [9]. With that
second protocol, interacton between peers increases as they
become “closer”, in terms of both physical but also interest
distance, i.e., overlappings between their borrower criteria.

4.2.2 Replacing and Deactivating Resources

Latter protocol furthermore applies the intuitive concept
of message obsolenscence first studied and formalized in
detail in [23]. The idea is that in most applications certain
events, or in our case resources, make previously created
ones obsolete. With some, even limited, support from
an application in indicating such relationships (e.g., the
replace() method in the Lender class), scalability of
protocols can be significantly improved.

As pointed out in [7], efficient garbage collection of re-
motely accessed objects is not straightforward, and the origi-
nal implementation found in Java RMI an illustration of this
observation. Especially in a highly dynamic P2P setting,
where resources are available in general only temporarily,
it is increasingly important for a resource creator to indi-
cate the end of a lend, rather than inversely keeping such
an object alive waiting for the last remote peer to release its
references to it.

5. RELATED WORK

In this section, we first contrast the BL abstraction with
respect to prominent abstractions for distributed program-
ming. Then, we compare it with similar P2P-specific ab-
stractions and APIs. For space restrictions and fairness, we
focus here mainly on efforts related to Java.

5.1 Abstractions

The idea here is not to claim that the BL abstraction
somehow replaces predating abstractions, but rather to show
how it has been influenced by those abstractions. Com-
paring abstractions is in fact not trivial, since the borders
between them are not exactly clear. For instance, many
recent tuple space variants provide a publish/subscribe-like
call-back scheme (e.g., [13]), publish/subscribe is sometimes
implemented with a variant of the proxy abstraction (e.g.,
[19]) known from asynchronous remote method invocations.

51.1 Message Passing

Message passing is probably the abstraction providing the
most explicit form of distributed interaction. Operating
system-level concepts for network communication such as
sockets are usually reflected up to “higher” levels, as exem-
plified also by Java (java.net.Socket), but are often by-
passed by the use of libraries, for instance based on variants
of the message passing interface (MPI).

As a rather fundamental abstraction, message passing
could be used to implement the BL abstraction, espe-
cially since much recent work around the MPI in Java
has emphasized multi-party interaction more than strict
pairwise object interaction (e.g., [18]), and conveyed data
is increasingly viewed as objects (e.g., [6]) rather than as
simple bytes.

5.1.2 Remote Method Invocation

Originally introduced as the remote procedure call (RPC)
abstraction for procedural programming models, remote in-
vocations have been quickly applied to object settings, pro-
moting some form of entities remotely invoked through prox-
ies while hiding the underlying message passing (though in-
versely message passing can very well be built on top of
remote invocations [18]). In the same philosophy, Java intro-
duces the remote method invocation (RMI) paradigm. Sev-
eral variations of the RPC/RMI paradigm have appeared

reducing the strict binding of an invoking object with an
invoked object, by adding an asynchronous flavor (e.g., [5]),
or by invoking atomically several objects (e.g., [17]).

The BL abstraction embraces RMI by offering the pos-
sibility of lending asynchronous proxies. What is usually
provided as separate “lookup service”, i.e., a name service
(cf. white pages) or a trade service (cf. yellow pages) with
RPC, is an inherent part of the BL abstraction. In a true
P2P environment, one can not presuppose the knowledge
of which peer is hosting what resources. This contradicts
models such as the one proposed by Java RMI, where ob-
jects are registered with their respective local lookup ser-
vices (registries), and finding a remote object requires the
identity of the host in order to connect to the correspond-
ing registry. By integrating the lookup service with the BL
abstraction, it is inherently distributed to suit the nature of
P2P applications (cf. [25]).

5.1.3 Tuple Space

The tuple space underlying the generative communication
style originally advocated by Linda provides a simple, yet
powerful, distributed shared memory abstraction. A tuple
space is composed of a collection of ordered tuples, equally
accessible to all hosts of a distributed system.

There have been a series of attempts to transform the
structured form of tuples to an object form, mainly by mov-
ing from the type equivalence for tuple elements of primitive
types in Linda to a more general type conformance of ob-
ject types. In contrast to early approaches to integrating
the tuple space with objects, which promoted tuples as sets
of objects, later approaches, like Sun’s own JavaSpaces [13]
considered tuples as single objects, however often “degrad-
ing” their fields to tuple elements.

The BL abstraction is close to the tuple space, in the sense
that components do not directly interact (e.g., by invok-
ing each other’s methods), but via a form of “object pool”.
In particular, the BL abstraction comes close to recent tu-
ple space variants such as JavaSpaces, by delivering objects
of interest through a call-back, and through the possibil-
ity of limiting the time during which objects are available
to others. With the BL abstraction, QoS and transmission
protocols are made explicit, and the distributed application
interacts with the abstraction for the purpose of enhancing
garbage collection. Additionally, the BL abstraction enables
the expression of borrower criteria with application-defined
resource types based on their methods rather than on their
fields, preserving encapsulation of resources.

Note however that tuple spaces offer strong support for
the synchronization of distributed components through
in()-like primitives, while the BL abstraction currently
does not implicitly provide a similar primitive.

5.1.4 Publish/Subscribe

With the publish/subscribe abstraction underlying
anonymous communication, producers publish data and
subscribers subcribe to data. This indirect form of in-
teraction between remote components, inherited from its
ancestor, the tuple space abstraction, is passed along
to our BL abstraction. Indeed, the BL abstraction has
been strongly influenced by our own work on type-based
publish/subscribe (TPS) [10], a recent application of pub-
lish/subscribe to object settings emphasizing static type
safety and encapsulation.

The BL abstraction can be viewed as a generalization of
the TPS abstraction, in that it abstracts from the nature of
conveyed objects (TPS focuses on pass-by-value semantics),
and separates these objects from the QoS parameters (in the
implementation of TPS with a specific compiler described
in [10], QoS are specified on a per-type base). Furthermore,
the BL abstraction supports borrower activation and de-
activation (similarly to subscriptions in publish/subscribe),
and symmetrically provides lender activation and deactiva-
tion (while a published object can neither be recalled nor
replaced [1]).

5.2 Specifications

As already mentioned, the publish/subscribe abstrac-
tion has been often used to model interaction in P2P
environments. In particular Sun’s own Java API for
publish /subscribe interaction, the Java Message Ser-
vice (JMS) [15], has been devoted much attention (e.g,
[12]). Sun has however defined a P2P-specific API, called
JXTA [4], along with an implementation. JXTA represents
the most popular attempt of rigorously specifying a set
of constituents for a P2P service, and its coexistence
with JMS somehow confirms the sensible gap between the
publish /subscribe abstraction and the P2P paradigm.

With respect to the BL abstraction, which represents a
simplified and more high-level abstraction exploiting recent
features of the Java language to enforce static type safety,
JXTA can be viewed as far more complex and low-level,
which, like most P2P specifications/systems, deals primarily
with data as XML structures. In short, the BL abstraction
is to the JXTA specification what the RPC/RMI abstraction
is to the MPI specification.

6. CONCLUSIONS AND FUTURE WORK

Asillustrated in this paper, the BL abstraction abides well
to P2P object environments, which can be described as com-
pletely decentralized and potentially large scale distributed
object settings.

The BL abstraction achieves its scalability by providing
peers the possibility of asynchronously lending and borrow-
ing resource objects, reducing the coupling between these
peers. This notion of resources, on the one hand, provides
the BL abstraction with flavors of a “high-level” abstraction
in the sense that distribution-related issues such as serializa-
tion and location of resources are concealed, and encapsula-
tion and static type safety are ensured. On the other hand,
this model allows the BL abstraction to make “low-level” as-
pects related to distribution, yet crucial for P2P computing,
such as protocols and QoS, explicit.

We are currently investigating the application of our BL
abstraction to the design and implementation of a scalable
general communication substrate for collaborative virtual en-
vironments (CVEs) [2]. In such environments, distributed
users interact through a virtual shared world, and resources
such as the constituents of the world have to be shared
among those peers hosting “interested” users (e.g., users to
whom these constituents are visible), in a way which en-
sures scalability (by avoiding unnecessarily many replicas of
data structures), but also reliability (by ensuring sufficiently
many replicas).

In that context, we are exploring new resource types, such
as resources which are automatically replicated (cf. [8]), pos-
sibly also implemented with a caching mechanism, or re-

sources which are passed by value along with computation
(cf. [16]).

7.

ACKNOWLEDGEMENTS

We would like to thank the anonymous referees for many
valuable suggestions which helped improve this paper.

8.
[1]

[2]

[7]

[9]

[10]

[11]

[12]

REFERENCES

S. Baehni, P.Th. Eugster, and R. Guerraoui. OS
Support for Peer-2-Peer Programming. In Proceedings
of the 22th IEEE International Conference on
Distributed Computing Systems (ICDCS ’02), pages
355-362, July 2002.

S. Benford, C. Greenhalgh, T. Rodden, and J. Pycock.
Collaborative Virtual Environments. Communications
of the ACM, 44(7):79-89, July 2001.

G. Bracha, M. Odersky, D. Stoutamire, and Ph.
Wadler. Making the Future Safe for the Past: Adding
Genericity to the Java Programming Language. In
Proceedings of the 13th ACM Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA ’98), pages 183-200, October
1998.

D. Brookshier, D. Govoni, and N. Krishman. JXTA:
Java P2P Programming. Sams Publishing, 2002.

D. Caromel, W. Klauser, and J. Vayssiére. Towards
seamless computing and metacomputing in Java.
Concurrency: Practice and Ezperience,
10(11-13):1043-1061, September 1998.

B. Carpenter, G. Fox, S.H. Ko, and S. Lim. Object
Serialization for Marshaling Data in a Java Interface
to MPI. In Proceedings of the ACM 1999 Java Grande
Conference, pages 66-71, June 1999.

M. Philippsen Ch. Nester and B. Haumacher. A More
Efficient RMI for Java. In Proceedings of the ACM
1999 Java Grande Conference, pages 152-159, June
1999.

J.R Douceur and R.P. Wattenhofer. Competitive
Hill-Climbing Strategies for Replica Placement in a
Distributed File System. In Proceedings of the 15th
International Conference on Distributed Computing
(DISC 2001), pages 4862, October 2001.

P.Th. Eugster and R. Guerraoui. Probabilistic
Multicast. In Proceedings of the 2002 IEEE
International Conference on Dependable Systems and
Networks (DSN 2002), pages 313-323, June 2002.
P.Th. Eugster, R. Guerraoui, and C.H. Damm. On
Objects and Events. In Proceedings of the 16th ACM
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 2001), pages
131-146, October 2001.

P.Th. Eugster, R. Guerraoui, S.B. Handurukande,

A .-M. Kermarrec, and P. Kouznetsov. Lightweight
Probabilistic Broadcast. In Proceedings of the 2001
IEEE International Conference on Dependable
Systems and Networks (DSN 2001), pages 443-452,
June 2001.

G.C. Fox and S. Pallickara. The Narada Event
Brokering System: Overview and Extensions. In
Proceedings of the 2002 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA’02), June 2002.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

27]

E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces
Principles, Patterns, and Practice. Addison-Wesley,
June 1999.

Freenet: A Distributed Anonymous Information
Storage and Retrieval System.
http://www.freenetproject.org/, 2000.

M. Happner, R. Burridge, and R. Sharma. Java
Message Service. Technical report, Sun Microsystems
Inc., October 1998.

M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an
Environment for Parallel, Distributed and Mobile Java
Applications. In Proceedings of the Joint ACM Java
Grande - ISCOPE 2002 Conference, pages 15-24,
June 1999.

J. Maassen, T. Kielmann, and H.E. Bal. Efficient
Replicated Method Invocation in Java. In Proceedings
of the ACM 2000 Java Grande Conference, pages
88-96, June 2000.

A. Nelisse, T. Kielmann, H.E. Bal, and J. Maassen.
Object-Based Collective Communication in Java. In
Proceedings of the Joint ACM Java Grande - ISCOPE
2002 Conference, pages 11-20, June 2001.

R.J. Oberg. Understanding & Programming COM+.
Prentice Hall, 2000.

B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The
Information Bus - An Architecture for Extensible
Distributed Systems. In Proceedings of the 14th ACM
Symposium on Operating System Principles (SOSP
’93), pages 58-68, December 1993.

OMG. The Common Object Request Broker:
Architecture and Specification. OMG, February 2001.
A. Oram. Peer-to-Peer: Harnessing the Power of
Disruptive Technologies. O’Reilly and Associates, Inc.,
March 2001.

J. Pereira, L. Rodrigues, and R. Oliveira. Semantically
Reliable Multicast Protocols. In Proceedings of the
19th IEEE Symposium On Reliable Distributed
Systems (SRDS’00), pages 60-73, October 2000.

A. Rowstron and P. Druschel. Pastry: Scalable,
Distributed Object Location and Routing for
Large-Scale Peer-to-Peer Systems. In Proceedings of
the 4th IFIP/ACM International Conference on
Distributed Systems Platforms and Open Distributed
Processing (Middleware 2001), pages 329-350,
November 2001.

I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. In
Proceedings of the ACM SIGCOMM 01 Conference,
pages 149-160, August 2001.

Sun. Adding Generics to the Java Programming
Language. Java Specification Request (JSR) 000014.
Wego.com Inc., What Is Gnutella?
http://gnutella.wego.com/, 2000.

