
A Nominal Theory of Objects with Dependent Types

Martin Odersky, Vincent Cremet, Christine Röckl, Matthias Zenger

École Polytechnique Fédérale de Lausanne
INR Ecublens

1015 Lausanne, Switzerland

Technical Report IC/2002/070

Abstract

We design and study νObj, a calculus and dependent type
system for objects and classes which can have types as mem-
bers. Type members can be aliases, abstract types, or new
types. The type system can model the essential concepts
of Java’s inner classes as well as virtual types and family
polymorphism found in BETA or gbeta. It can also model
most concepts of SML-style module systems, including shar-
ing constraints and higher-order functors, but excluding ap-
plicative functors. The type system can thus be used as a
basis for unifying concepts that so far existed in parallel in
advanced object systems and in module systems. The paper
presents results on confluence of the calculus, soundness of
the type system, and undecidability of type checking.

1 Introduction

The development in object and module systems has been
largely complementary. Module systems in the style of SML
or Caml excel in abstraction; they allow very precise con-
trol over visibility of names and types, including the ability
to partially abstract over types. Object-oriented languages
excel in composition; they offer several composition mecha-
nisms lacking in module systems, including inheritance and
unlimited recursion between objects and classes. On the
other hand, object-oriented languages usually express ab-
straction only in a coarse grained way, e.g. through modifiers
private or protected which limit accessibility of a name to
some predetermined part of a system. There is usually no
analogue to the signatures with abstract types in module
systems, which can hide information about a binding out-
side the unit defining it.

Recently, we see a convergence of the two worlds. Module
systems have acquired a form of inheritance through mixin
modules [DS96, AZ99, AZ02, BL92, Bra92], first-class mod-
ules [Rus00] can play a role similar to objects, and recur-
sive modules are also being investigated [CHP99]. On the
object side, nested classes with virtual or abstract types
[MMP89, Tho97, BOW98] can model the essential prop-
erties of signatures with abstract types in ML-like mod-
ule systems [Mac84]. In principle, this is not a new de-
velopment. Class nesting has been introduced already in

Simula 67 [DMN70], whereas virtual or abstract types are
present in BETA [MMPN93], as well as more recently in
gbeta [Ern99], Rune [Tor02] and Scala [Ode02]. An es-
sential ingredient of these systems are objects with type
members. There is currently much work that explores
the uses of this concept in object-oriented programming
[SB98, TT99, Ern01, Ost02]. But its type theoretic foun-
dations are just beginning to be investigated.

As is the case for modules, dependent types are a promis-
ing candidate for a foundation of objects with type mem-
bers. Dependent products can be used to represent functors
in SML module systems as well as classes in object sys-
tems with virtual types [IP02]. But where the details in ML
module systems build on a long tradition, the correspond-
ing foundations of object systems with abstract and virtual
types have so far been less well developed. One possible ap-
proach would be to extend the formalizations of ML module
systems to object systems, but their technical complexity
makes this a difficult task. An alternative would be to ap-
ply the intuitions of dependent types to a smaller calculus
of objects and classes, with the aim of arriving on a com-
bined foundation for objects and classes as well as modules.
This is what we want to achieve in this paper. Our main
contribution is a formal study of a type theory for objects
based on dependent types. The theory developed here can
be used as a type-theoretic foundation for languages such as
BETA, gbeta or Scala, as well as for many concepts that
have so far been presented only in an informal way.

A characteristic of our calculus and type system is that it is
nominal. Nominality comes into play in two respects. First,
objects are given unique names in the reduction system. It
is always the name of an object which is passed, instead
of a copy of the object itself. A name passing strategy for
objects is necessary because our regime of dependent types
is based on object identity: If L is a type label then x.L and
y.L are the same type only if x and y can be shown to refer
to the same object. If objects were copied, type equalities
would not be maintained during reduction.

Second, we introduce a nominal binding for types: L ≺ T
defines L as a name of a new type which unfolds to type T .
Two such definitions always define two different types, even
if they unfold to the same type. This corresponds closely to
the notion of interfaces in a language like Java. An interface
defines a new type whose structure is completely known. It

is possible to define values of an interface type by giving
implementations of all members of the interface. In our type
system we represent the members of an interface by a record
type T . The relationship between the interface name I and
its unfolding T is then neither an equality I = T (because
then I would not represent a new type), nor is I an abstract
type I <: T (because then one could not create new values
of I from implementations of type T). Hence, the need of
the third type binding I ≺ T .

A perhaps more standard alternative to our nominal new-
type bindings would be branding. That is, one would define
type equality and subtyping structurally and introduce a
binder to create new type names. Branding then means
creating a new type by combining a structurally defined
type and a freshly created type name. An advantage of
the branding approach is that it is orthogonal to traditional
structural type systems for objects or modules. A disadvan-
tage is that it corresponds less well to the definitions and
implementations of existing object-oriented languages (with
the exception of Modula-3 [CDG+92]).

A more technical reason for abandoning the structural types
with brands approach has to do with recursion: In a sys-
tem with dependent types, type recursion can involve terms,
which means that recursive types are not necessarily regu-
lar trees. For instance if p is a qualified identifier of an ob-
ject with a term member l and a type member L, then the
type p.L might depend on the type p.l.L. The resulting tree
would then not be regular. There is little hope that practi-
cal semi-algorithms for checking equality and subtyping of
non-regular trees can be found. To sidestep these problems
we follow the strategy of many existing programming lan-
guages: we restrict ourselves to non-recursive type aliases,
and introduce a new kind of type definition that makes the
defined type a subtype of its right-hand side. Note that sim-
ilar problems for type-checking are caused by parameterized
algebraic types where recursive use of a type constructor
can also lead to non-regular trees. The common approach
to deal with such types is again to make them nominal.

In summary, we design and study in this paper νObj, a core
calculus and type system for objects and classes with type
members. Type members can be aliases, abstract types,
or new types. Classes are first-class and can be composed
using mixin-composition. Our type system supports via en-
codings:

• Most concepts of SML-style module systems, includ-
ing sharing constraints and higher-order functors, but
excluding applicative functors.

• System F<: [CMMS94], with the full subtyping rule.

• Virtual types and family polymorphism [Ern01].

Because all these constructs are mapped to the same small
language core, it becomes possible to express unified con-
cepts. In particular, our theory promotes the following iden-
tifications.

Object = Module
Object type = Signature
Class = Method = Functor

The same identifications are made in BETA and gbeta,
where classes and methods are subsumed under the notion

of “patterns”. Our own language Scala follows the same
approach, except that it maintains a distinction between
methods and classes on the syntactical level.

The main technical results of the paper are

• Confluence of the reduction relation.

• Undecidability of type checking by reduction to the
problem in F<:.

• Type soundness – a well-typed program that does not
diverge reduces to an answer of the same type.

Other related work Nominal type systems have also
been formalized in the Java context, examples are [FKF98,
IPW99, DE97, NvO98]. A difference between these ap-
proaches and ours is that they rely on a global class graph
that describes membership and inheritance. Another dif-
ference is that these systems are almost completely nom-
inal, in the sense that most types can be described by a
name (exceptions are only array types and generic types in
FGJ [IPW99]). By contrast, classes can be local in νObj
and nominal types are just one construction in an otherwise
structural type system.

There are two other attempts at formalizations of virtual or
abstract types in object-oriented programming that we are
aware of. The first, by Torgersen [Tor98], sketches a nominal
type system for virtual types. It argues informally that if
certain restrictions are imposed on the usage of virtual types
(which in fact makes them equivalent to abstract types in
our terminology), type soundness can be ensured. Igarashi
and Pierce [IP99] proposed a foundation of virtual types
using a type system that adds dependent types to an F<:

core. However, no formal study of the type system’s prop-
erties was attempted, and in fact their initial formalization
lacked the subject reduction property (that formalization
was dropped in the journal version of their paper [IP02]).

The rest of this paper is structured as follows. Section 2
presents context-free syntax, operational semantics, and
type assignment rules of our object calculus, νObj. Section 3
illustrates in a series of examples how the calculus expresses
common object-oriented idioms. Section 4 presents the type
structure of νObj types, including derivation rules for well-
formedness, equality and subtyping. Section 5 presents an
encoding of F<: in νObj. Section 6 presents the meta-theory
of νObj with results on confluence, soundness and undecid-
ability. Section 7 concludes. Complete typing rules are given
in Appendix A.

2 The νObj Calculus

We now present a core language for objects and classes.
Compared to the standard theory of objects [AC96], there
are three major differences. First, we have classes besides
objects as a primitive concept. Classes are even “first-class”
in the sense they can result from evaluation of a term and
they may be associated with a label. Second, the calculus
has a notion of object identity in that every object is refer-
enced by a name and it is that name instead of the object
record which is passed around. Third, we can express object
types with type components, and some of these components
can be nominal.

2

Syntax
x, y, z Name
l, m, n Term label

s, t, u ::= Term
x Variable
t.l Selection
νx← t ; u New object
[x :S | d] Class template
t &S u Composition

d ::= Definition
l = t Term definition
L � T Type definition

p ::= Path
x | p.l

v ::= Value
x | [x :S | d]

L, M, N Type label

S, T, U ::= Type
p.type Singleton
T •L Type selection
{x | D} Record type (=:: R)
[x :S | D] Class type
T & U Compound type

D ::= Declaration
l : T Term declaration
L �: T Type declaration

�: ::= Type binder
= Type alias
≺ New type
<: Abstract type

� ::= Concrete type binder
= | ≺

Structural Equivalence α-renaming of bound variables x, plus

(extrude) e〈νx← t ; u〉 ≡ νx← t ; e〈u〉 if x 6∈ fn(e), bn(e) ∩ fn(x, t) = ∅

Reduction

(select) νx← [x :S | d, l = v] ; e〈x.l〉 → νx← [x :S | d, l = v] ; e〈v〉 if bn(e) ∩ fn(x, v) = ∅

(mix) [x :S1 | d1] &S [x :S2 | d2] → [x :S | d1] d2]

where evaluation context

e ::= 〈〉 | e.l | e &S t | t &S e | νx← t ; e | νx←e ; t | νx← [x :S | d, l = e] ; t

Type Assignment

(Var)
x :T ∈ Γ

Γ ` x : T

Γ ` t : T, T 3 (l : U)

Γ ` t.l : U
(Sel)

(VarPath)
Γ ` x : R

Γ ` x : x.type

Γ ` t : p.type, t.l : R

Γ ` t.l : p.l.type
(SelPath)

(Sub)
Γ ` t : T, T ≤ U

Γ ` t : U

Γ ` t : [x :S | D], S ≺ {x | D}
Γ, x :S ` u : U x 6∈ fn(U)

Γ ` (νx← t ; u) : U

(New)

(Class)

Γ ` S wf Γ, x :S ` D wf, ti : Ti

ti contractive in x (i ∈ 1..n)

Γ ` [x :S | D, li = t i∈1..n
i] : [x :S | D, li :T

i∈1..n
i]

Γ ` ti : [x :Si | Di]

Γ ` S wf, S ≤ Si (i = 1, 2)

Γ ` t1 &S t2 : [x :S | D1]D2]

(&)

Figure 1: The νObj Calculus

3

2.1 Context-Free Syntax

Figure 1 presents the νObj calculus in terms of its ab-
stract syntax, and its structural equivalence and reduc-
tion relations, and its rules for type assignment. There
are three alphabets. Proper term names x, y, z are subject
to α-renaming, whereas term labels l, m, n and type labels
L, M, N are fixed.

A term denotes an object or a class. It can be of the following
five forms.

• A simple name x, which denotes an object.

• A selection t.l, which can denote either an object or a
class.

• An object creation νx← t ; u, which defines a fresh in-
stance x of class t. The scope of this object is the term
u.

• A class template [x : S | d] where d is a sequence of
definitions which associate term labels with values and
type labels with types. This acts as a template to con-
struct objects with the members defined by the defini-
tions. The name x of type S stands for “self”, i.e. the
object being constructed from the template. Its scope
is the definition sequence d. A term or type can refer
via x.l to some other member of that object. No tex-
tual sequence constraint applies to such references; in
particular it is possible that a binding refers to itself
or to bindings defined later in the same record. This
distinguishes our type system from earlier type systems
for records [CM91] or modules [HL94].

• A mixin composition t &S u, which forms a combined
class from the two classes to which t and u evaluate.
Here, S is the type of “self” in the combined class.

A value is a simple name or a class template. A path p is a
name x followed by a possibly empty sequence of selections,
e.g. x.l1.ln.

The syntax of types in our system closely follows the syntax
of terms. A type can be of the following five forms.

• A singleton type p.type. This type represents the set of
values which has as only element the object referenced
by the path p. Singleton types are the only way a type
can depend on a term in νObj.

• A type selection T •L, which represents the type com-
ponent labelled L of type T .

• A record type {x | D} where D is a sequence of decla-
rations which can be value bindings or type bindings.
A value binding l : T associates a term label l with its
type T . Type bindings come in three different forms:

First, the binding L = T defines L to be an alias for
T . Second, the binding L ≺ T defines L to be a new
type which expands to type T . That is, L is a subtype
of T which has exactly the members defined by T ; fur-
thermore, one can create objects of type L from a class
which defines all members of T . Third, the binding
L <: T defines L to be an abstract type which is known
to be a subtype of its bound T .

We let the meta-variable � range over = and ≺, and
let �: range over =, ≺, and <:. The name x stands for
“self”; its type is assumed to be the record type itself.
We let the letter R range over record types.

• A compound type T & U . This type contains all mem-
bers of types T and U . The subtyping relation for
compound types is the same as the one for intersec-
tion types [BCDC83], but the formation rules are more
restrictive. Where T and U have a member with the
same label, the compound type contains the member
defined in U . That member definition must be more
specific (see Section 4) than the corresponding mem-
ber definition in T .

• A class type [x : S | D], which contains as values classes

that instantiate to objects of type {x | D}, or some sub-
type of it. x is again the name for “self”. It now comes
with an explicit type S which may be different from
{x | D}. Definitions in S which are missing from D
play the role of abstract members. Such members can
be referred to from other definitions in the class, but
they are not defined in the class itself. Instead, these
members must be defined in other classes which are
composed with the class itself in a mixin composition.
Definitions which are present in D but missing in S
play in some sense the role of non-virtual members –
they are not referred to via “self” from inside the class,
so overriding them does not change existing behavior.
Definitions present in both S and D play the role of
virtual members.

Discussion Most notably missing from the core language
are functions, including polymorphic ones, and parameter-
ized types. In fact, type variables are missing completely
– the only α-renamable identifiers denote ν-bound terms.
However, these omitted constructs can still be expressed in
νObj using context-free encodings. This will be shown later
in the paper. Section 3 explains how named monomorphic
functions are encoded. Section 5 generalizes the encoding
to system F<:.

The type syntax defines a singleton type p.type and a se-
lection T •L which operates on types T . More conventional
would have been a type selection p.L which operates on
terms p instead of types. The latter selection operation can
be expressed in our syntax as p.type•L. Besides having
some technical advantages, this decomposition can express
two concepts which the conventional type selection p.L can-
not. First, the self-type of a class can be expressed as a
singleton type this.type. This can accurately model covari-
ant self-types. For contravariant self-types one would need a
matching operation [BFP97, Bru02] instead of – or in addi-
tion to – the subtyping relation that we introduce. Second,
an inner class of the kind it exists in Java [GJSB00, Iga00]
can be referenced by a type selection Outer • Inner where
Outer and Inner are types. Such a selection risks being non-
sensical in the presence of abstract type members in the
outer class Outer. Consequently, our typing rules prevent
formation of the type T•L if L’s definition depends on some
abstract member of T . Note that this is not a problem for
Java, which does not have abstract type declarations.

4

Syntactic Sugar

1. The type p.L is a shorthand for p.type•L.

2. The class type [x | D] is a shorthand for [x :

{x | D} | D].

3. The class template [x | d] is a shorthand for [x :

{x | D} | d] where D is the most specific set of dec-

larations matching definitions d.

4. The types {D}, [D] and the term [d] are shorthands for

{x | D}, [x | D] and [x | d] where x does not appear in

D or d.

5. new t is a shorthand for νx← t ; x.

6. t1 & t2 is a shorthand for t1 &S1 & (S2 & {x | D1⊕D2}) t2

if ti has least type [x : Si | Di] for i ∈ 1..2.

The last shorthand implements an overriding behavior for
mixin composition where a concrete definition always over-
rides an abstract definition of the same label. Furthermore,
between two abstract definitions or between two concrete
definitions of the same label it is always the second which
overrides the first. This scheme, which corresponds closely
with the rules in Zenger’s component calculus [Zen02], is of-
ten more useful than the straight “second overrides first”
rule of systems where mixins are seen as functions over
classes [BG96, FKF98, BPS99].

2.2 Operational Semantics

Figure 1 specifies a structural equivalence and a small-step
reduction relation for our calculus. Both relations are based
on the notion of an evaluation context, which determines
where in a term reduction may take place. The grammar
for evaluation contexts given in Figure 1 does not yet yield
a deterministic reduction relation, but still leaves a choice
of a strict or lazy evaluation strategy, or some hybrid in-
between. Particular evaluation strategies are obtained by
tightening the grammar for evaluation contexts.

Notation We write a for a sequence of entities a1, . . . , an.
We implicitly identify all permutations of such a sequence,
and take the empty sequence ε as a unit for (,). The domain

dom(d), dom(D) of a sequence of definitions d or declara-

tions D is the set of labels it defines. The restriction d|L,

D|L of definitions d or declarations D to a set of labels L
consists of all those bindings in d or D that define labels
in L. The] operator on definitions or declarations denotes
concatenation with overwriting of common labels. That is,
a] b = a|dom(a)\dom(b)

, b.

A name occurrence x is bound in a type T , a term t, a
definition d, a declaration D, or an evaluation context e if
there is an enclosing object creation νx ← u ; t, a class
template [x : S | d], a class type [x : S | D], or a record type

{x | D} which has the occurrence in the scope of the name
x. The free names fn(X) of one of the syntactic classes X
enumerated above is the set of names which have unbound
occurrences in X. The bound names bn(e) of an evaluation
context e are all names x bound by a subterm of e such that
the scope of x contains the hole 〈〉 of the context.

Structural Equivalence As usual we identify terms re-
lated by α-renaming. We also postulate a scope extrusion
rule (extrude), which allows us to lift a ν-binding out of an
evaluation context, provided that this does not cause cap-
ture of free variable names.

Formally, α-renaming equivalence ≡α is the smallest con-
gruence on types and terms satisfying the four laws

νx← t ; u ≡ νy← t ; [y/x]u if y 6∈ fn(u)
[x :S | d] ≡ [y :S | [y/x]d] if y 6∈ fn(d)

[x :S | D] ≡ [y :S | [y/x]D] if y 6∈ fn(D)
{x | D} ≡ {y | [y/x]D} if y 6∈ fn(D)

Structural equivalence ≡ is the smallest congruence contain-
ing ≡α and satisfying the (extrude) law in Figure 1.

Reduction The reduction relation→ is the smallest rela-
tion that contains the two rules given in Figure 1 and that
is closed under structural equivalence and formation of eval-
uation contexts. That is, if t ≡ t′ → u′ ≡ u, then also
e〈t〉 → e〈u〉.
The first reduction rule, (select), connects a definition of an
object with a selection on that object. The rule requires that
the external object reference and the internal “self” have the
same name x (this can always be arranged by α-renaming).
The second rule, (mix), constructs a class from two operand
classes by mixin composition, combining the definitions of
both classes with the] operator. Multi-step reduction →→
is the smallest transitive relation that includes ≡ and →.

2.3 Type Assignment

Figure 1 also gives the rules for assigning types to terms.
These are expressed as deduction rules for type judgements
Γ ` t : T . Here, Γ is a type environment, i.e. a set of
bindings x : T , where all bound names x are assumed to be
pairwise different.

There are the usual tautology and subsumption rules. Rule
(Sel) assigns to a selection t.l the type U provided t’s type
has a member l : U . Rules (VarPath) and (SelPath)
assign singleton types p.type to terms which denote unique
objects.

Rule (New) types a ν-expression νx← t ; u. The term t

needs to have a class type [x : S | D] such that the self
type S expands to a record type which contains exactly the
declarations D. This means that all declarations present in
S must be defined in D, with the same type. In particu-
lar, classes with abstract members cannot be instantiated.
The body u is then typed under an augmented environment
which contains the binding x : T . The type of u is not
allowed to refer to x.

Rule (Class) types class templates. All term definitions
li = ti in the template are typed under a new environment
which includes a binding x : S for the self-name of the class.
However, it is required that all terms ti are contractive in
self. This means that they do not access self during the
instantiation of an object of the class. Contractiveness is
defined formally as follows.

Definition. The term t is contractive in the name x if one
of the following holds.

5

– x 6∈ fn(t), or

– t is a class template [y : S | d], or

– t is a mixin composition t1 &S t2 and t1, t2 are contrac-
tive in x, or

– t is an object creation νy← t1 ; t2, x 6∈ fn(t1) and t2 is
contractive in x.

The contractiveness requirement prevents accesses to fields
of an object before these fields are defined. In conventional
object-oriented languages this would correspond to the re-
quirement that self can be accessed only from methods, not
from initializers of object fields. More liberal schemes are
possible [Bou01], but require additional technical overhead
in the type assignment rules. One can also envisage to allow
accesses to self without restrictions, preinitializing fields to
some default value, or raising a run-time exception on access
before definition. The first of these schemes is used in Java
for definitions of instance fields, the second for definitions of
static fields.

The last rule, (&) types compositions of class terms. The
self type S of the composition is required to be a subtype
of the self types of both components. The definitions of
the composed class are then obtained by concatenating the
definitions of the components.

These deduction rules are based on several other forms of
judgements on types, specifically the well-formedness judge-
ment Γ ` T wf, the membership judgement Γ ` T 3 D,
the expansion judgement Γ ` T ≺ T ′, and the subtyp-
ing judgement Γ ` T ≤ T ′. Deduction rules for these
judgements are motivated in Section 4 and given in full in
Appendix A.

As usual, we assume that terms can be alpha-renamed in
type assignments in order to prevent failed type derivations
due to duplicate variables in environments. That is, if Γ `
t : T and t ≡α t′ then also Γ ` t′ : T .

The type assignment judgement is extended to a judgement
relating definitions and declarations as follows.

Definition. A declaration D matches a definition d in an
environment Γ written Γ ` d : D, if one of the following
holds:

Γ ` (l = t) : (l : T) if Γ ` t : T .

Γ ` (L � T) : D if Γ ` (L � T) ≤ D (see Section 4.5
for a definition of ≤ on declarations).

2.4 Define-By-Value νObj

The reduction relation defined in Figure 1 allows for a range
of reduction strategies. For instance, the fields of an object
may be defined eagerly, at the time the object is created. Or
the evaluation of all object fields may be delayed until some
field of the object is selected. Or evaluation of each individ-
ual field might be delayed even further until the field itself is
first selected. More determined evaluation schemes can be
obtained by tighening the grammar of evaluation contexts
in Figure 1. This section presents as an example νObjV ,
a variant of νObj which implements the eager evaluation
strategy found in most object-oriented languages.

First, an auxiliary notion: A field is a fully evaluated defi-
nition. The syntax of fields f is:

f ::= l = v | L � T

Now, define-by-value evaluation contexts eV are produced
by the following grammar.

eV ::= 〈〉
| eV .l
| eV &S t
| v &S eV

| νx←eV ; t
| νx← [y :S | d, l = eV] ; t
| νx← [y :S | f] ; eV

Then define-by-value reduction is obtained by replacing
evaluation contexts e by eV in the definition of reduction
in Figure 1. As can be seen by the last alternative of eV , an
object created by a ν-term in this reduction always has its
definitions fully evaluated before evaluation of the scope of
the ν-binder is begun. Nothing is imposed on the order in
which the definitions of an object are evaluated (note that
(,) in the second-to-last alternative of eV is commutative).
It would of course be possible by further restriction of the
grammar of evaluation to impose a fixed evaluation order
such as left-to-right evaluation.

3 Examples

Before presenting the remaining details of the theory, we
demonstrate its usage by means of some examples. Since
the νObj calculus is quite different from standard object-
oriented notations, we first present each example in the
more conventional object-oriented language Scala [Ode02].
Scala’s object model is a generalization of the object model
of Java. The extensions most important for the purposes
of this paper are abstract types, type aliases, and mixin
composition of classes. A subset of Scala maps easily into
νObj, and we will restrict the example code to that subset.
Other constructs, such as higher-order functions, generics,
or pattern matching can be defined by translation into the
subset, and, ultimately, into the object calculus.

Modules, Classes and Objects We start with a class
for representing points in a one dimensional space. Class
Point is defined as a member of the module pt. In addition
to the coordinate x, it defines a method eq for comparing
two points.

module pt with {
abstract class Point with {

def x : Int;
def eq(p : Point): Boolean = (x == p.x);
}

}

In the subset of Scala used here, classes do not have ex-
plicit constructor parameters. Instead, parameters are rep-
resented as abstract class members. For creating an object,
one has to subclass Point and provide concrete implementa-
tions for the abstract members. In the following code we do
this twice by using a mixin composition of class Point with
an anonymous class that defines the missing coordinate x.

6

val a = new pt.Point with { def x = 0; };
val b = new pt.Point with { def x = 1; };
a.eq(b)

We now devise a translation of the previous Scala code into
our calculus. In addition to the syntax defined in Figure 1,
we also make use of λ-abstractions and applications. Later
in this section we will explain how to encode these constructs
in νObj.

ν pt ← [pt |
Point ≺ {x : Int, eq : pt.Point → Boolean },
point = [this : pt.Point |

eq = λ (p : pt.Point) p.x == this.x
]

];
ν a ← pt.point &pt.Point [x = 0];
ν b ← pt.point &pt.Point [x = 1];
a.eq(b)

Modules are encoded as singleton objects who’s members are
the contained classes. A class is represented by two entities:
an object type that is used to type instances of the class and
a class value, which is used to construct objects. We use the
name of the class as the name of the type and the same name,
but starting with a lower-case letter, as the name of the class
value. While the type includes the signatures of all class
members, the class value only provides implementations for
the non-abstract members. In general, abstract members
are present in the self-type S of a class [x : S | d], but are

missing from the class definitions d. Non-abstract members
are present in both S and d.

Functions For encoding λ-abstractions and applications
we use a technique similar to the one for passing parameters
during class instantiations. A λ-abstraction λ(x : T) t is
represented as a class with an abstract member arg for the
function argument and a concrete member fun which refers
to the expression for computing the function’s result:

[x : {arg : T } | fun = [res = t′]]

where t′ corresponds to term t in which all occurrences of
x get replaced by x.arg. As explained in Section 2, we
cannot access arg directly on the right-hand-side of fun.
Therefore fun packs the body of the function into another
class. The instantiation of this class will then trigger the
execution of the function body. For instance, function
λ (p : pt.Point) p.x == this.x could be encoded as a class
[p : {arg : pt.Point } | fun = [res = p.arg.x == this.x]] of
type [p : {arg : pt.Point } | fun : [res : Boolean]] that contains
an abstract member arg and a concrete member fun.

In νObj, an application g(e) gets decomposed into three
subsequent steps:

ν gapp ← g & [arg = e];
ν geval ← gapp.fun;
geval.res

First we instantiate function g with a concrete argument
yielding a thunk gapp. Then we evaluate this thunk by cre-
ating an instance geval of it. Finally we extract the re-
sult by querying field res of geval. For instance, the call
to function eq from the previous code could be encoded as
ν gapp ← a.eq & [arg = b];ν geval ← gapp.fun; geval.res.

Abstract Types Suppose we would now like to extend
the Point class for defining a new class ColorPoint that in-
cludes color information. Since extended classes define sub-
types in Scala, we cannot override method eq contravari-
antly such that the parameter of eq now has type Color-
Point. But exactly this would allow us to compare Color-
Points only with ColorPoints. Instead, we have to refactor
our code and abstract over the parameter type explicitly in
anticipation of future extensions. The following code frag-
ment defines an abstract type This in class Point with bound
Point which gets covariantly refined in subclasses like Col-
orPoint.

module pt with {
abstract class Point with {

type This extends Point;
def x : Int;
def eq(p : This): Boolean = (x == p.x);
}

}
module cpt with {

abstract class ColorPoint extends pt.Point with {
type This extends ColorPoint;
def col : String;
override def eq(p : This): Boolean = (x == p.x) &&

(col == p.col);
}

}

We now make use of the two classes and define a Point and
two ColorPoint instances.

val c = new pt.Point with
{type This = pt.Point; def x=0; };

val d = new cpt.ColorPoint with
{type This = cpt.ColorPoint; def x=1; def col=”blue”; };

val e = new cpt.ColorPoint with
{type This = cpt.ColorPoint; def x=2; def col=”green”; };

The type system has to ensure that we are able to compare
only compatible objects; i.e. we have to be able to execute
d.eq(e) and e.eq(d) as well as c.eq(d) and c.eq(e), whereas
terms like d.eq(c) are ill-typed and therefore rejected by the
typechecker.

An encoding of the previous two classes in our object calcu-
lus is given by the following term.

ν pt ← [pt |
Point ≺ {this |

This <: pt.Point,
x : Int,
eq : this.This → Boolean
},

point = [this : pt.Point |
eq = λ (p : this.This) p.x == this.x

]
];

ν cpt ← [cpt |
ColorPoint ≺ pt.Point & {

This <: cpt.ColorPoint, col : String
},

colorPoint = [this : cpt.ColorPoint |
eq = λ (p : this.This) p.x == this.x &&

p.col == this.col
]

];
ν c ← pt.point & [This = pt.Point, x = 0];
ν d ← cpt.colorPoint & [This = cpt.ColorPoint, x = 1,

col = ”blue”];
c.eq(d)

7

This example does not only explain how to use abstract
types, it also shows that our calculus is expressive enough
to model virtual types in a type-safe way.

Generic Types We now present a more evolved exam-
ple that shows how to use νObj to encode generic classes.
The following code defines a module lst which contains an
implementation for generic lists consisting of three classes
List, Nil, and Cons.

module lst with {
abstract class List with {

type T extends scala.Object;
def isEmpty : Boolean;
def head : T;
def tail : List with {type T = outer.T; };
}
abstract class Nil extends List with {

def isEmpty = True;
def head : T = error;
def tail : List with {type T = outer.T; } = error;
}
abstract class Cons extends List with {

def isEmpty = False;
}

}

Since classes are neither parameterized by values nor types,
we model the element type of a list with an abstract type T
in class List. Similarly, class parameters like the head and
the tail of a cons-cell are represented by abstract functions.
Note that the type of the tail value of a list object is a
mixin composition of List with a record type which consists
of the type binding {type T = outer.T }. This forces
the element type of a list and its tail to be the same. 1

In general, mixin composition with type bindings has an
expressive power analogous to sharing constraints in SML
module systems [Ler94].

Class Nil provides all the abstract functions of its superclass
List. For the implementation of head and tail we make use
of a predefined value error that produces errors at run-time
when accessed. error is of any type. Even though our formal
treatment does not include such a bottom type, adding one
would be straightforward.

Class Cons only defines function isEmpty. The other ab-
stract functions constitute constructor parameters and have
to be provided at instantiation time.

Here is an example how the list abstraction is applied. The
following code fragment constructs two lists of integers []
and [1] and returns the head of the second list. Again, we
use a mixin class composition to emulate parameter passing.

val x0 = new lst.Nil with { type T = Int; };
val x1 = new lst.Cons with {

type T = Int; def head = 1; def tail = x0;
};

x1.head

Here is the translation of the previous Scala code into our
object calculus.

1outer in Scala denotes the same as this outside the current class
or record; as used above it denotes the identity of the enclosing List
object.

ν lst ← [lst |
List ≺ {this |

T <: { },
isEmpty : Boolean,
head : this.T,
tail : lst.List & {T = this.T }
},

Nil ≺ lst.List,
Cons ≺ lst.List,
list = [this : lst.List |]
nil = [this : lst.Nil |

isEmpty = true, head = error, tail = error
],
cons = [this : lst.Cons |

isEmpty = false
]

];
ν x0 ← lst.nil & [T = Int];
ν x1 ← lst.cons & [T = Int, head = 1, tail = x0];
x1.head

We now augment class List of the previous example with a
function len that computes the length of the list. In Scala,
this can be done without changing the source code of List,
by using a class as a mixin:

module llst with {
abstract class ListWithLen extends lst.List with {

def tail : ListWithLen with { type T = outer.T; };
def len(): Int =

if (this.isEmpty) 0 else 1 + this.tail.len();
}

}

Class ListWithLen extends class List. It adds a new len
member and narrows the type of the existing tail member
to ListWithLen. To build lists with len members, we add
this class as a mixin. Here is an example usage:

val y0 = new lst.Nil with {
type T = Int;
def tail : ListWithLen with { type T = outer.T; } = error;
} with llst.ListWithLen;
val y1 = new lst.Cons with {

type T = Int;
def head = 1;
def tail = y0;
} with llst.ListWithLen;

y1.len()

The translation of this program into νObj is given in the
following code fragment. Please note that this time, we en-
code function len directly as a class, similar to the descrip-
tion given before. This time we can use a slightly simpler
encoding since our function is not parameterized.

ν llst ← [llst |
ListWithLen ≺ lst.List & {this |

tail : llst.ListWithLen & {T = this.T },
len : [res : Int]
},

listWithLen = [this : llst.ListWithLen |
len = [res = if (this.isEmpty) 0

else 1 + (ν t ← this.tail.len; t.res)]
]

];
ν y0 ← lst.nil & [T = Int]

& llst.listWithLen;
ν y1 ← lst.cons & [T = Int, head = 1, tail = y0]

& llst.listWithLen;
ν l ← y1.len;
l.res

8

Note that type ListWithLen is represented as a composition
of type List and a record type containing added and overrid-
den members. This turns type ListWithLen into a subtype
of type List.

4 Type Structure

The type structure of νObj is defined by deduction rules for
the following kinds of judgements:

Γ ` T wf Type T is well-formed.
Γ ` D wf Declaration D is well-formed.

Γ ` T 3 D Type T contains declaration D.

Γ ` T = U Types T and U are equal.

Γ ` T ≺ U Type T expands to type U .
Γ ` T <: U Type T is upper-bounded by type U .

Γ ` T ≤ U Type T is a subtype of type U .
Γ ` D1 ≤ D2 Declarations D1 are more specific than

declarations D2.

Compared to standard type systems there are three non-
standard forms of judgements: First, the membership judg-
ment Γ ` T 3 D factors out the essence of path-dependent
types. Second, the expansion judgement Γ ` T ≺ U cap-
tures the essential relation between a new type and its un-
folding. Third, the upper-binding judgement Γ ` T <: U
provides exact type information about which record type is
a supertype of a given type. This information is needed for
the correct treatment of type bindings in records. The es-
sential typing rules for all these judgements are discussed
in the following. A summary of all rules is also given in
Appendix A.

Notation We sometimes write judgements with several
predicates on the right of the turnstyle as an abbreviation
for multiple judgements. E.g. “ Γ ` T wf, T ′ wf ” is
an abbreviation for the two judgements “ Γ ` T wf ” and
“ Γ ` T ′ wf ”.

4.1 Membership

The membership judgement Γ ` T 3 D states that type
T has a member definition D. The judgement is derived
by the following two rules, which capture the principles of
path-dependent types.

(Single-3) Γ ` p.type <: {x | D′, D}
Γ ` p.type 3 [p/x]D

(Other-3) Γ, x : T ` x.type 3 D x 6∈ fn(Γ, D)

Γ ` T 3 D

Rule (Single-3) defines membership for singleton types. In
this case, the self-reference x in the definition is replaced by
the path p. Rule (Other-3) defines membership for arbi-
trary types in terms of (Single-3). To determine a member
D of a type T which is not a singleton, invent a fresh variable
x of type T and determine the corresponding member of type
x.type. The resulting member is not allowed to depend on
x. Note that, if T is a singleton type, rule (Other-3) either
fails or yields the same judgements as rule (Single-3).

Example 4.1 Consider the type T ≺ (x : T | L <: { }, l1 :
x.L, l2 : Int). Further consider a path p and some other
term t which is not a path, both of type T . Then p contains
the definitions L <: { }, l1 : p.L, and l2 : Int. On the
other hand, t contains only the definitions L <: { } and
l2 : Int since rule (Other-3) does not derive a binding
for l1. Indeed, substituting t for the self reference x in the
binding for l1 would yield the type t.L which would not be
well-formed.

4.2 Equality

The type equality judgement Γ ` T = T ′ states that the
two types T and T ′ are the same or aliases of each other.
Type equality is the smallest congruence which is closed
under the following two derivation rules.

(Alias-=)
Γ ` T 3 (L = U), T wf

Γ ` T •L = U

(Single-=)
Γ ` p : q.type

Γ ` p.type = q.type

Rule (Alias-=) is standard; it states that type T•L is equal
to U , provided T has an alias member definition L = U .
Rule (Single-=) expresses the following property: if a path
p has a singleton type q.type, we know that p and q are
aliases, hence the singleton types p.type and q.type should
be equal. Without the rule, one would only have that p.type
is a subtype of q.type.

4.3 Expansion

The type expansion judgement Γ ` T ≺ T ′ states that
type T expands (or: unfolds) into type T ′. Expansion is the
smallest transitive relation which contains type equality and
is closed under the following three derivation rules.

(Tsel-≺)
Γ ` T 3 (L ≺ U)

Γ ` T •L ≺ U

(&-≺)
Γ ` T ≺ T ′, U ≺ U ′

Γ ` T & U ≺ T ′ & U ′

(Mixin-≺)
Γ, x : {x | D1]D2} ` D2 ≤ D1|dom(D2)

Γ ` {x | D1} & {x | D2} ≺ {x | D1]D2}

Rule (Tsel-≺) expresses expansion of type selections in the
usual way. Rule (Mixin-≺) states that the combination
of two record types R1 and R2 expands to a record type
containing the concatenation of the definitions in R1 and R2.
If some label is defined in both R1 and R2, the definition in
R2 overrides the definition in R1. In this case we must have
that the definition in R2 is more specific than the definition
in R1.

4.4 Upper Bounds

The upper bound judgement Γ ` T <: T ′ states that
T ′ is an expansion of T or a (tight) upper bound of it. The
primary use of this relation is in determining for a type T the

9

least record type which is a supertype of T . This information
is needed for deriving the membership judgement by rule
(Single-∈).
Upper-binding is the smallest transitive relation which con-
tains expansion and which is closed under the following three
derivation rules.

(Tsel-<:)
Γ ` T 3 (L <: U)

Γ ` T •L <: U

(Var-<:)
x : T ∈ Γ

Γ ` x.type <: T

(Sel-<:)
Γ ` p.type 3 (l : U)

Γ ` p.l.type <: U

The first rule (Tsel-<:) defines upper bounds of abstract
types in the usual way. The other two rules take as the
upper bound of a singleton type p.type the type which p
has in the current environment. Note that we could not
have replaced these two rules by a simpler rule which states
that Γ ` p.type <: T , provided Γ ` p : T . The reason is
that the subsumption for type assignments would allow one
to forget information about a path’s type. Hence, one could
not guarantee with the simpler rule that upper bounds are
tight.

4.5 Subtyping

The subtyping judgement Γ ` T ≤ T ′ states that T is a
subtype of T ′. Subtyping is the smallest transitive relation
that contains upper-binding (<:) and that is closed under
the following four rules.

(&-≤)
Γ ` T1 & T2 ≤ T1

Γ ` T1 & T2 ≤ T2

(≤-&)
Γ ` T ≤ T1, T ≤ T2

Γ ` T ≤ T1 & T2

(Rec-≤)
Γ, x : {x | D, D′} ` D ≤ D′′

Γ ` {x | D, D′} ≤ {x | D′′}

(Class-≤)

Γ ` R wf, S & R ≤ S′, S′ ≤ S

Γ, x :S′ ` D ≤ D′

Γ ` [x : S | D] ≤ [x : S′ | D′]

Rules (&-≤) and (≤-&) state that & behaves like type inter-
section in subtyping: That is, the type T1 & T2 is a subtype
of both T1 and T2 and to show that a type U is a subtype
of T1 & T2 one needs to show that U is a subtype of both
T1 and T2.

The remaining two rules (Rec-≤) and (Class-≤) determine
subtyping for record and class types. For record types, sub-
typing is covariant in the declarations D, and declarations
in the subtype may be dropped in the supertype. For class
types, subtyping is contravariant in the self-type S and co-
variant in the declarations D. However, but both premises
are restricted for type checking reasons.

First, unlike for record types, a class type always declares

the same labels as its supertypes, so declared labels may
not be forgotten. This ensures that the type of labels in
a composition is fully determined. For instance, in [l =
1] &{} [l = “abc′′] the label l is always known to be bound
to a string, not an integer. If labels could be forgotten, the
second operand of the composition could be widened via
subsumption to the empty class, which would assign l the
integer in an alterantive typing derivation of the composite
class term.

Second, contravariance of self types is limited so that the
smaller self type S′ must result from the larger self type S
composed with some record type. On the other hand, it is
not allowed to take as S′ some nominal subtype of S. This
restriction is necessary to ensure that there is always a least
type that can be assigned to instances created from a class
in a ν-expression.

The (≤) relation is also defined between declarations. D ≤
D′ means that declaration D is more specific than declara-
tion D′. This predicate is expressed by the following two
derivation rules.

(Bind-≤)
Γ ` T ≤ T ′

Γ ` (l : T) ≤ (l : T ′)

(Tbind-≤)
Γ ` T ≤ T ′

Γ ` (L �: T) ≤ (L <: T ′)

Subtyping on value declarations is defined as usual. For type
labels one has that an arbitrary type declaration L �: T is
more specific than an abstract type declaration L <: T , pro-
vided T ≤ T ′. Hence, abstract types can be overridden with
other abstract or concrete types as long as the overriding
type conforms to the abstract type’s bound. Aliases and
new types, on the other hand, cannot be overridden.

4.6 Well-formedness

The well-formedness judgement is of the form Γ ` T wf.
Roughly, a type is well-formed if it refers only to names and
labels which are defined and if it does not contain any illegal
cyclic dependencies. These requirements are formalized in
the four rules given below. The remaining rules propagate
these requirements over all forms of types; they are given in
full in Appendix A.

(Single-wf)
Γ ` p : R

Γ ` p.type wf

(Tsel-wf1)
Γ ` T wf, T 3 (L = U), U wf

Γ ` T •L wf

(Tsel-wf2)
Γ ` T wf, T 3 (L ≺ U), U ≺ R

Γ ` T •L wf

(Tsel-wf3)
Γ ` T 3 (L <: U), U <: R

Γ ` T •L wf

Rule (Single-wf) states that p.type is well-formed if p is
a path referring to some object. The next three rules cover
well-formedness of a type selection T •L. They distinguish
between the form of definition of L in T .

10

If L is defined to be an alias of some type U , T •L is well-
formed only if U is well-formed. This requirement excludes
recursive types, where a type label is defined to be an alias of
some type containing itself. Such a recursive type would not
have a finite proof tree for well-formedness. On the other
hand, if L is defined to be a new type which expands to some
type U , one requires only that U in turn expands to some
record type. This requirement excludes cyclic definitions
such as {x | L ≺ x.L & R}. But recursive references to the
label from inside a record or class are allowed; e.g. {x | L ≺
{next : x.L}}. Finally, if L is defined to be an abstract type
bounded by U , one requires that U in turn is bounded by
a record type. This requirement excludes situations where
a type is bounded directly or indirectly by itself, such as
in {x | L1 <: x.L2, L2 <: x.L1}. But it admits F-bounded
polymorphism, where the abstract type appears inside its
bound, as in {x | L <: {next : x.L}}.

5 Relationship with F<:

System F<: can be encoded in νObj by the translation 〈〈·〉〉,
which is defined on types, terms, and environments. The
translation of F<: types into νObj types is defined as follows.

〈〈∀X <: S.T 〉〉 = {val : [X : {Arg <: 〈〈S〉〉} |
fun : [res : 〈〈T 〉〉]]}

〈〈T → U〉〉 = {val : [x : {arg : 〈〈T 〉〉} |
fun : [res : 〈〈U〉〉]]}

(x fresh)

〈〈X〉〉 = X.Arg

〈〈>〉〉 = { }

The translation of F<: terms into νObj terms is defined as
follows.

〈〈λx : T.t〉〉 = new [val = [x : {arg : 〈〈T 〉〉} |
fun = [res = 〈〈t〉〉]]]

〈〈t u〉〉 = ν x←〈〈t〉〉.val & [arg = 〈〈u〉〉] ;
ν y←x.fun ;
y.res

〈〈ΛX <: S.t〉〉 = new [val = [X : {Arg <: 〈〈S〉〉} |
fun = [res = 〈〈t〉〉]]]

〈〈t[T]〉〉 = ν x←〈〈t〉〉.val & [Arg = 〈〈T 〉〉] ;
ν y←x.fun ;
y.res

〈〈x〉〉 = x.arg

Finally, here is the translation of F<: environments into
νObj environments.

〈〈x : T 〉〉 = x : {arg : 〈〈T 〉〉}
〈〈X <: T 〉〉 = X : {Arg <: 〈〈T 〉〉}
〈〈ε〉〉 = ε
〈〈Γ, Σ〉〉 = 〈〈Γ〉〉, 〈〈Σ〉〉

In the translation, we use letters x and X for names, words
consisting of lower-case letters for value labels, and words
consisting of upper-case letters for type labels. Specifically,

arg labels a value parameter, Arg labels a type parameter,
res labels a function result, and val labels a class value.

Given this translation, here is how F<:’s polymorphic iden-
tity function ΛX <: >.λx : X.x is expressed in our calculus.

new [val = [X : {Arg <: { } } |
fun = [res =

new [val = [x : {arg : X.Arg } | fun = [res = x.arg]]]
]]]

To give some sense to our encoding we can easily show the
following properties.

Lemma 1 For any environment Γ, types T and U , term t
in F<::

1. Γ `F<: T <: U implies 〈〈Γ〉〉 ` 〈〈T 〉〉 ≤ 〈〈U〉〉.

2. Γ `F<: t : T implies 〈〈Γ〉〉 ` 〈〈t〉〉 : 〈〈T 〉〉.

Lemma 2 `F<: t : T and t → u implies 〈〈t〉〉 →+

eG〈〈〈u〉〉〉, where eG is a “garbage context” of the form
νx1 ← u1 ; . . . ; νxn ← un ; 〈〉 such that no name xi is
free in 〈〈u〉〉.

The introduction of the garbage context eG in the previous
lemma is necessary because translation of λ-abstraction and
λ-application involves the creation of objects, which are per-
sistent, contrary to the λs that disappear during the lambda
reduction rule.

Lemma 3 〈〈t〉〉 → implies t→.

The reduction relation → that we use for F<: in 3 is the
call-by-value small-step semantics, i.e. we never reduce un-
der the λs and an argument has to be reduced to a value be-
fore being passed to a function. Together with the previous
lemma, this lemma has as corollary that if a well-typed term
reduces to an irreducible term then its translation reduces
to the translation of this term, which is also irreducible.

6 Meta-Theory

In this chapter, we establish three results for νObj. First,
that the reduction relation is confluent. Second, that the
typing rules are sound with respect to the operational se-
mantics. Third, that the subtyping relation (and with it
type checking) is undecidable.

6.1 Confluence

Theorem 6.1 The →→ relation is confluent: If t →→ t1 and
t →→ t2 then there exists a term t′ such that t1 →→ t′ and
t2 →→ t′.

Proof Sketch: It is sufficient to show that the relation →
satisfies the diamond property.

The reduction relation of νObj could be compared to the
call-by-value λ-calculus without reduction under the λs be-
cause only values can be substituted by the rule (select) and
there is no reduction inside class templates.

11

It is straightforward to show that this variant of operational
semantics for the λ-calculus satisfies the diamond property.
The only difficulty with our calculus, compared to the λ-
calculus, is that we have a structural equivalence which goes
beyond the usual alpha-renaming and that prevents us of
reasoning by case on the shape of a term, precisely because
two structurally equivalent terms can have different struc-
tures.

So the idea of the proof is not to take into account in a first
time this annoying structural equivalence and prove that the
simple reduction relation (without structural equivalence)
satisfies the diamond property.

Then we define another reduction relation →ν intented to
compute the canonical form of a term w.r.t. to the structural
equivalence, and we show that:

1. ≡ = (→ν ∪ ←ν)∗

2. →ν is confluent (strong normalization + local conflu-
ence).

3. if t → u and t →ν t′ then there exists u′ s.t. t′ → u′

and u→ν u′.

We can now finish the proof as shown in the following dia-
gram.

t′

��

ν
C

C
C

C
C

∗

!!C
C

C
C

≡ t ≡ t′′

��1
11

11
11

11
11

11

ν{
{

{
{

∗

}}{
{

{
{

u ≡ u′

ν
B

B
B

B

∗

!!B
B

B
B

t↓

��

��1
1

1
1

1
1

1 v′

ν{
{

{
{

∗

}}{
{

{
{

≡ v

u↓

��2
2

2
2

2
2

2
v↓

���
�
�
�
�
�
�

w

The full proof of confluence can be found in Appendix B. 2

6.2 Type Soundness

We establish soundness of the νObj type system using the
syntactic technique of Wright and Felleisen [WF94]. We first
show a subject reduction result which states that typings are
preserved under reduction. We then characterize a notion
of evaluation result called an answer and show that every
well-typed, non-direverging term reduces to an answer that
has the same type as the original term.

First, some auxiliary definitions and lemmata.

6.2.1 Environments

Before stating first results, let us extend the notion of well-
formedness to environments. Well-formedness of environ-
ments will be a necessary invariant in the induction proofs
of the following sections.

Definition. Well-formedness of environments, ` Γ wf is
defined inductively in the following way:
• the empty environment is well-formed, i.e., ` ε wf;
• adding a well-formed type assignment preserves well-
formedness, i.e., ` Γ wf ∧ Γ, x : T ` T wf ∧ x 6∈ dom(Γ) ⇒
` (Γ, x : T) wf.

Provided the typing environment is well-formed, the well-
formedness of a type given to a term is guaranteed by the
typing derivation. This will allow us later on to assume
well-formedness tacitly.

Lemma 4 Let ` Γ wf. Then,
Γ ` T 3 D and Γ ` T wf imply Γ ` D wf;
Γ ` T = T ′ implies Γ ` T wf iff Γ ` T ′ wf;
Γ ` T ≺ T ′ and Γ ` T wf imply Γ ` T ′ wf;
Γ ` T <: T ′ and Γ ` T wf imply Γ ` T ′ wf;
Γ ` T ≤ T ′ and Γ ` T wf imply Γ ` T ′ wf;
Γ ` D ≤ D′ and Γ ` D wf imply Γ ` D′ wf;
Γ ` t : T implies Γ ` T wf.

Proof: By rule induction on equality, expansion, tight and
loose subtyping, and type assignment. In the case of
(Single-=), well-formedness of q.type and derivability of
Γ ` p : q.type imply that there exists a record R such
that Γ ` p : R. Hence, with (Single-wf), we can infer
Γ ` p.type wf. 2

In most of the proofs it is necessary to add type assignments
to or remove them from the environment Γ. When removing
type assignments, one only has to take care that Γ remains
consistent, that is, that still all references are considered in
the reduced environment.

Definition. Consistency of environments, C(Γ) is defined
inductively as follows:
• the empty environment is consistent, i.e., C(ε);
• adding a type assignments that does not introduce new
names, preserves consistency, i.e., C(Γ) ∧ fn(T) ⊆ {x} ∪
dom(Γ) ⇒ C(Γ, x : T).

An environment Σ is consistent wrt. a set S, written CS(Σ)
if C(Σ) and S ⊆ dom(Σ).

In the sequel, let Stm refer to all kinds of statements on
the righthand side of a typing judgement, such as T wf, or
T = T ′, or t : T .

Lemma 5 (Weakening of environments) If Γ ` Stm,
then Γ, Σ ` Stm.

Proof: By a straightforward rule induction. 2

Lemma 6 (Strengthening of environments) If Γ `
Stm for ` Γ wf, and Σ ⊆ Γ such that Cfn(T)

(Σ), then

Σ ` Stm.

Proof: In fact, we prove the following two results together:
Let ` Γ wf. If Γ ` Stm and Σ ⊆ Γ such that Cfn(T)

(Σ),

then ` Σ wf and Σ ` Stm. By rule induction, using the
following additional result about free names of statements,
for ` Γ wf (also by rule induction):
if Γ ` T 3 D then ∀Σ ⊆ Γ. Cfn(T)

(Σ) ⇒ fn(D) ⊆ dom(Σ);

if Γ ` T = T ′ then ∀Σ ⊆ Γ. Cfn(T)
(Σ) ⇔ fn(T ′) ⊆ dom(Σ);

12

if Γ ` T ≺ T ′ then ∀Σ ⊆ Γ. Cfn(T)
(Σ) ⇒ fn(T ′) ⊆ dom(Σ);

if Γ ` T <: T ′ then ∀Σ ⊆ Γ.Cfn(T)
(Σ)⇒ fn(T ′) ⊆ dom(Σ);

if Γ ` T ⊆ T ′ then ∀Σ ⊆ Γ. Cfn(T)
(Σ) ⇒ fn(T ′) ⊆ dom(Σ);

if Γ ` t : T then ∀Σ ⊆ Γ. Cfn(t)
(Σ) ⇒ fn(T) ⊆ dom(Σ). 2

6.2.2 Weakening

One main result on which type soundness is built is that
typing judgements can be weakened in the sense that the
environment Γ specifies bounds that are more exact than,
that is subtypes of, the original type assignments. In this
section, we derive the underlying result for the weakening
lemma presented below (see lemma 9).

Definition. Subsumption of environments:
• the empty environment subsumes itself, i.e., ` ε ≤ ε;
• one can add definitions of subtypes, i.e., if Γ ≤ Γ′ and
Γ, Γ ` T ≤ T ′, then ` (Γ, x : T) ≤ (Γ′, x : T ′).

Note that we do not need to add further type assignments
to the subsumed environment, as this can be dealt with by
applying strengthening of the environment (see lemma 6).

Lemma 7 Let ` Γ wf, Γ′ wf, Γ′ ≤ Γ. Then,
Γ ` T wf, D wf implies Γ′ ` T wf, D wf;
Γ ` T 3 D implies Γ ` T 3 D′, D′ ≤ D;
Γ ` T = T ′ implies Γ′ ` T ′ = T ;
Γ ` T ≺ T ′ implies Γ′ ` T ≺ T ′′, T ′′ ≤ T ′;
Γ ` T <: T ′ implies Γ′ ` T <: T ′′, T ′′ ≤ T ′;
Γ ` T ≤ T ′, D ≤ D′ implies Γ′ ` T ≤ T ′, D ≤ D′;
Γ ` t : T implies Γ′ ` t : T .

Proof: By rule induction. Note that in the case of (Alias-
=), subsumbtion implies equality, because the supertype in
(Tbind-≤) has to be an abstract bound. 2

Definition. An context c generates an environment Γ′ in
some environment Γ, written Γ ` c : Γ′, if there is a term t
and a type T such that a typing of c〈t〉 in Γ can be derived
using a subderivation Γ, Γ′ ` t : T .

Lemma 8 (Replacement) For any type environments Γ,
Γ′, context c with Γ ` c : Γ′, terms t and t′:

If Γ, Γ′ ` t : T implies Γ, Γ′ ` t′ : T for all types T , then
also Γ ` c〈t〉 : U implies Γ ` c〈t′〉 : U , for all types U .

Proof: By induction over the structure of c and the depth
of the derivation. The latter is necessary, because not all of
the rules are structural (note in particular (SelPath)). 2

Lemma 9 (Weakening) If Γ, x : T ′, Γ′ ` T ′ ≤ T , and
Γ, x : T, Γ′ ` u : U then also Γ, x : T ′, Γ′ ` u : U .

Proof: By rule induction. Indeed, similar statements hold
for equality, expansion, and subtyping, and are applied in
the type derivations. See lemma 7 above for the concrete
proof. Note that the result has to be read modulo the usual
well-formedness assumptions. 2

6.2.3 Subject reduction

Note that we tacitly assume well-formedness of the environ-
ment Γ. This is not a serious restriction, since usually typing
judgements are derived for closed terms and types, starting
with the empty environment ε, which is a priori well-formed.

Lemma 10 If Γ ` t : T and t ≡ t′ then Γ ` t′ : T .

Proof: If t ≡α t′, then the lemma holds by definition. If
t ≡ t′ by an application of rule (extrude), the assumption
follows by an induction on the context e and the depth of
the derivation. The latter is used in particular in the case
of selection, where the non-structural rule (SelPath) might
have been applied. Further, environments are suitably aug-
mented. See lemmas 5 and 6 on weakening and strength-
ening of environments. Note that the lemma implicitely
assumes Γ to be well-formed, which entails consistency of
the environment. The proposition is lifted to the whole ≡
relation by the replacement lemma and an induction on the
number of applications of basic (extrude) steps. 2

Theorem 6.2 [Subject Reduction] Let Γ be an environ-
ment. Let t, t′ be terms such that bn(t, t′) ∩ dom(Γ) = ∅
and let T be a type. If Γ ` t : T and t → t′, then
Γ ` t′ : T .

Proof: We first show the theorem for the two reduction rules,
(select) and (mix). In the case of (select), assume that we
have a term

t0
def
= νx← [x : S | d, l = v] ; e〈x.l〉

such that Γ ` t0 : T . We need to show that the right hand
side of the reduction,

t1
def
= νx← [x : S | d, l = v] ; e〈v〉

has the same type in Γ. The derivation of t0 contains a
subderivation Γ′ ` x.l : U , for some environment Γ′, type
U . We need to show that Γ′ ` v : U . The proposition then
follows from the replacement lemma. To show Γ′ ` v : U ,
we distinguish two cases.

First, if U 6= x.l.type, then we must have x : S′ ∈ Γ′,
Γ′ ` S′ ≤ S′′, S′′ 3 (l : U), for some types S′ and S′′.
Because of the weakening lemma, we can assume w.l.o.g.
that S′ is minimal wrt ≤. By (New) this means that S′ ≺
{x | d, l : Tv} where Tv is the least type of v. Hence, by
(Single-3), Γ′ ` Tv ≤ U . Therefore, using subsumption,
we also have Γ′ ` v : U .

Second, assume that U = x.l.type. Then the type deriva-
tion of x.l starts with rule (SelPath). By the hypothesis
of (SelPath), we must have Γ′ ` x.l : R, for some record
type R. This means that there is an x : S′ ∈ Γ′ such that
Γ′ ` S′ ≤ S′′, S′′ 3 l : R, for some types S′ and S′′.
Again because of weakining, we can assume w.l.o.g. that
S′ ≺ {x | d, l : Tv} where Tv is the least type of v and
that Γ′ ` Tv ≤ R. It follows that v is not a class value,
since class values always have class types, and a class type is
never a subtype of a record type. Hence, v must be a name,
say v = y. The least type of y is then y.type. By rule
(Sel), Γ′ ` x.l : y.type. Using rule (Single-=), we get

13

Γ ` x.l.type = y.type. Using subsumption, we conclude
that Γ′ ` y : x.l.type. This shows the proposition for all
(select) reductions.

To show type preservation for (mix) reductions, suppose we
have a term

t0
def
= [x :S1 | d1] &S [x :S2 | d2]

of type T in some environment Γ. We need to show that the
right hand side of the reduction,

t1
def
= [x :S | d1] d2]

also has type T in Γ. Assume first that the typing of t0 ends
in an application of rule (&). The derivation must contain

two subderivations for typing [x :Si | di] for (i ∈ 1, 2). The
only applicable rules on these terms are (Class) and (Sub).

Hence, ti is assigned some type [x : S′i | Di] where S′i ≤ Si

and Γ ` di : Di. Furthermore, by the precondidition of
rule (&), Γ ` S ≤ S′i for i ∈ 1, 2. It follows by (&) that

T = [x :S | D1]D2]. The right-hand side t1 also has type
T under Γ, using a derivation that ends in an application of
(Class) and a possible subsumption step.

On the other hand, if the typing of t0 does not end in an
application of (&), it must end in a subsumption step. In
this case, we use the theorem for the hypotheses the sub-
sumption rule and apply the same subsumption step in the
derivation of t1. Hence, the theorem is established for rule
(mix).

The theorem is lifted to the whole reduction relation using
the replacement lemma to account for closure with an evalu-
ation context, and using Lemma 10 to account for structural
equivalence. 2 This establishes subject reduction as the first
pillar of type soundness. For the second pillar, we still need
to show that well-typed non-diverging terms reduce to an-
swers. These notions are defined as follows.

Definition. A term t diverges, written t ⇑ if there exists
an infinite reduction sequence t → t1 → . . . → tn → . . .
starting in t.

Definition. An answer is a value, possibly nested in ν-
binders from classes all of whose definitions are fully evalu-
ated. Thus, the syntax of answers a is:

a ::= v | νx← [x :S | f] ; a ,

where fields f are as defined in Section 2.4.

6.2.4 Type soundness

Theorem 6.3 [Type Soundness] If ε ` t : T then either
t⇑ or t→→ a, for some answer a such that ε ` a : T .

Proof: Assume that t is a well-typed term with ε ` t : T
which is not an answer. W.l.o.g. assume that all ν-bindings
are maximally propagated outwards in t using rule (ex-
trude). We show that t is reducible.

Since t is not an answer, it must be of one of the following
three forms.

t ≡ ep〈u〉 , or
t ≡ ep〈νy←u ; u′〉 , or
t ≡ ep〈νy← [x : S | d, l = u] ; u′〉 ,

where u is neither a value nor a ν-expression and ep is a
context of the form

νx1← [y1 :S1 | f1] ; . . . ; νxn← [yn :Sn | fn] ; 〈〉 .

Let Γp be arbitrary such that ε ` ep : Γp. We make a case
distinction according to the three forms of t.

If t ≡ ep〈u〉, we show by structural induction on u that t is
reducible. There are the following three sub-cases.

Case u ≡ x.l. Well-typedness of t implies that there must
be a binding for x in Γp, say x← [x : S | f]. Furthermore,

by (New), t.l is well-typed only if f contains a definition
l = v. So, t is reducible by rule (select).

Case u ≡ p.l.m. By the induction hypothesis, ep〈p.l〉 is
reducible. Therefore, since 〈〉.m is an evaluation context,
ep〈p.l.m〉 is also reducible.

Case u ≡ u1 &S u2. If u1 is not a value, then, by the
induction hypothesis, ep〈u1〉 is reducible. Therefore, since
〈〉 &S u2 is an evaluation context, ep〈u1 &S u2〉 is also
reducible. The case where u2 is not a value is treated analo-
gusly. Finally, if u1 and u2 are both values, well-typedness
demands that they are class templates. That is, each ui is
of the form [x :Si | di]. Therefore ep〈u1 &S u2〉 is reducible
by rule rule (mix).

This proves the case t ≡ ep〈u〉. The other two forms of t are
handled analogously, observing that in each case u appears
in the hole of some evaluation context. 2

6.3 Undecidability of Type Checking

Theorem 6.4 There exists no algorithm that can decide if
a judgement Γ ` t : T is derivable or not.

Proof Sketch: First we notice that the undecidability of sub-
typing implies the undecidability of typing, because for any
environment Γ and types T and U , it is not difficult to find a
term which is well-typed if and only if Γ ` T ≤ U is deriv-
able. One such term is [L ≺ {M <: U} & {M = T}]. So we
can limit ourselves to show the undecidability of subtyping.

The idea is to define a translation 〈〈·〉〉 from F<: types and
environments to νObj types and environments and to prove
that Γ `F<: T <: U iff 〈〈Γ〉〉 ` 〈〈T 〉〉 ≤ 〈〈Q〉〉. As subtyp-
ing in F<: has been shown undecidable by Pierce [Pie94],
this will prove that subtyping is undecidable for a part of
the possible judgements (namely those that are the transla-
tion of a F<: judgement), hence a fortiori for all subtyping
judgements in νObj.

The translation we use is a simplification of the one intro-
duced in section 5 because we do not have to translate terms
and because we are no more interested in simulating the re-
duction relation here, so we can avoid an indirection in the
translation of function types.

1) Γ `F<: T <: U ⇒ 〈〈Γ〉〉 ` 〈〈T 〉〉 ≤ 〈〈Q〉〉 is shown by a
simple induction on the derivation of Γ `F<: T <: U and
by case on the last rule that was used.

2) To show the other direction

〈〈Γ〉〉 ` 〈〈T 〉〉 ≤ 〈〈U〉〉 ⇒ Γ `F<: T <: U

14

, we define a partial “inverse” function 〈〈·〉〉−1 from νObj
types and environments to F<: types and environments and
we show that the following properties hold:

1. ∀ T , 〈〈T 〉〉 ∈ dom(〈〈·〉〉−1) and 〈〈〈〈T 〉〉〉〉−1 = T

2. ∀ Γ, 〈〈Γ〉〉 ∈ dom(〈〈·〉〉−1) and 〈〈〈〈Γ〉〉〉〉−1 = Γ

3. ∀ Γ, T , U ∈ dom(〈〈·〉〉−1),

Γ ` T ≤ U ⇒ 〈〈Γ〉〉−1 `F<: 〈〈T 〉〉
−1 <: 〈〈Q〉〉−1

To show the last property we would like to do a simple in-
duction on the derivation of 〈〈Γ〉〉 ` 〈〈T 〉〉 ≤ 〈〈U〉〉 and reason
by case on the last rule that was used, as previously. But
the rules of transitivity in subtyping and of subsumption
in typing are annoying because they introduce in the proof
types about which we know nothing.

To avoid this problem we define a new type system that we
have to prove equivalent to the old one and in which these
rules have been removed. Among the remaining rules we
have to modify those that implicitly used the erased rules in
their premisses to get an appropriate supertype. The full
undecidability proof can be found in Appendix C. 2

7 Conclusion

This paper develops a calculus for reasoning about classes
and objects with type members. We define a confluent no-
tion of reduction, as well as a sound type system based on
dependent types.

There are at least three areas where future work seems
worthwhile. First, there is the problem of undecidablility
of νObj. We need to develop decidable subsystems, or de-
scribe type reconstruction algorithms that are incomplete
but can be shown to work reasonably well in practice. Sec-
ond, we would like to explore extensions of the calculus,
such as with imperative side effects or with richer notions of
information hiding. Third, we would like to study in more
detail the relationships between νObj and existing object-
oriented languages and language proposals. We hope that
the work presented here can be used as a foundation for
these research directions.

Acknowledgements We thank Luca Cardelli, Erik
Ernst, Benjamin Pierce, Mads Torgersen, Philip Wadler,
and Christoph Zenger for discussions on the subject of this
paper. We thank Philippe Altherr and Stéphane Micheloud
for comments on previous versions of it.

References

[AC96] Martin Abadi and Luca Cardelli. A Theory of Ob-
jects. Monographs in Computer Science. Springer
Verlag, 1996.

[AZ99] Davide Ancona and Elena Zucca. A primitive calcu-
lus for module systems. In Principles and Practice
of Declarative Programming, LNCS 1702, 1999.

[AZ02] Davide Ancona and Elena Zucca. A calculus of mod-
ule systems. Journal of Functional Programming,
2002.

[BCDC83] H.P. Barendregt, M. Coppo, and M. Dezani-
Ciancaglini. A filter lambda model and the com-
pleteness of type assignment. Journal of Symbolic
Logic, 48(4):931–940, 1983.

[BFP97] Kim B. Bruce, Adrian Fiech, and Leaf Petersen. Sub-
typing is not a good “Match” for object-oriented
languages. In Proceedings of the European Confer-
ence on Object-Oriented Programming, pages 104–
127, 1997.

[BG96] Gilad Bracha and D. Griswold. Extending Smalltalk
with mixins. In OOPSLA ’96 Workshop on Extend-
ing the Smalltalk Language, April 1996.

[BL92] Gilad Bracha and Gary Lindstrom. Modularity
meets inheritance. In Proceedings of the IEEE Com-
puter Society International Conference on Computer
Languages, pages 282–290, Washington, DC, 1992.
IEEE Computer Society.

[Bou01] Gérard Boudol. The recursive record semantics of ob-
jects revisited. Technical Report 4199, INRIA, jun
2001. to appear in Journal of Functional Program-
ming.

[BOW98] Kim B. Bruce, Martin Odersky, and Philip Wadler.
A statical safe alternative to virtual types. In Pro-
ceedings of the 5th International Workshop on Foun-
dations of Object-Oriented Languages, San Diego,
USA, 1998.

[BPS99] Viviana Bono, Amit Patel, and Vitaly Shmatikov.
A core calculus of classes and mixins. In Proceedings
of the 13th European Conference on Object-Oriented
Programming, pages 43–66, Lisbon, Portugal, 1999.

[Bra92] Gilad Bracha. The Programming Language Jigsaw:
Mixins, Modularity and Multiple Inheritance. PhD
thesis, University of Utah, 1992.

[Bru02] Kim B. Bruce. Foundations of Object-Oriented Pro-
gramming Languages: Types and Semantics. MIT
Press, Cambridge, Massachusetts, February 2002.
ISBN 0-201-17888-5.

[CDG+92] Luca Cardelli, James Donahue, Lucille Glassman,
Mick Jordan, Bill Kalsow, and Greg Nelson. Modula-
3 language definition. ACM SIGPLAN Notices,
27(8):15–42, August 1992.

[CHP99] Karl Crary, Robert Harper, and Sidd Puri. What
is a recursive module? In SIGPLAN Conference on
Programming Language Design and Implementation,
pages 50–63, 1999.

[CM91] Luca Cardelli and John Mitchell. Operations on
records. Mathematical Structures in Computer Sci-
ence, 1:3–38, 1991.

[CMMS94] Luca Cardelli, Simone Martini, John C. Mitchell, and
Andre Scedrov. An extension of system F with sub-
typing. Information and Computation, 109(1-2):4–
56, 1994 1994.

[DE97] Sophia Drossopoulou and Susan Eisenbach. Java is
type safe - probably. In Proc. 11th European Confer-
ence on Object Oriented Programming, June 1997.

[DMN70] Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Ny-
gaard. Simula: Common base language. Technical
report, Norwegian Computing Center, October 1970.

[DS96] Dominic Duggan and Constantinos Sourelis. Mixin
modules. In Proceedings of the ACM SIGPLAN
International Conference on Functional Program-
ming, pages 262–273, Philadelphia, Pennsylvania,
June 1996.

[Ern99] Erik Ernst. gBeta: A language with virtual at-
tributes, block structure and propagating, dynamic
inheritance. PhD thesis, Department of Computer
Science, University of Aarhus, Denmark, 1999.

15

[Ern01] Erik Ernst. Family polymorphism. In Proceedings
of the European Conference on Object-Oriented Pro-
gramming, pages 303–326, Budapest, Hungary, 2001.

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and
Matthias Felleisen. Classes and mixins. In Proceed-
ings of the 25th ACM Symposium on Principles of
Programming Languages, pages 171–183, San Diego,
California, 1998.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha. The Java Language Specification. Java Se-
ries, Sun Microsystems, second edition, 2000. ISBN
0-201-31008-2.

[HL94] Robert Harper and Mark Lillibridge. A type-
theoretic approach to higher-order modules with
sharing. In Proceedings of the 21st ACM Symposium
on Principles of Programming Languages, January
1994.

[Iga00] Atsushi Igarashi. On inner classes. In Proceedings
of the European Conference on Object-Oriented Pro-
gramming, Cannes, France, June 2000.

[IP99] Atsushi Igarashi and Benjamin C. Pierce. Founda-
tions for virtual types. Proc. ECOOP’99, Lecture
Notes in Computer Science, 1628, 1999.

[IP02] Atsushi Igarashi and Benjamin C. Pierce. Founda-
tions for virtual types. Information and Computa-
tion, 175(1):34–49, 2002.

[IPW99] Atsushi Igarishi, Benjamin Pierce, and Philip
Wadler. Featherweight java: A minimal core calculus
for java and gj. In Proc. OOPSLA, November 1999.

[Ler94] Xavier Leroy. A syntactic theory of type generativ-
ity and sharing. In ACM Symposium on Principles
of Programming Languages (POPL), Portland, Ore-
gon, 1994.

[Mac84] David MacQueen. Modules for Standard ML. In
Conference Record of the 1984 ACM Symposium on
Lisp and Functional Programming, pages 198–207,
New York, August 1984.

[MMP89] Ole Lehrmann Madsen and Birger Møller-Pedersen.
Virtual Classes: A powerful mechanism for object-
oriented programming. In Proceedings OOPSLA’89,
pages 397–406, October 1989.

[MMPN93] O. Lehrmann Madsen, B. Møller-Pedersen, and
K. Nygaard. Object-Oriented Programming in the
BETA Programming Language. Addison-Wesley,
June 1993. ISBN 0-201-62430-3.

[NvO98] Tobias Nipkow and David von Oheimb. Java-light is
type-safe — definitely. In L. Cardelli, editor, Confer-
ence Record of the 25th Symposium on Principles of
Programming Languages (POPL’98), pages 161–170,
San Diego, California, 1998. ACM Press.

[Ode02] Martin Odersky. Report on the program-

ming language Scala, 2002. École Polytech-
nique Fédérale de Lausanne, Switzerland.
http://lamp.epfl.ch/~odersky/scala.

[Ost02] Klaus Ostermann. Dynamically composable collabo-
rations with delegation layers. In Proceedings of the
16th European Conference on Object-Oriented Pro-
gramming, Málaga, Spain, 2002.

[Pie94] Benjamin C. Pierce. Bounded quantification is unde-
cidable. Information and Computation, 112(1):131–
165, July 1994. Also in Carl A. Gunter and
John C. Mitchell, editors, Theoretical Aspects of
Object-Oriented Programming: Types, Semantics,
and Language Design, MIT Press, 1994. Summary
in ACM Symposium on Principles of Programming
Languages (POPL), Albuquerque, New Mexico.

[Rus00] Claudio Russo. First-class structures for Standard
ML. In Proceedings of the 9th European Symposium
on Programming, pages 336–350, Berlin, Germany,
2000.

[SB98] Yannis Smaragdakis and Don Batory. Implementing
layered designs with mixin layers. Lecture Notes in
Computer Science, 1445, 1998.

[Tho97] Kresten Krab Thorup. Genericity in java with virtual
types. In Proceedings of the European Conference
on Object-Oriented Programming, LNCS 1241, pages
444–471, June 1997.

[Tor98] Mads Torgersen. Virtual types are statically safe.
In 5th Workshop on Foundations of Object-Oriented
Languages, San Diego, CA, USA, January 1998.

[Tor02] Mads Torgersen. Inheritance is specialization. In
The Inheritance Workshop, with ECOOP 2002, June
2002. http://www.cs.auc.dk/~eernst/inhws/.

[TT99] Kresten Krab Thorup and Mads Torgersen. Unifying
genericity: Combining the benefits of virtual types
and parameterized classes. Lecture Notes in Com-
puter Science, 1628, 1999.

[WF94] Andrew K. Wright and Matthias Felleisen. A syn-
tactic approach to type soundness. Information and
Computation, 115, 1994.

[Zen02] Matthias Zenger. Type-safe prototype-based compo-
nent evolution. In Proceedings of the European Con-
ference on Object-Oriented Programming, Málaga,
Spain, June 2002.

16

A Summary of Typing Rules

Γ ` T wf Γ ` D wf

(Single-wf)
Γ ` p : R

Γ ` p.type wf

Γ ` T wf, T 3 (L = U), U wf

Γ ` T •L wf
(Tsel-wf1)

(Tsel-wf2)
Γ ` T wf, T 3 (L ≺ U), U ≺ R

Γ ` T •L wf

Γ ` T wf, T 3 (L <: U), U <: R

Γ ` T •L wf
(Tsel-wf3)

(&-wf)
Γ ` T wf, T ′ wf

Γ ` T & T ′ wf

Γ, x : {x | D} ` D wf

Γ ` {x | D} wf
(Rec-wf)

(Class-wf)
Γ ` S wf Γ, x : S ` D wf

Γ ` [x : S | D] wf

(Bind-wf)
Γ ` T wf

Γ ` (l : T) wf

Γ ` T wf

Γ ` (L = T) wf
(Tbind-wf1)

(Tbind-wf2)
Γ ` T wf, T ≺ R

Γ ` (L ≺ T) wf

Γ ` T wf, T <: R

Γ ` (L <: T) wf
(Tbind-wf3)

Γ ` T 3 D

(Single-3) Γ ` p.type <: {x | D′, D}
Γ ` p.type 3 [p/x]D

Γ, x : T ` x.type 3 D x 6∈ fn(Γ, D)

Γ ` T 3 D
(Other-3)

Γ ` T = T ′

(Refl-=)
T ≡ T ′

Γ ` T = T ′
Γ ` T = T ′, T ′ = T ′′

Γ ` T = T ′′
(Trans-=)

(Symm-=)
Γ ` T = T ′

Γ ` T ′ = T

Γ ` T 3 (L = U), T wf

Γ ` T •L = U
(Alias-=)

(Tsel-=)
Γ ` T = T ′

Γ ` T •L = T ′•L
Γ ` T = T ′, U = U ′

Γ ` T & U = T ′ & U ′ (&-=)

(Rec-=)
Γ, x : {x | D} ` D = D′

Γ ` {x | D} = {x | D′}
Γ ` S = S′ Γ, x : S ` D = D′

Γ ` [x : S | D] = [x : S′ | D′]
(Class-=)

(Single-=)
Γ ` p : q.type

Γ ` p.type = q.type

(Bind-=)
Γ ` T = T ′

Γ ` (l : T) = (l : T ′)

Γ ` T = T ′

Γ ` (L �: T) = (L �: T ′)
(Tbind-=)

Γ ` T ≺ T ′

(Refl-≺)
Γ ` T = T ′

Γ ` T ≺ T ′
Γ ` T ≺ T ′, T ′ ≺ T ′′

Γ ` T ≺ T ′′
(Trans-≺)

(Tsel-≺)
Γ ` T 3 (L ≺ U)

Γ ` T •L ≺ U

Γ ` T ≺ T ′, U ≺ U ′

Γ ` T & U ≺ T ′ & U ′ (&-≺)

(Mixin-≺)
Γ, x : {x | D1]D2} ` D2 ≤ D1|dom(D2)

Γ ` {x | D1} & {x | D2} ≺ {x | D1]D2}

17

Γ ` T <: T ′

(Refl-<:)
Γ ` T ≺ T ′

Γ ` T <: T ′
Γ ` T <: T ′, T ′ <: T ′′

Γ ` T <: T ′′
(Trans-<:)

(Var-<:)
x : T ∈ Γ

Γ ` x.type <: T

Γ ` p.type 3 (l : U)

Γ ` p.l.type <: U
(Sel-<:)

(Tsel-<:)
Γ ` T 3 (L <: U)

Γ ` T •L <: U

Γ ` T ≤ T ′ Γ ` D ≤ D′

(Refl-≤)
Γ ` T <: T ′

Γ ` T ≤ T ′
Γ ` T ≤ T ′, T ′ ≤ T ′′

Γ ` T ≤ T ′′
(Trans-≤)

(&-≤)
Γ ` T1 & T2 ≤ T1

Γ ` T1 & T2 ≤ T2

Γ ` T ≤ T1, T ≤ T2

Γ ` T ≤ T1 & T2
(≤-&)

(Rec-≤)
Γ, x : {x | D, D′} ` D ≤ D′′

Γ ` {x | D, D′} ≤ {x | D′′}

Γ ` R wf, S & R ≤ S′, S′ ≤ S

Γ, x :S′ ` D ≤ D′

Γ ` [x : S | D] ≤ [x : S′ | D′]

(Class-≤)

(Bind-≤)
Γ ` T ≤ T ′

Γ ` (l : T) ≤ (l : T ′)

Γ ` T ≤ T ′

Γ ` (L �: T) ≤ (L <: T ′)
(Tbind-≤)

Γ ` t : T

(Var)
x :T ∈ Γ

Γ ` x : T

Γ ` t : T, T 3 (l : U)

Γ ` t.l : U
(Sel)

(VarPath)
Γ ` x : R

Γ ` x : x.type

Γ ` t : p.type, t.l : R

Γ ` t.l : p.l.type
(SelPath)

(Sub)
Γ ` t : T, T ≤ U

Γ ` t : U

Γ ` t : [x :S | D], S ≺ {x | D}
Γ, x :S ` u : U x 6∈ fn(U)

Γ ` (νx← t ; u) : U

(New)

(Class)

Γ ` S wf Γ, x :S ` D wf, ti : Ti

ti contractive in x (i ∈ 1..n)

Γ ` [x :S | D, li = t i∈1..n
i] : [x :S | D, li :T i∈1..n

i]

Γ ` ti : [x :Si | Di]

Γ ` S wf, S ≤ Si (i = 1, 2)

Γ ` t1 &S t2 : [x :S | D1]D2]

(&)

B Confluence Proof

B.1 Notations

Definition. If → is a binary relation, we write

• →= for its reflexive closure,

• →+ for its transitive closure, and

• →∗ for its reflexive transitive closure.

Definition. We say that a binary relation → satisfies the diamond property iff

t→ t1 and t→ t2 implies there exists a term t′ such that t1 → t′ and t2 → t′.

In this case we write → ` � or

18

t

��~~
~~

~~
~~

��@
@@

@@
@@

@

t1

��?
?

?
? t2

���
�

�
�

t′

B.2 Preliminary definitions

Definition. Evaluation context.

e ::= 〈〉 | e.l | e &S t | t &S e | νx← t ; e | νx←e ; t | νx← [x :S | d, l = e] ; t

Definition. Reduction relation.

(select)
bn(e) ∩ fn(x, v) = ∅

νx← [x :S | d, l = v] ; e〈x.l〉 ε−→ νx← [x :S | d, l = v] ; e〈v〉

(mix)
[x :S1 | d1] &S [x :S2 | d2]

ε−→ [x :S | d1] d2]

(context)
t

ε−→ u

e〈t〉 → e〈u〉

Definition. General context.

C ::= 〈〉 | C.l | C &S t | t &S C | νx← t ; C | νx←C ; t | [x :S | d, l = C]

Definition. Structural equivalence.

The relation ≡ is the smallest equivalence relation (reflexive, symmetric, transitive) that satisfies the two following rules.

(extrude)
x 6∈ fn(e), bn(e) ∩ fn(x, t) = ∅
e〈νx← t ; u〉 ≡ νx← t ; e〈u〉

(context)
t ≡ u

C[t] ≡ C[u]

Definition. Multi-step reduction.

→→ is (→ ∪ ≡)+ (or equivalently (→ ∪ ≡)∗ because ≡ is already reflexive).

B.3 Main goal

We want to prove the following theorem:

Theorem B.1 →→ ` �.

B.4 General idea of the proof

We define the following relation.

Definition. One step reduction.

(one-step)
t ≡ t′ → u′ ≡ u

t
.−→ u

19

We can easily remark that
.−→∗ ` � implies →→ ` �.

So we will show that
.−→∗ satisfies the diamond property.

One way of doing it is to show that

s

.

}}{{
{{

{{
{{

{{
{{

{{
{{

{

.

!!C
CC

CC
CC

CC
CC

CC
CC

CC

t1

≡

t2

≡

t′1

=

��?
?

?
? t′2

=

���
�

�
�

u

I.e. if we can go from s to t1 and t2 using one
.−→ reduction step, then we can join t1 and t2 with at most one → reduction step possibly

with the help of a preliminary equivalence step. That is what we are going to prove.

The only complication in this proof is introduced by the notion of structural equivalence in νObj. This is taken into account by defining
and working with canonical forms of terms.

The reduction relation of νObj could be compared to the call-by-value λ-calculus without reduction under the λs because only values can
be substituted by the rule (SELECT) and there is no reduction inside class templates as specified through the definition of evaluation
contexts.

It is straightforward to show that this variant of operational semantics for the λ-calculus satisfies the diamond property. The only
difficulty with our calculus, compared to the λ-calculus, is that we have a structural equivalence which goes beyond the usual alpha-
renaming and that prevents us of reasoning by case on the shape of a term, precisely because two structurally equivalent terms can have
different structures.

So the idea of the proof is not to take into account in a first time this annoying structural equivalence and prove that the simple reduction
relation (without structural equivalence) satisfies the diamond property.

Then we define another reduction relation
ν−→ intended to compute the canonical form of a term w.r.t. to the structural equivalence, and

we show the following properties.

1. ≡ is (
ν−→ ∪ ν←−)∗

2.
ν−→
∗
` �

3.
t

��~~
~~

~~
~~

ν

 @
@@

@@
@@

@

u

ν

∗
��?

?
?

? t′

���
�

�
�

u′

4.
s

~~~~
~~

~~
~

  @
@@

@@
@@

t1

=

  @
@

@
@ t2

=

~~~
~

~
~

u

We can then finish the proof as shown in the following diagram.

20

t′

����
��
��
��
��
��
��
��

ν

∗

��?
?

?
?

?
?

?
?

?
? ≡ t ≡ t′′

��/
//

//
//

//
//

//
//

/

ν

∗

���
�

�
�

�
�

�
�

�
�

?>=<89:;1

u ≡ u′

ν

∗

!!B
B

B
B

B
B

B
B

B
?>=<89:;2 t↓

��

��1
1

1
1

1
1

1
?>=<89:;3 v′

ν

∗

}}|
|

|
|

|
|

|
|

|
≡ v

u↓

=

��2
2

2
2

2
2

2
?>=<89:;4 v↓

=

���
�

�
�

�
�

�

w

In the diagram, step (1) is a direct consequence of properties (1) and (2), steps (2) and (3) are a direct consequence of property (3), and
step (4) corresponds exactly to property (4).

In the next sections we will prove successively each of these main properties.

Property 1

Definition. The extrusion reduction relation
ν−→

(e1)
(νx← t ; u).l

ν−→ νx← t ; u.l

(e2)
x 6∈ fn(s)

(νx← t ; u) &S s
ν−→ νx← t ; u &S s

(e3)
x 6∈ fn(s)

s &S (νx← t ; u)
ν−→ νx← t ; s &S u

(e4)
x 6∈ fn(s) y 6∈ fn(t)

νy←s ; νx← t ; u
ν−→ νx← t ; νy←s ; u

(e5)
x 6∈ fn(s) y 6∈ fn(t)

νy←νx← t ; u ; s
ν−→ νx← t ; νy←u ; s

(e6)
x 6∈ fn(d) y 6∈ fn(t)

νy← [y :S | d, l = νx← t ; u] ; s
ν−→ νx← t ; νy← [y :S | d, l = u] ; s

(e-c1)
t

ν−→ t′

t.l
ν−→ t′.l

t
ν−→ t′

t &S u
ν−→ t′ &S u

(e-c2)

(e-c3)
u

ν−→ u′

t &S u
ν−→ t &S u′

u
ν−→ u′

νx← t ; u
ν−→ νx← t ; u′

(e-c4)

(e-c5)
t

ν−→ t′

νx← t ; u
ν−→ νx← t′ ; u

t
ν−→ t′

[x :S | d, l = t]
ν−→ [x :S | d, l = t′]

(e-c6)

Lemma 11 ≡ is (
ν−→ ∪ ν←−)∗

21

Proof: Simple inductions. 2

Property 2

We want to prove that
ν−→ is confluent. We can easily prove that

ν−→ is locally confluent by examining all the cases:

Lemma 12 Local confluence.
s

ν

~~~~
~~

~~
~

ν

  @
@@

@@
@@

t1

ν

∗

  @
@

@
@ t2

ν

∗

~~~
~

~
~

u

Proof: By structural induction over s and by case on the shape of s, then by case on the rules that can have been used. 2

An idea to finish the proof would be to show that
ν−→ is terminating (see Newmann’s lemma). Unfortunately this is not the case, because

the rule (E4) is symmetric:

νx1← t1 ; νx2← t2 ; u
ν−→ νx2← t2 ; νx1← t1 ; u

ν−→ νx1← t1 ; νx2← t2 ; u
ν−→ . . .

So we split the relation
ν−→ into a relation

∼−→ that allows only to reduce a redex (E4) and a relation
�−→ that allows to reduce any redex

from (E1) to (E6) except for a redex (E4).

Definition.
∼−→ and

�−→

1.
∼−→ is obtained by keeping from the rules of

ν−→ the rules (E4) and the rules (E − C1) to (E − C6).

2.
�−→ is obtained by keeping all the rules of

ν−→ except for the rule (E4).

It is trivial to show the following lemma.

Lemma 13
ν−→ =

∼−→ ∪ �−→.

It is also clear that the relation
∼−→ and consequently its reflexive transitive closure are symmetric.

Lemma 14 Symmetry of t
∼−→ u.

1. t
∼−→ u implies u

∼−→ t.

2. t
∼−→
∗

u implies u
∼−→
∗

t.

Proof:

1. By induction over the relation t
∼−→ u.

2. By induction over the number of
∼−→ steps using 1.

2

Now we define an interpretation function I(.) from terms to integers.

Definition. Interpretation function I(.).

I(x) = 2
I(t.l) = 2.I(t)
I(t &S u) = I(t).I(u)
I([x :S | D, li = ti]) = 2.

P
i I(ti)

I(νx← t ; u) = 2.I(t) + I(u)

We want to use it for doing proof by induction over the interpretation of a term.

We can prove the following properties.

22

Lemma 15 Properties of I(.).

1. For all term t, I(t) > 2.

2. For all terms t and u, t
∼−→ u implies I(t) = I(u).

3. For all terms t and u, t
�−→ u implies I(t) > I(u).

Proof:

1. By structural induction over t.

2. By induction over the relation
∼−→.

3. By induction over the relation
�−→.

2

The following lemma will help us to show that w.l.g. we can consider that a reduction sequence which contains a
�−→ step always starts

with a
�−→ step.

Lemma 16

s
∼ //

�

���
�
�

� // t

ν
∗

���
�
�
�
�
�
�

ν

∗

 B
B

B
B

u

Proof: By examining all the possible cases. 2

Under some conditions, we can generalize this property by allowing an arbitrary number of
∼−→ steps before the first

�−→ step and an

arbitrary number of
ν−→ steps after.

Just before we introduce a useful definition.

Definition. A term s is said confluent (with respect to
ν−→) if for all terms t1 and t2 such that s

ν−→
∗

t1 and s
ν−→
∗

t2, there exists a term

u such that t1
ν−→
∗

u and t2
ν−→
∗

u.

Lemma 17 If each term s′ s.t. I(s′) < I(s) is confluent, then

s
∼
∗
//

�

���
�
�

� // ν

∗
// t

ν

∗

���
�

�
�

�
�

�
�

ν

∗

 B
B

B
B

u

Proof: By induction over the number of
∼−→ steps before the first

�−→ step. If there is no
∼−→ step, we conclude immediately. Otherwise

we use in that order (1) the induction hypothesis, (2) the lemma 16 and (3) the pre-condition of the lemma as shown in the following
diagram.

s
∼ //

�

���
�
�

∼
∗
//

�

���
�
�

� // ν

∗
// t

ν

∗

���
�

�
�

�
�

�
�

�

ν

∗

��?
?

?
?

? (2) s′

ν

∗

~~}
}

}
}

}
ν

∗

 A
A

A
A

A (1)

ν

∗

!!C
C

C
C

C (3)

ν

∗

}}{
{

{
{

{

u

23

Note that I(s′) < I(s) which makes s′ a confluent term according to the pre-condition. 2

Lemma 18 Confluence of
ν−→.

s

ν

∗
~~~~

~~
~~

~
ν

∗
  @

@@
@@

@@

t1

ν

∗
  @

@
@

@ t2

ν

∗
~~~

~
~

~

u

Proof: By induction over I(s). The induction hypothesis is that every term s′ that satisfies I(s′) < I(s) is confluent.

Case 1: One of the reduction sequences s
ν−→
∗

t1 and s
ν−→
∗

t2 is composed only of
∼−→ steps (maybe none).

Then, by using the symmetry of
∼−→ (lemma 14) it is easy to conclude.

Case 2: There is in s
ν−→
∗

t1 and in s
ν−→
∗

t2 at least one
�−→ step.

We use then in that order (1) twice the lemma 17, (2) once the lemma 12 and (3) twice the induction hypothesis (as in the Newmann’s
lemma) as shown in the following diagram.

t1

ν ∗

���
�
�
�
�
�
�
�
�
�
�

ν

∗
oo �oo s

∼
∗

oo ∼
∗
//

�

~~|
|

|
|

|
�

!!B
B

B
B

B
� // ν

∗
// t2

ν∗

���
�
�
�
�
�
�
�
�
�
�

(1)

ν

∗

}}|
|

|
|

|
|

|
|

|
|

ν

∗

 A
A

A
A

A (2)

ν

∗

!!B
B

B
B

B
B

B
B

B
B

ν

∗

~~}
}

}
}

} (1)

(3)

ν

∗

||x
x

x
x

x
x

x
x

x
x (3)

ν

∗

##F
F

F
F

F

ν

∗

{{x
x

x
x

x
x

x
x

x
x

ν

∗

++WWWWWWWWWWWW

u

2

Property 3

Lemma 19
t

��~~
~~

~~
~~

ν

 @
@@

@@
@@

@

u

ν

∗
��?

?
?

? t′

���
�

�
�

u′

Proof: By structural induction over t and by case on the shape of t. 2

Property 4

Lemma 20 We give an equivalent definition for →:

(select)
bn(e) ∩ fn(x, v) = ∅

νx← [x :S | d, l = v] ; e〈x.l〉 → νx← [x :S | d, l = v] ; e〈v〉

24

(mix)
[x :S1 | d1] &S [x :S2 | d2] → [x :S | d1] d2]

(c1)
t → t′

t.l → t′.l

t → t′

t &S u → t′ &S u
(c2)

(c3)
u → u′

t &S u → t &S u′
u → u′

νx← t ; u → νx← t ; u′
(c4)

(c5)
t → t′

νx← t ; u → νx← t′ ; u

t → t′

νx← [x :S | d, l = t] ; u → νx← [x :S | d, l = t′] ; u
(c6)

Proof: We call
1−→ the initial formulation of the reduction relation and

2−→ the second one.

1) To prove that t
1−→ u implies t

2−→ u, we show that t
ε−→ u implies e〈t〉 2−→ e〈u〉 by simple induction over the evaluation context e.

2) To prove that t
2−→ u implies t

1−→ u, we use a simple induction over the derivation of t
2−→ u. 2

Lemma 21 For all terms s, t1 and t2, if t→ t1 and t→ t2 then there exists a term u such that t1
=−→ u and t2

=−→ u. Which can be
summarized in the following diagram.

s

~~~~
~~

~~
~

  @
@@

@@
@@

t1

=

  @
@

@
@ t2

=

~~~
~

~
~

u

Proof:

We will use mainly the second formulation of →. We do the proof by structural induction over s and by case on the shape of s. Each
time we reason by inspecting the reduction rules looking for a matching rule.

Case s = x or [x :S | d]. There is no matching reduction rule, these terms are thus irreducible.

Case s = s′.l. t → t1 and t → t2 can only be instances of rule (C1). So there are t′1 and t′2 such that t1 = t′1.l, t2 = t′2.l, s′ → t′1 and

s′ → t′2. By induction hypothesis on s′ there exists a term u′ such that t′1
=−→ u′ and t′2

=−→ u′. We can then take u = u′.l and conclude.

Case s = s1 &S s2. We have three matching rules at our disposal: (MIX), (C2) and (C3).

Below we write (R1) + (R2) to speak of the case when one of the reduction rules is R1 and the other R2. We write disjoint redexes to
express that the reductions that take place occur in separate parts of the term which make it easy to reduce them in one step to a same
term.

• (MIX) + (MIX): Only one possible reduction.

• (MIX) + ((C2) or (C3)): Impossible because if rule (MIX) is applicable then s1 and s2 are class templates, so they are irreducible
(because there is no rule allowing to reduce a class template) and it follows that (C2) or (C3) are not applicable.

• (C2) + (C3): Disjoint redexes.

• (C2) + (C2) or (C3) + (C3): We conclude using the induction hypothesis as in the case of x.l.

Case s = νx←s′ ; s′′: The only possible rules are (SELECT), (C4), (C5) and (C6).

• (C4) + (C4): With induction hypothesis.

• (C5) + (C5): With induction hypothesis.

• (C6) + (C6): With induction hypothesis or disjoint redexes depending on if we deal with a same label or different labels.

• (C4) + (C5): Disjoint redexes.

• (C4) + (C6): Disjoint redexes.

• (C5) + (C6): Impossible case. Because if rule (C6) is applicable it means that s′ is a class template, so it can be reduced in the
premise of rule (C5).

• (SELECT) + (SELECT): We have to distinguish several cases but none causes problem.

25

– Either the reduction is the same.

– Either s = νx← [x :S | d, l = v] ; E〈x.l〉〈x.l〉 where E is an evaluation context with two holes. We can join t1 and t2 in one
step in a similar way as if we were dealing with disjoint redexes.

– Either s = νx← [x :S | d, l = v, m = w] ; E〈x.l〉〈x.m〉. We proceed the same way.

• (SELECT) + (C5): Impossible case. For the same reason as for (C5) + (C6).

• (SELECT) + (C6): The reduced term in the premise of (C6) can not be the value replacing x.l in the rule (SELECT) (because

values are irreducible). So we have s = νx← [x :S | d, l = t, m = v] ; e〈x.m〉 with t→ t′, and we can easily join t1 and t2.

• (SELECT) + (C4): It is the only interesting case.

νx← [x :S | d, l = v] ; e〈x.l〉

bn(e)∩fn(x,v)=∅
iiiiii

ttiiiiii e〈x.l〉→t
UUUUUU

**UUUUUU

νx← [x :S | d, l = v] ; e〈v〉 νx← [x :S | d, l = v] ; t

e〈x.l〉 → t means there is a (SELECT) redex or a (MIX) redex reduction inside e〈x.l〉. We write it r
ε−→ r′. We can then consider

two cases:

1. Either x.l and this redex are disjoint and there is then no problem to join the resulted terms:

νx← [x :S | d, l = v] ; E〈x.l〉〈r〉

sshhhhhhhhhhhhhhhhhh

r
ε−→r′

VVVVVVVV

++VVVVVVVV

νx← [x :S | d, l = v] ; E〈v〉〈r〉

++VVVVVVVVVVVVVVVVVV νx← [x :S | d, l = v] ; E〈x.l〉〈r′〉

sshhhhhhhhhhhhhhhhhhh

νx← [x :S | d, l = v] ; E〈v〉〈r′〉

(we write E〈t〉〈u〉 to express an evaluation context with two holes filled with terms t and u)

2. either x.l comes inside the reduced redex.

First remark that then it can not be a (MIX) redex because x.l would not be in a evaluation position as is required when
we write e〈x.l〉.
So the redex which is reduced and which contains x.l is a (SELECT) redex. We write it νy← [y :T | d1, m = w] ; e1〈y.m〉.
So there exists a context e′ such that s′′ = e′〈νy← [y :T | d1, m = w] ; e1〈y.m〉〉.
Once again we have to consider two cases: either x.l is inside d1 (it can not be inside w which is a variable x or a class

template [x :S | d] in which x.l could not be in an evaluation position), either it is inside e1〈y.m〉.
If it is inside d1 then d1 = d2, n = e2〈x.l〉 and we can join t1 and t2:

s = νx← [x :S | d, l = v] ; e′〈νy← [y :T | d2, n = e2〈x.l〉, m = w] ; e1〈y.m〉〉
t1 = νx← [x :S | d, l = v] ; e′〈νy← [y :T | d2, n = e2〈v〉, m = w] ; e1〈y.m〉〉
t2 = νx← [x :S | d, l = v] ; e′〈νy← [y :T | d2, n = e2〈x.l〉, m = w] ; e1〈w〉〉
u = νx← [x :S | d, l = v] ; e′〈νy← [y :T | d2, n = e2〈v〉, m = w] ; e1〈w〉〉

If it is inside e1〈y.m〉, we know that x.l is not y.m because x 6∈ bn(e) by hypothesis and y ∈ bn(e), so x 6= y. It follows that
there exists an evaluation context with two holes E such that e1〈y.m〉 = E〈x.l〉〈y.m〉. And we can once again join t1 and t2:

s = νx← [x :S | d, l = v] ; e′〈νy← [y :T | d1, m = w] ; E〈x.l〉〈y.m〉〉
t1 = νx← [x :S | d, l = v] ; e′〈νy← [y :T | d1, m = w] ; E〈v〉〈y.m〉〉
t2 = νx← [x :S | d, l = v] ; e′〈νy← [y :T | d1, m = w] ; E〈x.l〉〈w〉〉
u = νx← [x :S | d, l = v] ; e′〈νy← [y :T | d1, m = w] ; E〈v〉〈w〉〉

2

C Undecidability Proof

C.1 Main goal

Theorem C.1 There exists no algorithm that can decide if a judgement Γ ` t : T is derivable or not.

26

C.2 Outline of the proof

First we notice that the undecidability of subtyping implies the undecidability of typing, because for any environment Γ and types T
and U , we can find a term which is well-typed under Γ if and only if Γ ` T ≤ U is derivable. One such term is [this :{} | L ≺ {M <:
U} & {M = T}]. So we can limit ourselves to show the undecidability of subtyping.

The idea is to define a translation 〈〈·〉〉 from F<: types and environments to νObj types and environments and to prove that Γ `F<: T <: U
iff 〈〈Γ〉〉 ` 〈〈T 〉〉 ≤ 〈〈Q〉〉. As subtyping in F<: has been shown undecidable by Pierce [Pie94], this will prove that subtyping is undecidable
for a part of the possible judgements (namely those that are the translation of a F<: judgement), hence a fortiori for all subtyping
judgements in νObj.

Here is this translation of F<: types into νObj types.

〈〈>〉〉 = { }
〈〈X〉〉 = X.Arg

〈〈T → U〉〉 = {val : [x : {arg : 〈〈T 〉〉} | res : 〈〈U〉〉]} (x fresh)

〈〈∀X <: S.T 〉〉 = {val : [X : {Arg <: 〈〈S〉〉} | res : 〈〈T 〉〉]}

And here is the translation of F<: environments into νObj environments.

〈〈ε〉〉 = ε
〈〈Γ, X <: T 〉〉 = 〈〈Γ〉〉, X : {Arg <: 〈〈T 〉〉}

In the translation, we use letters x and X for names, words consisting of lower-case letters for value labels, and words consisting of
upper-case letters for type labels. Specifically, arg labels a value parameter, Arg labels a type parameter, res labels a function result,
and val labels a class value.

The translation we use is a simplification of the one introduced in the encoding of F<: because we do not have to translate terms and
because we are no more interested in simulating the reduction relation here, so we can avoid an indirection in the translation of function
types.

C.3 Reminder about F<: subtyping

We just relate in this section the presentation of B. Pierce in [Pie94].

Types

S, T, U ::= X | > | T → U | ∀X ≤ T.U

where X ranges over type variables.

Environments

Γ, Σ ::= ε | Γ, X ≤ T

Subtyping rules

(f-refl)
Γ ` T ≤ T

Γ ` S ≤ T, T ≤ U

Γ ` S ≤ U
(f-trans)

(f-top)
Γ ` T ≤ >

X ≤ T ∈ Γ

Γ ` X ≤ T
(f-tvar)

(f-arrow)
Γ ` T2 ≤ T1, U1 ≤ U2

Γ ` T1 → U1 ≤ T2 → U2

Γ ` T2 ≤ T1 Γ, X ≤ T2 ` U1 ≤ U2

Γ ` ∀X ≤ T1.U1 ≤ ∀X ≤ T2.U2
(f-all)

We implicitly assume in the subtyping inference rules that each occurrence of a type variable in the environment or the body of a rule
must have been previously bound in the environment.

More formally we write FTV (T) the set of free type variables in a type T . We say a type T is closed with respect to an environment Γ
if FTV (T) ⊂ dom(Γ). An environment Γ is said closed if Γ is ε or Γ is Γ1, X ≤ T with Γ1 closed and T closed with respect to Γ1. A
statement Γ ` T ≤ U is said to be closed if Γ is closed and both T and U are closed with respect to Γ. We assume that all statements
under discussion are closed.

27

C.4 Proof of subgoals

Theorem C.2 Γ `F<: T <: U implies 〈〈Γ〉〉 ` 〈〈T 〉〉 ≤ 〈〈Q〉〉.

Proof:

First we introduce some useful lemmas:

Lemma 22 Reflexivity of ≤ in νObj is derivable.

Lemma 23 For any environment Γ and record type R = {x | D}, Γ ` R ≤ {}.

Proof: Using rule (REC− ≤), it is sufficient to show that Γ, {x | D} ` {} ≤ {} which is immediate with the reflexivity. 2

Lemma 24 X : {Arg <: T} ∈ Γ implies Γ ` X.Arg ≤ T .

Proof:
X : {Arg <: T} ∈ Γ implies Γ ` X.type <: {Arg <: T} by rule (V AR− <:)

implies Γ ` X.type 3 (Arg <: T) by rule (SINGLE− 3)
implies Γ ` X.type•Arg <: T by rule (TSEL− <:)
implies Γ ` X.type•Arg ≤ T by rule (REFL− ≤)

2

Lemma 25 For any environment Γ and type T , if Γ is closed and if T is closed with respect to Γ then 〈〈Γ〉〉 ` 〈〈T 〉〉 ≤ R.

Proof: By structural induction over the environment Γ, then by case on the shape of T .

Case T is >, T1 → t2 or ∀X <: T1.T2.

In each case 〈〈T 〉〉 is already a record type. We conclude with the reflexivity of νObj subtyping.

Case T is a type variable X.

As T is closed with respect to Γ, there must exist a binding X <: S in Γ. So Γ has the form Γ1, X <: S, Γ2. We want to prove that
〈〈Γ1〉〉, X : {Arg <: 〈〈S〉〉}, 〈〈Γ2〉〉 ` X.Arg ≤ R.

On one hand, as Γ is closed, S is also closed with respect to Γ1. With the induction hypothesis applied to Γ1 we deduce that
〈〈Γ1〉〉 ` 〈〈S〉〉 ≤ R.

On the other hand, using the νObj typing rules we can prove that 〈〈Γ1〉〉, X : {Arg <: 〈〈S〉〉}, 〈〈Γ2〉〉 ` X.Arg ≤ 〈〈S〉〉.

We then conclude with the transitivity of ≤.

2

Now we proceed by a simple induction over the derivation of Γ `F<: T <: U and by case on the last rule that was used.

Case

(f-refl)
Γ ` T <: T

Reflexivity of ≤ (lemma 22) implies 〈〈Γ〉〉 ` 〈〈T 〉〉 ≤ 〈〈T 〉〉.

Case

(f-trans)
Γ ` S <: T, T <: U

Γ ` S <: U

By induction hypothesis we get that 〈〈Γ〉〉 ` 〈〈S〉〉 ≤ 〈〈T 〉〉 and 〈〈Γ〉〉 ` 〈〈T 〉〉 ≤ 〈〈U〉〉 and we conclude that 〈〈Γ〉〉 ` 〈〈S〉〉 ≤ 〈〈U〉〉 using the
transitivity of ≤ (rule TRANS− ≤).

Case

(f-top)
Γ ` T <: >

It is implicitly assumed that this statement is closed, so T is closed with respect to Γ. Then using the lemma 25 we get that 〈〈Γ〉〉 `
〈〈T 〉〉 ≤ R. We also get that 〈〈Γ〉〉 ` R ≤ {} using lemma 23. And we conclude that 〈〈Γ〉〉 ` 〈〈T 〉〉 ≤ {} by transitivity of ≤.

Case

(f-tvar)
X <: T ∈ Γ

Γ ` X <: T

28

As X <: T ∈ Γ, we know that X : {Arg <: 〈〈T 〉〉} ∈ 〈〈Γ〉〉. And by lemma 24, we can conclude that 〈〈Γ〉〉 ` X.Arg ≤ 〈〈T 〉〉 which is
exactly what we had to prove.

Case

(f-arrow)
Γ ` T2 <: T1, U1 <: U2

Γ ` T1 → U1 <: T2 → U2

We have to prove that 〈〈Γ〉〉 ` [x :{arg : 〈〈T1〉〉} | res : 〈〈U1〉〉] ≤ [x :{arg : 〈〈T2〉〉} | res : 〈〈U2〉〉] where x is a fresh name.

We use rule (CLASS− ≤), so we get two subgoals:

1. 〈〈Γ〉〉 ` {arg : 〈〈T2〉〉} ≤ {arg : 〈〈T1〉〉}, and

2. 〈〈Γ〉〉, x : {arg : 〈〈T2〉〉} ` {res : 〈〈U1〉〉} ≤ {res : 〈〈U2〉〉}, or simply 〈〈Γ〉〉 ` {res : 〈〈U1〉〉} ≤ {res : 〈〈U2〉〉} because x does not appear in
〈〈U1〉〉 nor in 〈〈U2〉〉.

These facts are direct consequences of the induction hypothesis 〈〈Γ〉〉 ` 〈〈T2〉〉 ≤ 〈〈T1〉〉 and 〈〈Γ〉〉 ` 〈〈U1〉〉 ≤ 〈〈U2〉〉 using the rules
(REC− ≤) and (BIND− ≤).

Case

(f-all)
Γ ` T2 <: T1 Γ, X <: T2 ` U1 <: U2

Γ ` ∀X <: T1.U1 <: ∀X <: T2.U2

We have to prove that 〈〈Γ〉〉 ` [X :{Arg <: 〈〈T1〉〉} | res : 〈〈U1〉〉] ≤ [X :{Arg <: 〈〈T2〉〉} | res : 〈〈U2〉〉].

We use rule (CLASS− ≤) and we get two subgoals:

1. 〈〈Γ〉〉 ` {Arg <: 〈〈T2〉〉} ≤ {Arg : 〈〈T1〉〉}, and

2. 〈〈Γ〉〉, X : {Arg <: 〈〈T2〉〉} ` {res : 〈〈U1〉〉} ≤ {res : 〈〈U2〉〉}.

These facts are direct consequences of the induction hypothesis 〈〈Γ〉〉 ` 〈〈T2〉〉 ≤ 〈〈T1〉〉 and 〈〈Γ〉〉, X : {Arg <: 〈〈T2〉〉} ` 〈〈U1〉〉 ≤ 〈〈U2〉〉
using the rules (REC− ≤) and (TBIND− ≤).

2

Theorem C.3 〈〈Γ〉〉 ` 〈〈T 〉〉 ≤ 〈〈U〉〉 implies Γ `F<: T <: U .

Proof: We define a partial inverse function 〈〈·〉〉−1 from νObj types and environments to F<: types and environments:

〈〈{ }〉〉−1 = >
〈〈X.Arg〉〉−1 = X

〈〈{val : [x : {arg : T} | res : U]}〉〉−1 = 〈〈T 〉〉−1 → 〈〈U〉〉−1

〈〈{val : [X : {Arg <: T} | res : U]}〉〉−1 = ∀X <: 〈〈T 〉〉−1.〈〈U〉〉−1

〈〈Γ, X : {Arg <: T}〉〉−1 = 〈〈Γ〉〉−1, X <: 〈〈T 〉〉−1

〈〈ε〉〉−1 = ε

And we just have to show that the following properties hold:

1. For all F<: types T , 〈〈T 〉〉 ∈ dom(〈〈.〉〉−1) and 〈〈〈〈T 〉〉〉〉−1 = T .

2. For all F<: environments Γ, 〈〈Γ〉〉 ∈ dom(〈〈.〉〉−1) and 〈〈〈〈Γ〉〉〉〉−1 = Γ.

3. For all νObj environments Γ, types T and U in dom(〈〈.〉〉−1), Γ ` T ≤ U implies 〈〈Γ〉〉−1 `F<: 〈〈T 〉〉−1 <: 〈〈U〉〉−1.

Properties 1 and 2 are shown by simple induction over the structure of types and environments, but the property 3 deserves its own
lemma.

2

Lemma 26 Γ, T, U ∈ dom(〈〈.〉〉−1) and Γ ` T ≤ U implies 〈〈Γ〉〉−1 `F<: 〈〈T 〉〉−1 <: 〈〈U〉〉−1.

Proof:

To show this property we would like to do a simple induction on the derivation of 〈〈Γ〉〉 ` 〈〈T 〉〉 ≤ 〈〈U〉〉 and reason by case on the last
rule that was used, as previously. But the rules of transitivity in subtyping are annoying because they introduce in the proof types about
which we know nothing.

To avoid this problem we define a new type system that we have to prove equivalent to the old one and in which these rules have been
removed. Among the remaining rules we have to modify those that implicitly used the erased rules in their premises to get an appropriate
supertype.

This modified but equivalent type system is presented in section C.5.

Now before going on we introduce a small lemma.

29

Lemma 27 T ≡ T ′ and T , T ′ in dom(〈〈.〉〉−1) implies 〈〈T 〉〉−1 =α 〈〈T ′〉〉−1.

Proof: By induction on the relation ≡ with the small lemma 〈〈T [z/x]〉〉−1 = 〈〈T 〉〉−1[z/x]. 2

Now we will prove together the following statements.

Lemma 28 If Γ, T, U ∈ dom(〈〈.〉〉−1) then

1. Γ ` T = U implies 〈〈Γ〉〉−1 ` 〈〈T 〉〉−1 <: 〈〈U〉〉−1 and 〈〈Γ〉〉−1 ` 〈〈U〉〉−1 <: 〈〈T 〉〉−1.

2. Γ ` T ≺ U implies 〈〈Γ〉〉−1 ` 〈〈T 〉〉−1 <: 〈〈U〉〉−1.

3. Γ ` T <: U implies 〈〈Γ〉〉−1 ` 〈〈T 〉〉−1 <: 〈〈U〉〉−1.

4. Γ ` T ≤ U implies 〈〈Γ〉〉−1 ` 〈〈T 〉〉−1 <: 〈〈U〉〉−1.

Proof: By mutual induction over the derivation of the statements of kind =, ≺, <: and ≤, then by case on the last rule that was used.

1. Case (REFL− =). With the lemma 27 and the reflexivity of F<: (F −REFL).

Case (SY MM− =). Simply using the induction hypothesis on the premise of the rule.

Case

(Alias-=)
Γ ` T 3 (L = U), U = U ′, T wf

Γ ` T •L = U ′

As T •L is in dom(〈〈.〉〉−1), T •L can only be of the form X.type•Arg. The inference step becomes

(Alias-=)
Γ ` X.type 3 (Arg = U), U = U ′, T wf

Γ ` X.type•Arg = U ′

But as Γ is in dom(〈〈.〉〉−1), the type associated to X in Γ can only be of the shape {Arg <: S}, so if Γ ` X.type 3 D then D can
only be of the shape (Arg <: U) not (Arg = U).

Case

(Tsel-=)
Γ ` T = T ′

Γ ` T •L = T ′•L

As T •L and T ′•L are in dom(〈〈.〉〉−1), they can only be of the form X.type•Arg and X.type•Arg.

So the premise of the rule becomes Γ ` X.type = Y.type.

Now the rule that have this statement as goal is either (REFL− =) or (SINGLE− =).

If it is (REFL− =), it means that X = Y and we can conclude using the reflexivity of F<:.

If it is (SINGLE− =) we can assume w.l.g. that the premise of the rule is Γ ` X : Y.type with X 6= Y .

The only possibility is then that X : Y.type ∈ Γ but this is impossible because Γ is in dom(〈〈.〉〉−1).

Case (&− =). T & U is not in dom(〈〈.〉〉−1).

Case

(Rec-=)
Γ, x : {D} ` D = D′

Γ ` {x | D} = {x | D′}

We can distinguish several subcases depending on the shapes of the left and right member:

• Γ ` {} = {val : [x :{arg : T} | res : U]} (or symmetric case): Not derivable.

• Γ ` {} = {val : [X :{Arg <: T} | res : U]} (or symmetric case): Not derivable.

• Γ ` {val : [x :{arg : T1} | res : U1]} = {val : [X :{Arg <: T2} | res : U2]} (or symmetric case): Not derivable.

• Γ ` {} = {}: We have well 〈〈Γ〉〉−1 ` > ≤≥ > using rule (F − TOP).

• Γ ` {val : [X :{Arg <: T1} | res : U1]} ≤ {val : [X :{Arg <: T2} | res : U2]}: If we go up in the proof tree, necessarily we will
encounter in that order the rules (REC− =), (BIND− =) and (CLASS− =). Premises of the rule (CLASS− ≤) will be
Γ ` T1 = T2 and Γ, X : {Arg <: T1} ` U1 = U2.

Applying the induction hypothesis on these two derivations we get that 〈〈Γ〉〉−1 ` 〈〈T1〉〉−1 ≤≥ 〈〈T2〉〉−1 and 〈〈Γ〉〉−1, X <:
〈〈T1〉〉−1 ` 〈〈U1〉〉−1 ≤≥ 〈〈U2〉〉−1 from which we can conclude using the rule (F −ALL).

• Γ ` {val : [x :{arg : T1} | res : U1]} ≤ {val : [x :{arg : T2} | res : U2]}: Similar to the previous subcase.

Case (CLASS− =). [x :S | D] is not in dom(〈〈.〉〉−1).

Case (SINGLE− =). p.type is not in dom(〈〈.〉〉−1).

2. Case (REFL− ≺). Simply using the induction hypothesis on the premise of the rule.

Case

(Tsel-≺)
Γ ` T 3 (L ≺ U), U ≺ U ′

Γ ` T •L ≺ U ′

By replaying the reasoning made for the rule (ALIAS− =). This time we find out that X.type can not contains a binding
(Arg ≺ U).

Case (&− ≺). T & U is not in dom(〈〈.〉〉−1).

Case (MIXIN− ≺). T & U is not in dom(〈〈.〉〉−1).

30

3. Case (REFL− <:). Simply using the induction hypothesis on the premise of the rule.

Case (V AR− <:). x.type is not in dom(〈〈.〉〉−1).

Case (SEL− <:). p.l.type is not in dom(〈〈.〉〉−1).

Case

(Tsel-<:)
Γ ` T 3 (L <: U), U <: U ′

Γ ` T •L <: U ′

As T •L is in dom(〈〈.〉〉−1), T •L can only be of the form X.type•Arg. The inference step becomes

(Tsel-<:)
Γ ` X.type 3 (Arg <: U), U <: U ′

Γ ` X.type•Arg <: U ′

So necessarily we have Γ ` X.type <: {x | D, Arg <: U} in the proof tree.

Which is possible only if there exists S s.t. X : S ∈ Γ and Γ ` S ≤ {x | D, Arg <: U}. As Γ is in dom(〈〈.〉〉−1), S must be of the
shape {Arg <: U ′′}.
And from the fact that Γ ` {Arg <: U ′′} ≤ {x | D, Arg <: U} we can deduce that there is Γ ` U ′′ ≤ U in the proof tree.

We want to prove that 〈〈Γ〉〉−1 ` X <: 〈〈U ′〉〉−1.

But the binding of X in 〈〈Γ〉〉−1 is X <: 〈〈U ′′〉〉−1, so it is sufficient by using the rule (F−TV AR) to show that 〈〈Γ〉〉−1 ` 〈〈U ′′〉〉−1 <:
〈〈U ′〉〉−1, what we get by transitivity og F<: from the induction hypothesis applied to Γ ` U ′′ ≤ U and to Γ ` U <: U ′.

4. Case (REFL− ≤). Simply using the induction hypothesis on the premise of the rule.

Case (&− ≤). T & U is not in dom(〈〈.〉〉−1).

Case (≤ −&). T & U is not in dom(〈〈.〉〉−1).

Case

(Rec-≤)
Γ, x : {x | D, D′} ` D ≤ D′′

Γ ` {x | D, D′} ≤ {x | D′′}

We can distinguish several subcases depending of the shapes of the subtype and the supertype.

• Γ ` {} ≤ {val : [x :{arg : T} | res : U]}: Not derivable.

• Γ ` {} ≤ {val : [X :{Arg <: T} | res : U]}: Not derivable.

• Γ ` T ≤ {}: Then 〈〈Γ〉〉−1 ` 〈〈T 〉〉−1 ≤ > using rule (F − TOP).

• Γ ` {val : [x :{arg : T1} | res : U1]} ≤ {val : [X :{Arg <: T2} | res : U2]}: Not derivable.

• Γ ` {val : [X :{Arg <: T1} | res : U1]} ≤ {val : [x :{arg : T2} | res : U2]}: Not derivable.

• Γ ` {val : [X :{Arg <: T1} | res : U1]} ≤ {val : [X :{Arg <: T2} | res : U2]}: If we go up in the proof tree, necessarily we will
encounter in that order the rules (REC− ≤), (BIND− ≤) and (CLASS− ≤). Premises of the rule (CLASS− ≤) will be
Γ ` T2 ≤ T1 and Γ, X : {Arg <: T2} ` U1 ≤ U2.

Applying the induction hypothesis on these two derivations we get that 〈〈Γ〉〉−1 ` 〈〈T2〉〉−1 ≤ 〈〈T1〉〉−1 and 〈〈Γ〉〉−1, X <:
〈〈T2〉〉−1 ` 〈〈U1〉〉−1 ≤ 〈〈U2〉〉−1 from which we can conclude using the rule (F −ALL).

• Γ ` {val : [x :{arg : T1} | res : U1]} ≤ {val : [x :{arg : T2} | res : U2]}: Similar to the previous subcase.

Case (CLASS− ≤). [x :S | D] is not in dom(〈〈.〉〉−1).

2

2

C.5 νObj Typing Rules without Transitivity

Γ ` T wf Γ ` D wf

(Single-wf)
Γ ` p : R

Γ ` p.type wf

Γ ` T wf, T 3 (L = U), U wf

Γ ` T •L wf
(Tsel-wf1)

(Tsel-wf2)
Γ ` T wf, T 3 (L ≺ U), U ≺ R

Γ ` T •L wf

Γ ` T wf, T 3 (L <: U), U <: R

Γ ` T •L wf
(Tsel-wf3)

(&-wf)
Γ ` T wf, T ′ wf

Γ ` T & T ′ wf

Γ, x : {x | D} ` D wf

Γ ` {x | D} wf
(Rec-wf)

(Class-wf)
Γ ` S wf Γ, x : S ` D wf

Γ ` [x : S | D] wf

(Bind-wf)
Γ ` T wf

Γ ` (l : T) wf

Γ ` T wf

Γ ` (L = T) wf
(Tbind-wf1)

31

(Tbind-wf2)
Γ ` T wf, T ≺ R

Γ ` (L ≺ T) wf

Γ ` T wf, T <: R

Γ ` (L <: T) wf
(Tbind-wf3)

Γ ` T 3 D

v(Single-3) Γ ` p.type <: {x | D′, D}
Γ ` p.type 3 [p/x]D

Γ, x : T ` x.type 3 D x 6∈ fn(Γ, D)

Γ ` T 3 D
(Other-3)

Γ ` T = T ′

(Refl-=)
T ≡ T ′

Γ ` T = T ′
Γ ` T = T ′

Γ ` T ′ = T
(Symm-=)

(Alias-=)
Γ ` T 3 (L = U), U = U ′, T wf

Γ ` T •L = U ′
Γ ` T = T ′

Γ ` T •L = T ′•L
(Tsel-=)

(&-=)
Γ ` T = T ′, U = U ′

Γ ` T & U = T ′ & U ′
Γ, x : {D} ` D = D′

Γ ` {x | D} = {x | D′}
(Rec-=)

(Class-=)
Γ ` S = S′ Γ, x : S ` D = D′

Γ ` [x : S | D] = [x : S′ | D′]

Γ ` p : q.type

Γ ` p.type = q.type
(Single-=)

(Bind-=)
Γ ` T = T ′

Γ ` (l : T) = (l : T ′)

Γ ` T = T ′

Γ ` (L �: T) = (L �: T ′)
(Tbind-=)

Γ ` T ≺ T ′

(Refl-≺)
Γ ` T = T ′

Γ ` T ≺ T ′
Γ ` T 3 (L ≺ U), U ≺ U ′

Γ ` T •L ≺ U ′ (Tsel-≺)

(&-≺)
Γ ` T ≺ T ′, U ≺ U ′

Γ ` T & U ≺ T ′ & U ′

Γ ` T ≺ {x | D1} Γ ` U ≺ {x | D2}
Γ, x : {x | D1]D2} ` D2 ≤ D1|dom(D2)

Γ ` T & U ≺ {x | D1]D2}
(Mixin-≺)

Γ ` T <: T ′

(Refl-<:)
Γ ` T ≺ T ′

Γ ` T <: T ′
x : T ∈ Γ Γ ` T ≤ T ′

Γ ` x.type <: T ′
(Var-<:)

(Sel-<:)
Γ ` p.type 3 (l : U), U <: U ′

Γ ` p.l.type <: U ′
Γ ` T 3 (L <: U), U <: U ′

Γ ` T •L <: U ′ (Tsel-<:)

Γ ` T ≤ T ′ Γ ` D ≤ D′

(Refl-≤)
Γ ` T <: T ′

Γ ` T ≤ T ′
Γ ` T1 ≤ T ′1

Γ ` T1 & T2 ≤ T ′1
(&-≤1)

(&-≤2)
Γ ` T2 ≤ T ′2

Γ ` T1 & T2 ≤ T ′2

Γ ` T ≤ T1, T ≤ T2

Γ ` T ≤ T1 & T2
(≤-&)

(Rec-≤)
Γ, x : {D, D′} ` D ≤ D′′

Γ ` {x | D, D′} ≤ {x | D′′}

Γ ` R wf, S & R ≤ S′, S′ ≤ S

Γ, x :S′ ` D ≤ D′

Γ ` [x : S | D] ≤ [x : S′ | D′]

(Class-≤)

(Bind-≤)
Γ ` T ≤ T ′

Γ ` (l : T) ≤ (l : T ′)

Γ ` T ≤ T ′

Γ ` (L �: T) ≤ (L <: T ′)
(Tbind-≤)

32

Γ ` t : T

(Var)
x :T ∈ Γ

Γ ` x : T

Γ ` t : T, T 3 (l : U)

Γ ` t.l : U
(Sel)

(VarPath)
Γ ` x : R

Γ ` x : x.type

Γ ` t : p.type, t.l : R

Γ ` t.l : p.l.type
(SelPath)

(New)

Γ ` t : [x :S | D], S ≺ {x | D}
Γ, x :S ` u : U x 6∈ fn(U)

Γ ` (νx← t ; u) : U

Γ ` t : p.type, t.l : R

Γ ` t.l : p.l.type
(SelPath)

(Class)

Γ ` S wf Γ, x :S ` D wf, ti : Ti

ti contractive in x (i ∈ 1..n)

Γ ` [x :S | D, li = t i∈1..n
i] : [x :S | D, li :T i∈1..n

i]

Γ ` ti : [x :Si | Di]

Γ ` S wf, S ≤ Si (i = 1, 2)

Γ ` t1 &S t2 : [x :S | D1]D2]

(&)

33

	Introduction
	The Obj Calculus
	Context-Free Syntax
	Operational Semantics
	Type Assignment
	Define-By-Value Obj

	Examples
	Type Structure
	Membership
	Equality
	Expansion
	Upper Bounds
	Subtyping
	Well-formedness

	Relationship with F<:
	Meta-Theory
	Confluence
	Type Soundness
	Environments
	Weakening
	Subject reduction
	Type soundness

	Undecidability of Type Checking

	Conclusion
	Summary of Typing Rules
	Confluence Proof
	Notations
	Preliminary definitions
	Main goal
	General idea of the proof

	Undecidability Proof
	Main goal
	Outline of the proof
	Reminder about F<: subtyping
	Proof of subgoals
	Obj Typing Rules without Transitivity

