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Abstract 

Parkinson’s disease (PD) is the second most common neurodegenerative disease in the 

general population. Cardinal symptoms of Parkinson’s disease are resting tremor, rigid-

ity, akinesia and bradykinesia and in advanced stages, gait impairments, postural insta-

bility and complications of chronic treatment with levodopa such as motor dysfunctions 

and dyskinesia. Multitude and complexity of these motor symptoms and their variability 

over the time have made assessment of them a difficult task. Moreover, following the 

fluctuations of motor performance (ON/OFF fluctuations) of the PD patients throughout 

their daily activities by quantifying their motor symptoms is a major challenge.  

The aim of this thesis was to design and validate a portable ambulatory movement 

analysis system for long-term monitoring and qualitative and quantitative assessment of 

motor abnormalities of PD patients during daily activities.  

We have designed a new measurement system consisting of five independent, lightweight, 

autonomous sensing units based on kinematic sensors that can continuously record 

body movements during daily life. Using this system and by performing several clinical 

studies, both in controlled conditions and on free moving patients, we have prepared a 

database of different movement patterns of PD patients. This database was the basis to 

design several new algorithms for the analysis of tremor, bradykinesia, gait and posture. 

An accurate algorithm based on spectral estimation has been proposed to detect and 

quantify tremor during daily activities of PD patients with a resolution down to three 

seconds using gyroscopes attached to the forearms. 

By quantifying the speed, range and the frequency of the movements, we have proposed a 

new method to assess the bradykinesia and tested it both in controlled and free condi-

tions. We found out that in the free moving patients, the outcomes of this algorithm show 

significant and good correlation to the established clinical scores. 

Regarding the detection and analysis of gait, we have developed and tested a method 

based on four sensors attached to the lower limbs that provided spatio-temporal parame-

ters of gait with good accuracy. We further improved our method using a new biome-

chanical model that could predict the movements of thighs from the movements of 
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shanks during walking. This way we could reduce the number of sensor sites on the body 

while keeping the same accuracy in estimation of the spatio-temporal parameters of gait. 

By combining a statistical classifier, to detect transitions between sitting and standing 

postures, and a fuzzy classifier, to detect the basic body postures, we have developed an 

algorithm to classify basic body posture allocations both in PD patients and aged 

matched healthy subjects. 

Finally, while currently no other objective ambulatory method exists to accurately detect 

the periods of ON and OFF in PD patients, by combining the outcomes of the above 

algorithms (tremor, gait, bradykinesia and posture) using a statistical approach, we have 

proposed a method to detect periods of these two states with a resolution of 10 minutes 

in free moving patients. 

We believe that the proposed system has a high potential both for the clinical applica-

tions and research purposes related to the patient with Parkinson’s disease and possibly 

other neurological movement disorders. 

 

Keywords: Parkinson’s disease, Body-fixed sensors, Ambulatory system, Tremor, Bra-

dykinesia, Gait analysis, Physical activity, Kinematic sensors, Biomedical signal process-

ing. 
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Résumé 

La maladie de Parkinson est la deuxième maladie neurodégénérative affectant l’être 

humain. Ces symptômes les plus importants sont les tremblements de repos, la rigidité, 

l’akinésie et la bradykinésie. Dans les cas plus avancés, cette maladie engendre égale-

ment une dégradation de la marche, une instabilité posturale, et des complications aux 

traitements chroniques avec la Levodopa, comme des troubles moteur et de la dyskinésie. 

La multitude et la complexité, de ces symptômes moteur, associé à leur variation au 

cours du temps en rendent l’évaluation difficile. De plus, le suivi des changements des 

performances moteur (état ON/OFF) des patients atteints de la maladie de Parkinson au 

cours de leurs activités quotidiennes par quantification des symptômes moteur est un 

challenge de taille. 

L’objectif de ce travail de thèse était la conception et la validation d’un système d’analyse 

longue durée du mouvement, à la fois ambulatoire et portable, permettant une évaluation 

qualitative et quantitative des disfonctionnements moteur des patients atteints de la 

maladie de Parkinson durant leurs activités journalières. 

Un nouveau système de mesure composé de cinq unités indépendantes et autonomes a 

été conçu. Ces unités, de faible poids, peuvent enregistrer continuellement les mouve-

ments du corps aux cours des activités quotidiennes. Par l’emploi de ce système lors de 

plusieurs études cliniques, en environnement contrôlé et en conditions libres, nous 

avons constitué une banque de données riche de différents patrons de mouvements de 

patients parkinsoniens. Cette banque de données a servit à la conception de plusieurs 

nouveaux algorithmes pour l’analyse des tremblements, de la bradykinésie, de la marche 

et de la posture. 

Un algorithme précis, utilisant des gyroscopes fixés sur les avant-bras, et basé sur une 

analyse spectrale a été proposé pour détecter et quantifier les tremblements durant les 

activités quotidiennes des patients avec une résolution de trois secondes. 

Par la quantification de la vitesse, de l’amplitude, et de la fréquence des mouvements, 

une nouvelle méthode d’évaluation de la bradykinésie a été proposée et testée en envi-

ronnement libre et contrôlé. Une corrélation bonne et significative a été montrée entre les 
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résultats de cet algorithme et les tests cliniques reconnus, lors d’activités en environne-

ment libre. 

Concernant la détection et l’analyse de la marche, une méthode basée sur quatre cap-

teurs fixés sur les membres inférieurs a été proposée et testée. Cette méthode fournit les 

paramètres spatiaux-temporels de la marche avec précision. De plus, cette méthode a été 

améliorée à l’aide d’un nouveau modèle biomécanique capable de prédire les mouvements 

des cuisses pendant la marche à partir de ceux des jambes. Cette amélioration diminue 

le nombre de capteurs fixés sur le corps tout en maintenant identique la précision de 

l’estimation des paramètres spatiaux-temporels de la marche. 

Par la combinaison d’un classificateur statistique détectant les transitions entre les 

positions assises et debout avec un classificateur flou détectant les postures basiques, 

nous avons développé un nouvel algorithme ouvert pour déterminer la répartition des 

postures de base tant chez les patients atteints de la maladie de Parkinson, que chez des 

sujets sains de même âge. 

Finalement, alors qu’actuellement aucune autre méthode objective et ambulatoire ne 

permette la détection précise des états ON et OFF des patients atteints de la maladie de 

Parkinson, par la combinaison des précédents algorithmes (tremblement, marche, brady-

kinésie et posture) au travers d’une approche statistique, une méthode pour détecter les 

états ON et OFF avec une résolution de 10 minutes en environnement libre a été propo-

sée. 

Nous pensons que le système proposé a un fort potentiel tant pour les applications 

cliniques que pour la recherche en relation avec les patients atteints de la maladie de 

Parkinson et éventuellement, également pour d’autres troubles neurologique du mouve-

ment. 

 

Motes-clés: Maladie de Parkinson, Capteur emarqué, Système ambulatoire, Tremble-

ment, Bradykinésie, Analyse de la marche, Activité physique, Capteur cinématique, 

Traitement des signaux biomédical. 
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Chapter 1  Introduction 

1.1 Parkinson’s disease 
Parkinson’s disease (PD; paralysis agitans) is a neurodegenerative disease of the substan-

tia nigra (an area in the basal ganglia of the brain, which controls voluntary movements 

and helps to regulate mood). Dr. James Parkinson discovered this disease and docu-

mented its syndromes in his famous monograph An Essay on the Shaking Palsy pub-

lished in 1817 (Parkinson 1817).  

 
AN 

ESSAY 
ON THE 

SHAKING PALSY. 
 

CHAPTER I. 
DEFINITION—HISTORY—ILLUSTRATIVE CASES. 

 
SHAKING PALSY. (Paralysis Agitans.) 

Involuntary tremulous motion, with lessened 
muscular power, in parts not in action and 
even when supported; with a propensity to 
bend the trunk forward, and to pass from a 
walking to a running pace; the sense and 
intellects being uninjured. 

 
Figure  1-1. James Parkinson’s classical essay on shaking palsy. 

After Alzheimer’s, Parkinson’s disease is the second most common neurodegenerative 

disease. According to the United Nations, at least four million people worldwide have it. It 

is estimated that the prevalence and incident rates of Parkinson’s disease in Europe is 

approximately 108 to 257/100,000 and 11 to 19/100,000 per year, respectively. In the 

older age groups (i.e. > 60 years) the rates of prevalence and incidence are much higher: 
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1280 to 1500/100,000 and 346/100,000, respectively (Von Campenhausen, Bornschein 

et al. 2005). It is expected that its prevalence and the anticipated social and economical 

burden related to it, increase in the next few decades as a result of both increased lon-

gevity and multiplication of effective therapies despite the two to five times higher mortal-

ity than age-matched controls (Lang and Lozano 1998a; b).  

Parkinson’s disease occurs when certain neurons of the brain, mostly in the substantia 

nigra die or become impaired. The symptoms of Parkinson's disease result from the loss 

of these dopamine-secreting (dopaminergic) cells and subsequent loss of melanin, se-

creted by the same cells, in the pars compacta region of the substantia nigra (also known 

as black substance). This leads to inhibition of the direct pathway of movement and 

activation of the indirect pathway of movement. Since the direct pathway facilitates 

movement and the indirect pathway inhibits movement, the loss of these cells leads to a 

hypokinetic movement disorder. The lack of dopamine results in an excessive inhibition 

of the thalamus, leading to hypokinesia (Lang and Lozano 1998a; b). 

1.2 Major Symptoms of the Parkinson’s disease 
PD affects mainly the motor system and its cardinal symptoms are tremor, rigidity, 

akinesia, postural abnormalities and gait impairment (Lang and Lozano 1998a; b; Petit, 

Allain et al. 1994). In addition to the motor symptoms, mental disorders like depression 

or psychosis, and autonomic and gastrointestinal dysfunction may occur; all of which 

considerably impair the quality of life of the patients (Schrag, Jahanshahi et al. 2000). 

Tremor in PD has a number of characteristics that make it easy to differentiate from 

other causes of tremor: it is slow with frequency of 4 to 6Hz and affects asymmetrically 

upper and lower limbs (Deuschl, Bain et al. 1998; Hallett 1998).  

Rigidity or increased stiffness of the muscles, frequently associated with cogwheeling, is 

a plastic, lead-pipe form of hypertonia that affects many muscles of the limbs and the 

trunk and is responsible for the typical stooped posture of the PD patients. 

Akinesia (lack of movement) is perhaps the most disabling symptom of PD and includes 

many features such as delayed motor initiation and slow performance of voluntary 

movements (bradykinesia), insufficiency of motion (hypokinesia), difficulty in reaching a 

target with a single continues movement, rapid fatigue with repetitive movements, inabil-

ities to execute simultaneous actions and inability to execute sequential actions 

(Delwaide and Gonce 1998).  



 Chapter 1 - Introduction 

3 

Gait can also be altered in PD. Akinesia is particularly obvious during gait where it is 

responsible for the short, shuffling steps, reduced arm swing, hesitations in start, turn-

ing-around and sometimes leading to freezing phenomena (Delwaide and Gonce 1998).  

Various combinations of PD symptoms, their severity, location and variability over the 

time in a particular patient generate a significant functional disability that tends to 

increase as the disease progresses (Hoehn and Yahr 1967). 

Apart from the complex and constantly evolving pattern of these motor changes, there is 

considerable interpersonal heterogeneity of PD, making comparisons between individual 

patients a difficult task. Therefore, measuring the effect of therapeutic interventions on 

the symptoms of PD is a major challenge. 

1.3 Treatments of PD and ON/OFF fluctuations  
Currently the principle treatments include medications that mimic dopamine, com-

pounds used to create dopamine in the brain (such as levodopa) and drugs that inhibit 

the breakdown of dopamine. Among the others, levodopa is the most important and 

commonly used.  

However, a major disabling symptom of chronic levodopa (LD) therapy is dyskinesia 

(Nutt, Carter et al. 1995). Dyskinesia generally occurs at the maximal benefit from a 

single LD dose (peak-dose dyskinesia) that can involve any body part with choreic or 

dystonic movements. As dyskinesia is a side effect of the levodopa therapy, it is often 

referred to as levodopa-induced dyskinesia (LID) (Nutt 1990). The actual emergence of 

dyskinesia during the day depends on timing and quantity of each individual does of 

levodopa and also to a lesser extent, depends on stress, food and many other factors 

(Nutt 1990). Other chronic levodopa therapy related motor manifestations that may 

develop are motor fluctuations such as wearing-off, early-morning dystonia, delayed ON 

or no-ON response and eventually ON-OFF phenomena (Marsden, Parkes et al. 1981; 

Petit, Allain et al. 1994). 

Two important and commonly used terms regarding the parkinsonian state of the pa-

tients are ON and OFF states. During the ON state, the medication (in particular 

levodopa) is active and motor performance of the patient is improved. OFF state is the 

period that starts when the effects of the medications wear off and PD symptoms re-

emerge.  

Many of PD patients start to fluctuate between the ON and OFF states. Moreover, during 

the ON state patients may suffer from dyskinesia. Figure  1-2 shows a schematic of these 

ON/OFF fluctuations during the day. The physicians constantly need to adjust the dose 
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and the time between each intake of the medications to maximize the period of ON state 

and minimize the periods of OFF and dyskinesia. Over the time the response to a fixed 

dose of the levodopa therapy decreases and as a result, the dose or the time between 

each intake needs to be adjusted. Clearly, to optimally adjust the treatments, knowing 

the exact periods of ON and OFF state during the day is invaluable to the physicians. 

  
Figure  1-2 A schematic view of the levodopa fluctuations in the patients with PD. 

1.4 Sub-Thalamic Nucleus, Deep Brain Stimulation  
Recently Deep Brain Stimulation (DBS) in the sub-thalamic nucleus (STN) has been intro-

duced as a treatment in patients with pharmacoresistent fluctuations (Benabid, Benaz-

zouz et al. 1998): In a surgical procedure, through a small opening in the skull an 

electrode is implanted into the basal ganglia (see Figure  1-3). Electrical stimulation 

through the electrode interferes with neural activity in the target area which can alleviate 

parkinsonian signs. 

 After the surgery is completed, an expert calibrates the unit in order to maximize its 

effectiveness. The calibration includes setting the frequency, voltage and duty cycle of the 

square wave oscillator inside the neurostimulator. The neurostimulator is a pacemaker 

like device that contains a battery and circuitry to generate the electrical signals that 

through the electrode stimulates the targeted area in the brain. Currently Medtronic Inc. 

is the leader in producing  neurostimulators and other components of the STN-DBS. 
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Figure  1-3. Components of the STN-DBS stimulation system. 

STN-DBS results in a significant reduction of the needed medication and in some cases 

patients can completely stop taking them (Vingerhoets, Villemure et al. 2002); which in 

turn eliminates the problem of wearing-off with the levodopa therapy and can stop 

fluctuations and the dyskinesia. 

The programming of the neurostimulator can take up to a year to achieve an optimal 

setting. Sometimes DBS is performed unilaterally on the side of the brain opposite to the 

side of the body most affected by the disease, but in many cases it is performed bilater-

ally in a single operation. 

During the thesis, we had a chance of close collaboration with the departments of neu-

rology of Centre Hospitalier Universitaire Vaudois (CHUV) (the largest center of STN-DBS 

therapy in Switzerland) and Hôpitaux Universitaires de Genève (HUG). Through our 

collaboration with these two centers, we had access to both PD patients with STN-DBS 

implantations and those following therapies based on medications. 

1.5 Common clinical assessment methods of PD 
Currently, motor assessment in PD is mainly based on historical information, home 

diaries and neurological examination during visits to the clinic. These methods clearly 

suffer from many drawbacks: data from these sources can be highly subjective, they rely 

on the patient’s memory and perception of his own symptoms and they depend on the 

physician’s experience in the field. Moreover, most of the patients may not be aware of 
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mild tremor or dyskinesia. They may not necessarily understand medical terminology. 

They may unconsciously exaggerate or attenuate symptoms’ severity.  Finally, short-term 

memory can be affected by PD (Brown, Maccarthy et al. 1989; Lang and Fahn 1989; 

Scholz and Bacher 1995). 

In an attempt to solve these problems and to find more objective assessments, several 

rating scales have been designed and used (Larsen, LeWitt et al. 1983; Martinez-Martin 

1993). Among them, the Unified Parkinson’s Disease Rating Scale (UPDRS) is the most 

widely used (Fahn, Elton et al. 1987). This rating scale tries to quantify selected symp-

toms and signs of parkinsonism in a 5-points scoring system (with 0 for no sign and 4 for 

a marked severity of the sign).  

Unfortunately, the UPDRS like any other semi-objective rating scale has limitations like 

intra and inter-observer inconsistencies, can be time consuming and can be biased by 

subjectivity issues related to historical information. Moreover, the pattern and severity of 

PD symptoms may vary considerably during the day, while clinical rating scales only 

provide moment-to-moment assessments; and finally, measurements of motor functions 

made in the clinic may not accurately reflect the actual functional disability experienced 

by the patients in their daily life (Kiani, Snijders et al. 1997). 

In addition to rating scales, akinesia and gait are sometimes evaluated by means of timed 

motor performance test (Giovannoni, van Schalkwyk et al. 1999), Purdue pegboard test 

(Desrosiers, Hebert et al. 1995; Reddon, Gill et al. 1988), pronation-supination test, hand 

movement between two points (Zappia, Montesanti et al. 1994), finger dexterity (Boraud, 

Tison et al. 1997), stand-walk-sit test (Watts and Mandir 1992) or tremor amplitude 

(Norman, Edwards et al. 1999). Also, objective methods have been suggested to quantify 

rigidity (Patrick, Denington et al. 2001). While these methods are quantitative, again they 

only provide information limited to the setting of the clinic. 

1.6 Ambulatory monitoring of PD motor symptoms 
The ideal assessment method should provide objective, quantitative and long-term data 

that could be easily translated into simple and useful information. For this purpose an 

instrumental method is undoubtedly more appropriate. A limited number of movement 

analysis systems (MAS) have been described for the ambulatory measurement of the 

various aspects of movement disorders in PD. 

Electromyography (EMG) techniques provide detection and monitoring of electrical 

muscle activities by attaching surface electrodes on the belly of the selected muscles. 

EMG does not directly measure movements and a large number of electrodes may be 
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needed to study complex movements. EMG has been used for a long time to study tremor 

in PD and several ambulatory, long-term EMG recording systems have been described 

(Andreeva, Ivanova-Smoielnskaya et al. 1985; Bacher, Scholz et al. 1989; Boose, Spieker 

et al. 1996; Foerster and Smeja 1999; Scholz, Bacher et al. 1988; Spieker, Boose et al. 

1998). Also, ambulatory EMG recording has been used to detect basic body postures (Ng, 

Sahakian et al. 2000). And finally, EMG has been used to study gait in PD (Albani, 

Sandrini et al. 2003; Cioni, Richards et al. 1997; Dietz and Colombo 1998; Mitoma, 

Hayashi et al. 2000), though not in ambulatory conditions. 

An ambulatory approach to analyze gait is based on special footwear with foot-switches 

or other pressure sensitive devices inside (Lackovic, Bilas et al. 2000; Pataky, Faravel et 

al. 2000). However, using special footwear is not always possible and may also hinder 

subject’s normal gait. Moreover, PD patients may tend to shuffle while walking, making 

the initial and terminal contact detection difficult. In these cases, the gait temporal 

parameters may not be calculated precisely. In addition, the foot-switch techniques do 

not provide spatial parameters. 

Recent developments in microelectronics have led to design and production of a new 

generation of small, cheap and robust sensors that can be used to measure kinematic 

parameters of the movements of the body segments. These developments have breathed a 

new life in design of ambulatory systems for long-term monitoring of body movements. 

Accelerometers and gyroscopes have been used to detect and quantify tremor (Burkhard, 

Langston et al. 2002; Frost 1978; Hoff, Wagemans et al. 2001; Smeja, Foerster et al. 

1999; Van Someren, Vangool et al. 1993; Van Someren, Vonk et al. 1998), bradykinesia 

and hypokinesia (Dunnewold, Jacobi et al. 1997; Ghika, Wiegner et al. 1993; Katayama 

2001; Van Someren, Vonk et al. 1998) in PD patients. Ambulatory gait analysis systems 

has been design based on accelerometers (Aminian, Rezakhanlou et al. 1999; Moe-

Nilssen and Helbostad 2004; Sabatini, Martelloni et al. 2005; Selles, Formanoy et al. 

2005) and gyroscopes (Aminian, Najafi et al. 2002; Aminian, Trevisan et al. 2004) for 

healthy subjects, elderly and pathological cases. These sensors have been used as activ-

ity monitor (Bussmann, Reuvekamp et al. 1998; Bussmann, Martens et al. 2001; Fuji-

kane, Yokota et al. 1995; Mochio, Oka et al. 1997; Veltink, Bussmann et al. 1996b) or to 

classify different body postures (Dunnewold, Hoff et al. 1998; Najafi, Aminian et al. 2002; 

Najafi, Aminian et al. 2003; Paraschiv-Ionescu, Buchser et al. 2004). Also recently kine-

matic sensors has been used in detection and quantification of dyskinesia (Burkhard, 

Shale et al. 1999; Hoff, Wagemans et al. 2001; Keijsers, Horstink et al. 2003a; b; Manson, 

Brown et al. 2000). 
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Today, especially regarding assessment of PD, none of the abovementioned techniques 

are perfect or sufficiently investigated and overall there is little experience with them. 

Long-term quantification has only rarely been achieved. These methods are yet young 

and none of them has been used in large scale nor has reached consensus as a gold 

standard in the scientific and clinical community. Moreover, each system only either 

addresses one or few of the major PD motor dysfunctions. Finally, available ambulatory 

methods can not yet detect periods of ON and OFF state in individual PD patients with 

acceptable accuracy (Hoff, Van Der Meer et al. 2004). 

1.7 Objectives 
The primary objective of this thesis was: 

• To design and validate a portable ambulatory movement analysis system for long-

term monitoring and qualitative and quantitative assessment of motor abnormali-

ties of PD patients during their daily activities.   

Additional goals of this thesis were: 

• To use available sensors to identify body movement patterns that are specific to 

motor changes in PD including tremor, bradykinesia, gait impairments and physi-

cal activity. 

• To design and test new sensors and to identify their optimal configuration for the 

purpose of the detection of the described motor phenomena. 

• To determine and standardize the most convenient number and location of sen-

sors as well as the best recording parameters of the final movement analysis sys-

tem (MAS). 

• To use the optimized MAS in clinical studies on the free moving PD patients and 

to characterize fluctuations in their motor performance. 

• And finally, to use the objective parameters provided by the MAS to detect motor 

states (ON and OFF states) in the free moving PD patients. 

In this thesis, we have mostly focused on the PD patients with bilateral STN-DBS implan-

tation. Patients participated in our studies had optimally tuned STN-DBS and showed no 

signs of dyskinesia during the ON state. By switching the stimulation on and off, we 

could mimic severe motor fluctuations normally occurring in levodopa treated PD pa-

tients. The biggest advantage of working with these patients for our study was the possi-

bility to record the body movement patterns particular to the OFF and ON states in the 

same patient, within the limited time we had with them. Detection and quantification of 
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dyskinesia which is the side effect of the levodopa therapy and not a PD symptom per se, 

however, was not in the scope of this thesis. 

1.8 Outline of the thesis 
The thesis is organized in nine chapters. 

The first (current) chapter, Introduction, introduces the basic ideas, provides a short 

review of the literature and discusses about the objectives of the thesis. 

The second chapter, Clinical studies, presents the clinical measurement protocols used 

throughout the different studies in the thesis, the information about the patients partici-

pated in the measurements and the results of the clinical tests that they have done. 

The third chapter, Movement Analysis System, focuses on the architecture and the design 

of the measurement systems used in the different studies. The engineering and clinical 

decisions and compromises that finally led to the design of our new MAS are presented in 

this chapter. 

The fourth chapter, Quantification of tremor and bradykinesia, presents our new algo-

rithms to detect and quantify these two important parkinsonian symptoms. Two clinical 

studies with STN-DBS on an off, one in controlled conditions and one on free moving PD 

patients had been performed and the methods and results are presented. 

The fifth chapter, Analysis of physical activity, describes the method to detect four basic 

human body postures (i.e. sitting, standing walking and lying) in the case of PD patients 

with STN-DBS on an off. Presence of motor abnormalities of PD makes the task of detec-

tion of these postures a notoriously difficult job for this specific group of patients. 

The sixth chapter, Gait assessment, presents our proposed gait analysis method and the 

results of the gait analysis of a group of PD patients and control subjects in a controlled 

study, again in both states of on and off. 

The seventh chapter, Gait analysis of free moving patients, takes our gait analysis method 

to a next step and presents a new gait analysis method with half of the number of the 

sensors of previous method, with similar accuracy. The new method has been used to 

analyze gait in free moving PD patients while the state of the stimulation was being 

changed. 

The eighth chapter, Detection of the periods of ON and OFF, presents a statistical ap-

proach to use the outcomes of the all of the algorithms discussed in the preceding chap-

ters to detect periods of ON and OFF in group of free moving PD patients. 



 Chapter 1 - Introduction 

10 

The ninth and the final chapter, Conclusions, summarizes the contributions of this thesis 

and presents the perspectives of the future studies. 

All chapters of the thesis follow a similar structure. Each chapter starts with a short 

abstract, including some backgrounds, a summary of the objectives, methods, major 

results and the main contribution. Afterwards an introduction is presented to bring the 

subject of the chapter into focus and it is followed by the details of the method, results 

and conclusions.  

At the end of the thesis, in the bibliography section, all of the referenced articles, books 

and our resources used throughout the thesis are listed. 
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Chapter 2  Clinical studies 

Abstract 
Background—Our study was primarily based on data analysis, visualization, several 

iterations of finding and applying ideas, and finally testing them on real world data, i.e. 

clinical situations. 

Objectives—Protocols of measurements should be designed and used in clinical studies 

to provide needed data in each of the phases of pilot works, design, test and application 

of the methods.  

Method—With collaboration of neurology groups of HUG and CHUV, protocols of the 

measurements were developed and their respective sensor configurations were deter-

mined. The measurement protocols were designed according to the needs of each phase 

of the thesis. Four groups of clinical studies have been performed during this research, 

each with progressively more improved version of MAS, to provide a database of move-

ment patterns of PD patients and healthy controls. 

Results—In summary, 41 PD patients and 10 healthy control subjects participated in 

more than 65 sessions and 118 hours of measurements.  The database of normal and 

abnormal movement patterns alongside the measurement logs, videos and reports pro-

vided an invaluable resource for design and development of algorithms to detect and 

quantify PD movement disorders. 

Main contributions—A rich database of movement patterns of PD patients and control 

subjects has been gathered that includes a large spectrum of normal and abnormal 

patterns of movement in both controlled and ambulatory conditions. 

2.1 Introduction 
During the course of the thesis, a series of measurements and studies were performed 

with close collaboration between our laboratory and neurology departments of Centre 

Hospitalier Universitaire Vaudois (CHUV) and Hôpitaux Universitaires de Genève (HUG). 

These measurements provided the necessary real-world data to design the architecture of 
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the movement analysis system (MAS), to design and test the algorithms and to do feasi-

bility studies to test the whole system within the clinic.  

As the data gathered in these studies was used repeatedly in several following chapters, 

they are all presented in this chapter to avoid unnecessary repetition. 

The measurements can be divided into four groups: 

1. Pilot study, where the basic structure of MAS, typical patterns of the abnormal 

movements and practical limits of the system were studied. 

2. Controlled study, where under a fully controlled and documented approach, the 

core algorithms and the measurement system were designed and in some cases 

tested.  

3. Transition study, which was performed when the second prototype of the MAS was 

ready. As the architecture of the MAS was radically changed between the first and 

the second prototype, this study was performed to ensure that the two systems 

provide similar outcomes using our analysis algorithms. 

4. Long-term study, where the system was used for monitoring ambulatory patients 

for several hours. 

In the following sections, for each of these studies the issues of measurement system and 

its configuration, selection of the patients and the measurement protocol are discussed. 

Patients diagnosed with probable PD according to widely used clinical criteria were 

selected in HUG and CHUV neurology departments to be enrolled in the studies. In short, 

the selection criteria included: 

• Inclusion criteria 

- Probable PD according to UKPDSBB diagnostic criteria (Gibb and Lees 

1988; Hughes, Daniel et al. 1992). 

- Improvement in UPDRS score part III of 30% or more following a regular 

morning dose of levodopa. 

- Presence of motor manifestations of sufficient magnitude to justify neuro-

physiological assessment. 

- Interest in the study and adequate availability. 

• Exclusion criteria 
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- Any conditions that may significantly interfere with motor function outside 

PD, such as ophthalmologic, orthopedic or rheumatologic illnesses. 

- Cognitive impairment or psychiatric manifestations that may prevent ac-

ceptable understanding of the study requirements.  

Moreover, a group of neurologically intact subjects, matched for age and gender were 

used as controls to find the normal values in the controlled study. The studies were 

submitted to the local Ethics Committees (Neuclid in HUG, Internal Medicine in CHUV) 

and the participants had signed the usual informed consent before the measurements. 

2.2 Pilot study 
At the beginning of the thesis, during the period of May to November 2001, a pilot study 

was performed. This study was used as a test bed for completion of the design of clinical 

protocols and also to test and to establish the configuration of the MAS. During the 

period of this study, the configuration of the MAS and also clinical protocols were con-

tinuously changed and polished to prepare a foundation for the later studies. 

2.2.1 Objectives 
The pilot study was performed with several objectives in mind. The data from these series 

of measurements were used: 

• To identify movement patterns that are specific to motor changes in PD, including 

tremor, bradykinesia, gait impairments and postural abnormalities, using available 

sensors. 

• To design and development of a new portable MAS, supportable by PD patients. 

• To determine and standardize the most convenient number and location of sensors 

to be used, as well as the best recording parameters of the MAS. 

2.2.2 Subjects and measurement setup 
Following the general inclusion/exclusion criteria, eight PD patients participated in the 

pilot study. They included six males and two females. Three PD patients participated in 

the study during the OFF state and the other five patients did the test in ON state. Also, 

one healthy, normal subject did several tests in this study. The setup and the number of 

sensors were varied from subject to subject. As the study progressed, the setup became 

more complete.  
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To record tremor, a pair of 3D gyroscopes attached on the forearms were used. To record 

gait patterns, a set of four uni-axial gyroscopes were attached on the lower limbs. One or 

two Physilog® data-loggers were used to record the signals.  

The last six measurements included a sensor setup similar to the controlled study and 

four of them were fully recorded by video. For more details about the measurement 

system used in this study, see section 3.2.  

2.2.3 Measurement protocol 
The first two patients participated in several separate recordings, including periods of 

tremor in hands and feet and several walking trials. In six tremor recordings, each time 

only one 3D gyroscope sensor was attached on either the forearm or the feet. Signals 

were recorded for 60 seconds. Two walking trials were performed by each subject at their 

preferred, normal speed in a 20m pathway and subjects were instructed to walk in a 

straight line. 

The only healthy normal subject participated in this study performed several walking 

trials at slow, normal and fast speeds in the same 20m pathway. He also did several 

walking trials trying to mimic the festinating gait of PD patients. 

Six PD patients participated in a protocol of 16 typical daily activities. These activities 

included tasks like: writing, eating, drinking, walking, climbing the stairs, etc. The exact 

number, order, type and period of each task were changed several times till the satisfac-

tory measurement protocol was agreed upon. This protocol was later used in the con-

trolled study, (details in section  2.3.3).  

2.3 Controlled study 
Following the pilot study, the configuration of the MAS and the details of the clinical 

protocol of this study were determined. The measurements were performed during the 

period of February to June 2002.  

The data recorded in these series of measurements formed a very important database of 

PD movement abnormalities patterns that served as the basis of the design and valida-

tion of most of the different algorithms developed during the course of the thesis.  

All details of the study were carefully documented, either on video or in written logs and 

participants followed a clearly defined, timed protocol including standard tasks selected 

from typical daily activities. 

The data recorded in this study has been used in the design and/or test of the methods 

presented in chapters 4, 5, 6 and 7. 
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2.3.1 Objectives 
Several objectives were persuaded with the controlled study. This study was done: 

• To prepare a database of the signatures of PD gait, tremor, bradykinesia and pos-

tural abnormalities. 

• To make a database of the signatures of the movement abnormalities of PD patients 

while they were performing typical daily activities. 

• To prepare a database of the signatures of the movements of healthy subjects, per-

forming the same tasks as the PD patients. 

• To have a series of movement recordings in both PD patients and healthy controls 

where the exact type, intensity and period of each activity were precisely recorded. 

• To design algorithms to detect and analyze gait, tremor, body posture and bradyki-

nesia. 

• To find the statistical performance (sensitivity and specificity) of detection algo-

rithms for gait, tremor and posture transitions. 

• To compare the outcomes of the mentioned algorithms to the established clinical 

scores. 

• To compare the performance of the same PD patients between the ON and OFF 

states, as reflected in the changes in different objective parameters evaluated by our 

analysis methods. 

• To compare the respective objective parameters between PD patients and healthy 

controls. 

2.3.2 Subjects and measurement setup 
In this study, two groups of participants were enrolled.  The first group consisted of ten 

PD patients, 20 ± 3 months after implantation of bilateral STN-DBS (Vingerhoets, Ville-

mure et al. 2002) including five males and five females with an average age of 61.5 years 

(max = 75.1, min = 48.7, S.D. = 7.8) who agreed to participate in a Stim-off procedure 

and to carry our MAS. Ten healthy control subjects (5 men, 5 women, 63.6 ± 10.5 years 

old) were also enrolled in the study.  

All patients had dopa-responsive PD, without atypical signs on examination (O'Sullivan, 

Said et al. 1998), no dementia (following International Classification of Diseases-10 

definition of dementia) and no depression. The control subjects had no neurologic disease 

or medical condition associated with tremor. They didn’t take tremorogenic medication 
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and they didn’t have orthopedic or arthritic conditions on the upper limbs limiting the 

recordings (Burkhard, Langston et al. 2002). 

To record the signals, the first prototype of MAS, a system including two Physilog® data-

logger and kinematic sensors on seven sites on the body was used. The details of the 

measurement system can be found in section 3.3. 

2.3.3 Measurement protocol 
Subjects carried the first prototype of measuring system and followed a protocol of 17 

typical daily activities (Table  2-1). It took up to 45 minutes for each subject to complete 

the protocol.  

Table  2-1 shows the list of the activities used in the measurement protocol of this study. 

All activities were videotaped and video segments were later examined to prepare a log of 

all activities including the time of the start and end of each period of tremor in hands, 

periods of each of the four basic body postures (sitting, standing, walking and lying) and 

the exact time of the transitions between sitting and standing. 

Table  2-1. The list of the activities used in the measurement protocol of the controlled 
study. 

Before each measurement, patients were evaluated using the Unified Parkinson’s Disease 

Rating Scale (UPDRS), motor section III (Fahn, Elton et al. 1987). Each patient performed 

the protocol twice: once during Stim ON (i.e. when both stimulators were turned on) and 

once during Stim OFF (i.e. when both stimulators have been turned off). The Stim OFF 

measurement was recorded between 120 to 180 minutes after turning STN-DBS off 

(Temperli, Ghika et al. 2003).  

Four patients did not need to take any medication; the others took dopaminergic medica-

tion consisting of levodopa and/or a dopamine agonist. All medications were discontin-

 Activity Minimum time 
1 Sitting with no movement 30s 
2 Sitting and talking 60s 
3 Sitting, counting in inverse starting from 100 each time subtracting 7 60s 
4 Sitting, holding the 2 hand in 90° 30s 
5 Sitting, alternate movement of the right hand 30s 
6 Sitting, alternate movement of the left hand 30s 
7 Standing, followed by walking round 2m toward a table and sitting behind it 120s 
8 Sitting, writing the date, name and a series of standard phrases 60s 
9 Sitting,  eating and drinking 120s 
10 Standing, followed by walking toward the lavatory 60s 
11 Standing, brushing the teeth 60s 
12 Standing, combing the hair 60s 
13 Walking from the lavatory to the corridor and sitting on the chair 120s 
14 Standing, walking for 20m with normal speed, turning back and sitting on the chair 120s 
15 Standing, climbing the stairs, turning back and sitting on the chair 120s 
16 Standing, walking for 20m with fast speed, turning back and sitting on the chair. 120s 
17 Lying in the bed 60s 
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ued prior to the test (Vingerhoets, Villemure et al. 2002). Table  2-2 and Table  2-3 show 

the UPDRS motor section scores of the PD patients participated in this study. 

Patient 1 2 3 4 5 
Stimulation ON OFF ON OFF ON OFF ON OFF ON OFF 

UPDRS Part III sub-scores           
18. Speech 2 2 2 2 1 2 1 1 0 1 
19. Facial Expression 1 3 1 4 2 4 1 2 1 2 
20. Tremor at Rest           

20.a Face 0 0 1 2 1 2 0 0 1 2 
20.b Upper Extremity R, L 0, 1 4, 4 1, 0 3, 1 0, 0 1, 1 0, 0 3, 1 0, 0 1, 1 
20.c Lower Extremity R, L 0, 0 0, 0 1, 0 3, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 

21. Action or Postural Tremor (R, L) 1, 1 4, 4 0, 1 2, 1 1, 1 1, 1 0, 0 3, 1 0, 0 0, 1 
22. Rigidity           

22.a Neck 1 4 1 4 2 4 1 4 1 1 
22.b Upper Extremity R, L 1, 1 4, 4 1, 0 4, 2 2, 2 3, 4 0, 0 4, 4 0, 0 1, 0 
22.c Lower Extremity R, L 0, 1 2, 3 0, 1 3, 3 2, 2 3, 4 2, 2 3, 4 1, 0 0, 0 

23. Finger taps 1, 2 3, 4 4, 2 4, 4 2, 3 3, 4 1, 1 4, 4 0, 0 2, 2 
24. Hand Movements R, L 1, 3 4, 4 4, 2 4, 4 2, 3 3, 4 1, 1 3, 4 0, 0 1, 2 
25. Rapid Alternate Movements R, L 3, 3 4, 4 4, 3 4, 4 3, 3 4, 4 2, 2 4, 4 0, 0 1, 2 
26. Leg Agility R, L 0, 0 4, 4 0, 1 3, 4 1, 2 3, 4 1, 2 3, 3 0, 0 2, 1 
27. Arising From Chair 0 4 0 3 3 4 0 1 0 0 
28. Posture 1 1 0 0 2 2 1 1 0 0 
29. Gait 0 3 2 3 3 4 2 2 0 1 
30. Postural Stability 1 4 1 3 3 4 1 1 0 0 
31. Body Bradykinesia 1 4 2 4 3 4 1 3 0 1 

Total 26 85 35 78 49 77 23 67 4 25 

Table  2-2 The UPDRS motor section scores of the patients 1 to 5, participating in the con-
trolled study. 
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Patient 6 7 8 9 10 
Stimulation ON OFF ON OFF ON ON OFF ON OFF ON 

UPDRS Part III sub-scores           
18. Speech 1 4 2 2 1 1 4 2 2 1 
19. Facial Expression 0 2 2 2 1 0 2 2 2 1 
20. Tremor at Rest           

20.a Face 1 1 1 1 0 1 1 1 1 0 
20.b Upper Extremity R, L 1, 0 4, 4 1, 1 1, 1 0, 0 1, 0 4, 4 1, 1 1, 1 0, 0 
20.c Lower Extremity R, L 0, 0 2, 2 0, 0 1, 1 2, 0 0, 0 2, 2 0, 0 1, 1 2, 0 

21. Action or Postural Tremor (R, L) 1, 1 2, 2 1, 1 1, 2 1, 1 1, 1 2, 2 1, 1 1, 2 1, 1 
22. Rigidity           

22.a Neck 0 2 2 3 2 0 2 2 3 2 
22.b Upper Extremity R, L 0, 0 1, 2 2, 2 1, 2 0, 0 0, 0 1, 2 2, 2 1, 2 0, 0 
22.c Lower Extremity R, L 0, 0 1, 1 2, 1 2, 2 1, 1 0, 0 1, 1 2, 1 2, 2 1, 1 

23. Finger taps 0, 0 2, 3 2, 2 3, 4 1, 1 0, 0 2, 3 2, 2 3, 4 1, 1 
24. Hand Movements R, L 0, 0 2, 3 2, 2 4, 4 2, 2 0, 0 2, 3 2, 2 4, 4 2, 2 
25. Rapid Alternate Movements R, L 0, 0 1, 2 1, 1 4, 4 2, 2 0, 0 1, 2 1, 1 4, 4 2, 2 
26. Leg Agility R, L 0, 0 1, 1 0, 0 0, 1 1, 1 0, 0 1, 1 0, 0 0, 1 1, 1 
27. Arising From Chair 0 0 0 0 0 0 0 0 0 0 
28. Posture 0 0 1 2 1 0 0 1 2 1 
29. Gait 0 0 1 1 2 0 0 1 1 2 
30. Postural Stability 0 1 1 2 2 0 1 1 2 2 
31. Body Bradykinesia 1 2 0 1 1 1 2 0 1 1 

Total 6 48 31 52 28 6 48 31 52 28 

Table  2-3. The UPDRS motor section scores of the patients 6 to 10, participating in the 
controlled study. 

2.4 Transition study 
In 2003 we had a new architecture for the measurement system and our new sensing 

units based on this architecture were ready. In the period of May to June 2003, we 

performed a small study to find out if during the transition from the first prototype to the 

second prototype that was based on this new architecture, any significant changes could 

be found in quality of the recorded data and if the same algorithms could provide identi-

cal results using any of the two systems. 

2.4.1 Objectives 
The transition study was performed: 

• To test the second prototype of the MAS for the first time on the patients. 

• To test the system for any flaws in the hardware or the embedded software of the 

recording units. 

• To find the optimum method of the attachment of the system on the body. 

• To compare the outcomes of the analysis methods between the first and second 

prototype. 
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2.4.2 Subjects, systems and protocol  
Four PD patients with bilateral STN-DBS implantation participated in this study. Their 

ages were between 55 to 69 years old. The first and the second prototype of the MAS (see 

sections 3.3 and 3.4) were carried by the patients at the same time (see Figure  2-1). 

Considering the number and complexity of the system, it is clear that it was a difficult 

task for the patients.  

22

1

22

2

1 1

1 1

11

 
Figure  2-1. The sensors sites on the body in the transitions study. Sensors of the first 

prototype are marked with number 1 and those of the second prototype are marked with 2. 

A series of measurement using the same protocol of the controlled study was performed 

(see section 2.3.3 for the details of the protocol): PD patients performed a protocol of 17 

typical daily activities, once during Stim ON and once three hours after turning the STN-

DBS off. Each measurement took less than 45 minutes. As the setup was heavy, in the 

period between the two measurements it was removed from the body. The data was 

transferred to a personal computer for the analysis.  
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Patient 1 2 3 4 
Stimulation ON OFF ON OFF ON OFF ON OFF 

UPDRS Part III sub-scores         
18. Speech 1 2 0 1 2 2 2 2 
19. Facial Expression 1 3 1 2 2 2 2 2 
20. Tremor at Rest         

20.a Face 0 0 0 0 0 0 0 0 
20.b Upper Extremity R, L 0,1 1,4 0,0 0,0 0,0 0,0 0,0 0,0 
20.c Lower Extremity R, L 0,0 1,0 0,0 0,0 0,0 2,0 0,0 0,0 

21. Action or Postural Tremor (R, L) 0,1 3,4 0,0 0,0 0,0 1,1 0,1 0,1 
22. Rigidity         

22.a Neck 1 3 0 3 2 3 0 1 
22.b Upper Extremity R, L 0,1 2,4 0,0 1,2 1,2 2,3 1,0 1,1 
22.c Lower Extremity R, L 0,1 3,2 0,0 1,2 2,2 2,2 0,0 0,0 

23. Finger taps 1,1 2,4 0,1 3,3 2,2 2,2 0,1 1,1 
24. Hand Movements R, L 0,1 0,3 0,1 2,3 1,1 2,2 0,1 0,1 
25. Rapid Alternate Movements R, L 1,2 2,3 0,1 3,4 3,2 3,3 0,1 0,1 
26. Leg Agility R, L 0,0 2,3 0,1 2,3 1,1 1,1 0,1 0,1 
27. Arising From Chair 1 2 0 1 0 0 0 0 
28. Posture 1 1 0 1 1 1 0 1 
29. Gait 1 1 0 1 1 1 1 1 
30. Postural Stability 2 2 0 1 1 1 0 1 
31. Body Bradykinesia 0 1 0 3 2 3 0 0 

Total 15 58 5 42 31 40 11 16 

Table  2-4. The UPDRS motor section scores of the patients participating in the transition 
study. 

2.4.3 Data analysis and outcomes 
A potential concern was the effect of the higher weight and size of the second prototype’s 

recording units (in comparison to the first one’s), on the recorded data: If the attach-

ments were not optimal, during the activities the heavier recording units could move 

more and produce more artifacts in the recorded signal. Moreover, there were some 

differences in the amplitude and spectral characteristics of the noise of the two systems. 

As peak-detection was used in some of our analysis algorithms, noise in the recorded 

signals could potentially change the position of the detected peaks by a few samples.  

However, by comparing the estimated parameters using the gait, tremor, bradykinesia 

and posture analysis algorithms (see chapters 4, 5 and 6) no statistically significant 

differences between the two systems were found. These results were expected as the 

types and the ranges of the sensors were identical. Moreover, the gyroscopes placed and 

aligned to the same axes on the same body segment would measure exactly the same 

angular velocity as the rate of the rotation on a rigid body is independent of the position. 

Accelerometers were used only in the sensors on the trunk and as sensors of the two 

units were attached on the trunk side by side (see Figure  2-1), in the sagittal plane they 

would record the same acceleration. In summary, all differences in the measured quanti-
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ties between the two prototypes where below the ranges of the error or the sensitivity of 

our algorithms. 

This study also helped to solve some small but important problems in the embedded 

software of the recording units before starting the next study. However, the recorded data 

was not later used for the design or the test of the analysis algorithm: We decided that 

because of the weight of the setup and its inconvenience for the patients, the recorded 

movement data would not be the best representative of normal body movement patterns. 

2.5 Long-term study 
The third study was performed during the period of August 2003 to January 2004. It was 

focused on the continuous recording of the ambulatory PD patients for relatively long 

periods of time (several hours), while the state of the stimulation was changed between 

ON and OFF.  

As the periods of the measurements were long, video recording was not possible for the 

whole period and was limited to specific parts of the protocol. To solve this limitation, an 

observer performed visual observation using a hand-held computer during the recordings 

to prepare a time-tagged log of the subjects’ activities.  

The data recorded in this study has been used in the design and/or test of the methods 

presented in all later chapters 4 to 8. The outcomes of the analysis algorithms have been 

compared to the clinical scores to see if the objective parameters estimated using our 

method could follow the changes of the patients’ conditions.  

2.5.1 Objectives 
The objectives of the study were: 

• To prepare a database of recordings of gait, tremor, bradykinesia and physical activ-

ity movement patterns while the parkinsonian signs fluctuated over a period of few 

hours. 

• To prepare a database of the signatures of body movements of PD patients during 

daily physical activities, accompanied by accurate observation reports. 

• To evaluate the feasibility and ease of use of the second prototype of the MAS in 

long-term monitoring. 

• To provide a test-bed for clinical evaluation of the recording units to improve the 

hardware/software in the next prototypes. 
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• To statistically analyze the outcomes of the algorithms of quantification of gait, 

tremor, bradykinesia and physical activities to see if they could follow the fluctua-

tions of the parkinsonian signs.  

• To study the effect of the selection of window size on the outcomes of those analysis 

methods like quantification of bradykinesia, where the values of the estimated ob-

jective parameters were dependent on the size of the temporal window. 

• To study the possibility of detection of periods of ON and OFF by combining the out-

comes of all analysis algorithms. 

2.5.2 Subjects and measurement setup 
In total 19 PD patients with bilateral STN-DBS implantation participated in this study. 

The measurement system used in the study was the second prototype of the MAS.  

Unfortunately, the recorded data of six subjects was partially corrupted and was not 

used. The corruptions in the data were mainly because of some software failures (bugs) 

in the early versions of the firmware of the recording units. The remaining 13 good 

recordings included recordings of seven male and 4 females with an average age of 66.5 

years (max=82.3, min = 59.6, S.D. = 6.8). Table  2-5 and Table  2-6 show the results of 

UPDRS tests in ON and OFF period of these PD patients 

Patient 1 2 3 4 5 6 7 
Stimulation ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF

UPDRS Part III sub-scores               
18. Speech 2 3 1 2 0 2 2 2 2 2 1 2 1 2 
19. Facial Expression 2 3 1 2 1 2 2 3 2 2 1 2 1 2 
20. Tremor at Rest               

20.a Face 0 0 0 0 0 0 0 2 0 1 0 0 0 0 
20.b Upper Extremity R, L 0,0 0,0 0,0 1,1 0,0 0,0 0,0 4,2 0,1 0.5,0 0,1 1,1 1,0 2,0 
20.c Lower Extremity R, L 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 4,4 

21. Action or Postural Tremor R, L 0,0 0,0 0,0 0,0 0,0 1,1 1,1 1,1 0,0 1,1 0,1 0,1 0,0 1,1 
22. Rigidity               

22.a Neck 1 3 1 1 1 3 1 3 0 2 1 4 2 4 
22.b Upper Extremity R, L 1,1 2,3 0,1 2,2 1,0 2,1 0,0 3,3 0,0 1,1 2,1 4,2 1,1 2,2 
22.c Lower Extremity R, L 1,1 3,3 1,0 1,1 0,0 3,2 0,0 2,2 0,0 1.5,1.5 1,0 3,4 2,1 4,2 

23. Finger taps R,L 1,1 3,3 2,1 2,3 1,2 4,4 3,3 3,3 2,2 4,3 3,3 4,4 2,2 3,3 
24. Hand Movements R, L 0,1 2,3 2,2 2,3 1,0 3,4 3,3 2,3 2,1 4,3 1,1 4,4 1,2 3,3 
25. Rapid Alternate Movements R, L 2,2 4,3 2,2 2,3 2,2 4,4 2,2 4,4 2,2 4,4 1,2 4,4 3,2 3,4 
26. Leg Agility R, L 2,2 3,4 1,1 2,2 1,1 4,4 1,1 2,2 2,2 4,4 0,0 3,3 1,2 3,4 
27. Arising From Chair 1 1 0 0 0 2 0 2 4 4 0 1 0 3 
28. Posture 2 2 1 1 1 2 1 2 4 4 1 1 1 3 
29. Gait 2 2 1 2 1 3 1 1 4 4 1 1 2 3 
30. Postural Stability 2 2 1 1 1 2 1 2 3 3 0 1 2 4 
31. Body Bradykinesia 2 3 1 2 1 4 1 3 2 3 1 4 2 3 

Total 29 55 22 38 17 61 29 61 37 62.5 23 62 33 72 

Table  2-5. The UPDRS motor section scores of the patients 1 to 7, participating in the long-
term study. 
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Patient 8 9 10 11 12 13* 
Stimulation ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF

UPDRS Part III sub-scores             
18. Speech 1 2 0 1 2 3 1 1 1 1 2 - 
19. Facial Expression 2 2 1 1 1 3 1 1 1 1 2 - 
20. Tremor at Rest             

20.a Face 0 0 0 0 0 0 0 0 1 0 1 - 
20.b Upper Extremity R, L 0,0 3 0,0 0,0 0,0 0,0 0,0 2,2 0,0 2,3 2,1 - 
20.c Lower Extremity R, L 0,0 0 0,0 2,2 0,0 0,0 0,0 0,0 0,0 1,3 3,1 - 

21. Action or Postural Tremor R, L 0,0 1 0,0 2,1 0.0 1,1 0,1 2,2 0,0 0,1 1,2 - 
22. Rigidity             

22.a Neck 0 2 2 4 3 4 1 4 3 3 0 - 
22.b Upper Extremity R, L 1,1 3,1 2,0 3,2 2,0 3,2 2,2 2,3 1,0 2,3 2,1 - 
22.c Lower Extremity R, L 0,0 3,0 1,0 3,2 2,0 4,3 2,2 3,4 1,0 2,2 1,1 - 

23. Finger taps R,L 0,1 4,1 2,2 3,4 3,2 4,3 2,2 3,3 2,3 3,3 1,0 - 
24. Hand Movements R, L 0,1 3,1 1,1 2,3 3,2 4,3 1,1 3,3 1,2 1,2 0,0 - 
25. Rapid Alternate Movements R, L 0,0 3,0 0,1 3,3 3,2 4,4 0,1 3,2 2,3 2,3 1,0 - 
26. Leg Agility R, L 0,1 3,3 0,1 3,4 4,3 4,4 1,2 3,4 0,0 3,3 1,1 - 
27. Arising From Chair 0 0 0 3 2 4 0 2 0 2 0 - 
28. Posture 0 1 1 3 3 4 1 2 0 1 2 - 
29. Gait 0 0 2 2 3 4 1 2 0 2 2 - 
30. Postural Stability 1 2 1 2 4 4 2 2 1 2 0 - 
31. Body Bradykinesia 1 3 1 3 3 4 1 2 1 3 2 - 

Total 10 41 19 61 47 74 27 60 23 54 30 - 

Table  2-6. The UPDRS motor section scores of the patients 8 to 13, participating in the long-
term study. The last patient (the 13th patient) could only do the test in ON state. 

As a result of feedbacks from the patients during the controlled study and the improve-

ments in the gait analysis method (see chapter 7), the number of sensor sites on the body 

was reduced from seven to five by removing the sensors on thighs. We had a positive 

feedback on ease of use of the system mainly because of removing the cables and reduc-

tion of total weight of the setup. More details about the measurement system are pre-

sented in the section 3.4. 

2.5.3 Measurement protocol 
The protocol of this study was based on continuous recording of activities of the patients 

for several hours, while the state of the stimulation was being changed. Figure  2-2 shows 

the timing of the events in this measurement protocol: At the beginning of the measure-

ment, patients did a UPDRS test (U1). The stimulator was then turned off. Every one 

hour, another UPDRS test was performed (U2, 3, 4, 5). After three hours the stimulator 

was turned on again (after U4) and finally, measurement was ended after U5. During the 

periods between the UPDRS tests, patients were moving freely. 
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Figure  2-2. Structure of the long-term study’s protocol. The thick line shows the UPDRS 

score of the patient. The square boxes show the period of UPDRS tests. 

An interactive program was developed to be used with hand-held computers for logging 

the activities of the patients. An observer followed the subjects all the time with a Pocket 

PC running the program, preparing time-tagged logs of activities of the patients. Figure 

 2-3 shows a screenshot of this program. The program featured a button for each of the 

main body postures (Sitting, Standing, Walking and Lying) and also provided an easy 

method to enter time-tagged comments and to give scores to possible tremor and dyski-

nesia observed during the recordings. As the input method in a hand-held computer is 

based on touch-screens, the data entry using this approach was fast and simple.  

 
Figure  2-3. A screenshot of the data-logging program ran on hand-held computers to provide 

accurate reports of the activities of the subjects. 
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2.6 Conclusion 
We have performed a series of measurements on PD patients from the beginning of the 

thesis to provide needed data for each step of the design, test and application of the 

algorithms and devices. A pilot study gave us insights into the design of the system and 

the challenges ahead in design of the algorithms. Needed data to design the algorithms 

and test them under controlled and well-documented situation were provided in a con-

trolled study. We performed a transition study when the second prototype of the MAS, 

based on a new concept was first available. Finally, the system was used in real clinical 

situations for several hours, monitoring PD patients that were free to perform normal 

activities.  

Besides the recorded data, these clinical studies provided valuable and significant in-

sights and feedbacks from the beginning of the thesis to understand the conditions and 

the needs to use the proposed MAS in real clinical situations. Visual observations as well 

as video recordings were crucial to understand as an engineer the extents and variety of 

the movement disorders in PD patients. Based on these experiences, the methods devised 

in the next chapters where oriented to fulfill clinical needs in the analysis of movement 

disorders in PD.  
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Chapter 3  Movement Analysis System 

Abstract 
Background—Starting from a pilot system based on available sensors and methods, step 

by step the requirements to design a new Movement Analysis System (MAS) including the 

recording system, system configuration and sensor sites were considered and addressed.  

Objectives—The primary goal was to design a new movement analysis system based on 

the kinematic sensors suitable for ambulatory recording of body movements of PD pa-

tients. Moreover we tried to determine the simplest and most convenient system setup to 

record movement data for long periods of a day.  

Method—A pilot study was started using available components. Based on the results of 

this study, the initial system configuration was determined and a prototype using new 

sensors and existing portable data-loggers was designed. In a further step, a prototype of 

a new architecture for an autonomous sensing unit was prepared and tested in the clinic. 

Finally, the final system was designed and tested. 

Results—We found that to record kinematic data to analyze gait, physical activity, tremor 

and bradykinesia five sites on the body were enough. A new portable movement analysis 

system (MAS), based on Autonomous Sensing Unit Recorders (ASUR) was designed and 

tested inside the clinic. The new system was lightweigth (50g), consumed low power 

(recording up to 14 hours) and was easy to use for the clinical studies and convenient to 

carry for the patients. 

Main contributions—Design of a new device (MAS) to record body movements of PD 

patients for long periods of a day without hindering the subjects in their daily activities. 

3.1 Introduction 
The primary objective in the design of the MAS was to find a minimal number of sensor 

sites to record adequately the widest possible movement patterns, while making sure that 

carrying the system for long periods of times (at least up to 12 hours a day) by the pa-

tients would not hinder their daily activities. This implied that: 
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• The size and the weight of the system should be small and the placement of the 

sensors should be comfortable so that carrying the system would not interfere 

with the normal movements of the patient during the day. 

• The power consumption should be low so that the system could operate for long 

periods of a day. 

• The system should be easy to use, discreet and unobtrusive so that the usage of 

the system inside the clinic or home would be easy and acceptable for majority of 

the patients.  

Ultimately, the idea was to make such a simple to use system that patients themselves, 

or by help of their partners, could use the system at home and only submit the data files 

to clinic for the analysis. This called for a simplified user interface, installation procedure 

and minimal or no per subject calibration of the system. 

3.2 The pilot study 
During the Pilot study (see section 2.2), a series of measurements were performed to 

investigate the possible choices for the sensors sites and overall system configuration. As 

this study was used as a test bed for an iterative, trial-and-error based approach, to find 

the suitable sensor configuration the placements and number of sensors in the system 

were changed a few times. Moreover, this study helped us to determine the sensor types, 

needed ranges and sensitivity to record the patterns of the PD abnormalities (like tremor, 

bradykinesia, dyskinesia…). 

3.2.1 Sensors and signals 
After a few separate measurements in this study and based on the ideas from previous 

works, finally seven sensor sites were selected (see Figure  3-1a). To record and analyze 

gait and based on the method of (Aminian, Najafi et al. 2002), four sites on the lower 

limbs were selected (Figure  3-1b): two sites on the shanks and two sites on the thighs. 

One site on the trunk (Figure  3-1c) was used to record physical activity based on the 

method of (Najafi, Aminian et al. 2003).  
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Figure  3-1. a) Sensors sites on the body in the pilot study. The system was a union of three 
subsystems: b) gait recording system c) physical activity recording system d) tremor and 

bradykinesia recording system 

To record tremor patterns, (Burkhard, Langston et al. 2002) used a uni-axial gyroscopes 

on the dorsum of the hand. We found that this site on hands was not very practical for 

long-term monitoring as the sensor could receive lots shock due to the impacts to the 

objects during daily activities. We decided to use a site on the forearm (Figure  3-1d), 

similar to a watch, which could potentially reduce the risk of impacts and shocks and 

also would be more discreet. The same sensor was also used for analysis of bradykinesia. 

The measured and selected range for each of the kinematic sensors in the mentioned 

sites is presented in Table  3-1. 

Sensor site Sensor type Signal range Selected range 
Forearms Gyroscope ±1100°/s ±1200°/s 

Shank Gyroscope ±510°/s ±600°/s 
Thigh Gyroscope ±260°/s ±400°/s 
Trunk Gyroscope ±190°/s ±400°/s 
Trunk Accelerometer(f) ±1.4g ±2g 
Trunk Accelerometer(v) ±1.8g ±2g 

Table  3-1. The measured and finally selected range of each kinematic sensor on the body.  
(f) stands for frontal and (v) stands for the vertical axis. 

All sensors used in this study were miniature, solid-state devices. The sensor on the 

trunk included (see Figure  3-2a) one gyroscope (Murata, ENC-03J) in the sagittal plane 

with a range of ±400°/s and two accelerometers (Analog Device, ADXL202) with the range 

of ±2g, measuring the frontal and vertical accelerations.  
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Figure  3-2. a) The trunk sensor used for physical activity monitoring. b) The uni-axial gyro-

scopes used for the gait analysis.  

 
Figure  3-3. The 3D gyroscope used to record the movements of the forearms. a) The sensi-

tive axes of the 3D gyroscope. b) A closer photo of the module and its internals. 

To record gait movement patterns, four uni-axial gyroscopes (Murata, ENC-03J) were 

used (see Figure  3-2b). The sensors on the thighs had a range of ±400°/s and the shanks 

sensors had a range of ±600°/s.  

Movements of the forearms were recorded by 3D gyroscope units (Figure  3-3a). Each 

module included three uni-axial gyroscopes assembled in the three perpendicular axes of 

pitch, roll and yaw inside the module (Figure  3-3b). Each gyroscope had a range of 

±1200°/s. This large range was selected to cover the possible, very fast movements of the 

hands during periods of dyskinesia.  

To attach the module on the trunk, a self-adhesive patch (Huguenin, CH) was used. On 

one side, the patch was covered with a silicon based glue to prevent allergic reactions of 

the skin and on the other side was covered by Velcro. The back of the trunk module also 

had a small patch of Velcro that fixed the unit on the patch. Silicon based elastic bands 

(Huguenin, CH) in two different sizes were used to attach the sensors to the thighs and 
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shanks. Similar to the trunk sensor, between the sensor and the attachment, layers of 

Velcro were used. 

3.2.2 Recording and analyzing the data 
All signals were recorded using Physilog® (BioAGM, CH) portable data-logging systems. 

They converted the analog signals to digital with a 12bits A/D. Each Physilog data-logger 

could record up to eight channels. As the number of the individual sensors was high (11 

gyroscopes and two accelerometers), two independent Physilog systems were used at the 

same time. To store the data, each Physilog was equipped with an 8MBytes memory card. 

At the beginning, a sampling rate of 40Hz was used but after a few measurements we 

decided to use a higher sampling rate of 200Hz to increase the temporal resolution. 

Subjects carried a small carrying bag to put the Physilogs inside. Cables with round 

metallic connectors were used to connect the sensors to the Physilog data-loggers. 

To record the activities of the subjects some of the measurement sessions were recorded 

on video. An observer tried to make a log of the activities using a chronometer, pen and 

paper but it was soon decided that this method was not practical as the observer made 

numerous mistakes in accurately recording of the activities in real-time. It was decided 

that for short recordings, the video was more accurate and dependable than the paper 

based logs. Following this decision, a reviewer prepared the time-tagged logs of the 

activities after the measurement session using the recorded videos.  

All of the data-analysis tasks were performed in MATLAB. Several programs were devel-

oped to characterize temporal and spectral features of the signals. In this pilot study, to 

analyze gait the algorithm of (Aminian, Najafi et al. 2002) and to analyze physical activi-

ties the algorithm of (Najafi, Aminian et al. 2003) were used. 

We soon realized that the existing gait and posture analysis algorithm were not adequate 

for our application. Tremor in the trunk and also very slow speed of the movements 

during transition between body postures of the PD patients, especially in the OFF state 

made the outcomes of the existing posture analysis very inaccurate: On nearly 40% of the 

posture transitions in the PD patients were not detected (see chapter 5). The existing gait 

analysis program had also problems in detection of the gait, especially in presence of 

tremor or festinating gait. While the reported results in (Aminian, Najafi et al. 2002) were 

very good (nearly perfect gait detection) for the elderly, round 15% of gait cycles were not 

detected correctly in our PD patients. Clearly, new analysis algorithms were needed. 
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3.3 First prototype system 
Based on the experience gathered in the pilot study, the sensor sites and the type of the 

sensors needed to record movement of the limbs and trunk were chosen. In the controlled 

study (see section 2.3), a system based on two Physilog data-loggers and seven sensors 

was used (see Figure  3-1a). One major problem with the setup used in the pilot study 

was the lack of synchronization between the two data-loggers. To solve this problem a 

marker device was added to the setup. The marker device provided a pulse on the output 

that was recorded by both data-loggers and could be later used by the analysis algo-

rithms to synchronize the data. 

3.3.1 System architecture 

The components of the system used in this study are shown in the Figure  3-4. 

GYRO

MODULE  4

± 400°/s

GYRO

MODULE  5

± 600°/s
GYRO

MODULE  3

± 600°/s

GYRO

MODULE  2
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2x + 2g
ACCEL

MODULE  1

PHYSILOG 2

Gyro 3D-1

Gyro 3D-2
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Syncronization
Connection

Marker

Trunk

Thigh Thigh

Shank Shank  
Figure  3-4. The components of the measurement system used in the controlled study. 

The two 3D gyroscopes (used for the forearm sites) and one uni-axial gyroscope (used for 

one of the thigh sites) were connected to the first Physilog. The remaining four sensors, 

including three uni-axial gyroscopes (used for the two shanks and one remaining thigh 

site) and the last sensor including two accelerometers and one gyroscope (used for the 

trunk site) were connected to the second Physilog. 

A marker device was also used in this setup. During the measurements, the start and the 

end of each part of the 17 steps protocol of the measurement (see section 2.3.3) was 
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marked. By pressing the button on the marker, a 2.5 volts output was activated and by 

pressing the button again, the output returned back to zero. A red LED and an audio 

signal reminded the state of the maker device to the operator. Marker was connected to 

the both Physilog data-loggers and its output was recorded as an input channel of each 

one of them. Later, a program written in MATLAB was used to synchronize the signals 

from the two Physilogs based on detection of the rising and falling edges of the recorded 

marker device signals.  

3.3.2 Limitations of the first prototype system 
A major limitation of this prototype was the maximum possible period of the measure-

ment. The memory cards used by the Physilog systems had a maximum capacity of only 

8Mbytes, so the recording sessions were limited to a little bit more than 55 minutes:  

8 channels ×1.5 bytes/sample × 200Hz × 60 = 144Kbytes/minutes 

Moreover, the internal battery of the Physilog was rather small and even with a solution 

for the memory capacity, Physilog units themselves could not support three or four 

sensors for more than a few hours. 

The second limitation was the weight of the system: 

Total weight = 2 × weight of Physilog + 7 × 25g (average weight of sensor) +  

weight of the cables, connectors and the small sack to carry the Physilogs 

 Total weight = 2 × 300 + 7 × 25 + 350 = 1125g 

The third limitation was the cables used to connect the sensors, marker and the data-

loggers (see Figure  3-4). In total more than 10m of thin cable was used in this setup. 

Although the cables could be run under the cloths and could be fixed using tapes, clearly 

such a long and complex cabling system could not be easy for the patients to use for 

measurements longer than one or two hours. Moreover, long cabling could make the 

system prone to many problems like complex installation procedure, long installation 

time, broken cables, mistakes in connecting the right connectors, etc. 

3.4 Second prototype: autonomous units   
To answer the limitations of the first prototype and prepare the system for long-term 

measurements, a fresh approach and a new architecture for the system was needed. As 

stated before, main limitations of the approach based on portable data-loggers were the 

capacity of memory, battery, weight and the cables.  
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A new architecture was designed for the MAS for the long-term study. We called the new 

units based on this concept the ASUR units: Autonomous Sensing Unit Recorders. 

3.4.1 Architecture of the ASUR prototype units 
The concept of the ASUR system was based on integration of all elements needed for 

ambulatory recording of kinematic signals in one small box, thus making them inde-

pendent, avoiding any need to run cables between the units. Each ASUR unit was a 

complete data-logger integrated with up to four kinematic sensors with enough internal 

memory and battery to continuously record body movement up to 14 hours.  

 
Figure  3-5. Simplified schema of the internal architecture of the prototype ASUR units.  

Figure  3-5 shows a simplified block diagram of the ASUR units’ architecture. Each unit 

contains: 

• A dedicated rechargeable NiMH battery. 

• A flash memory card with a capacity of 64Mbytes. 

• A four channels, 16 bits A/D converter with a 200Hz sampling rate. 

• A precision, quartz based internal clock. 

• An I/O connector. 

• One to four kinematic sensors: gyroscopes or accelerometers. 

• An 8bits micro-controller. 

The first prototype of the ASUR system (see Figure  3-6), was implemented in an alumi-

num box with a large glass window. An elastic band was used to fix the unit on the body 

sites. The weight of each unit was less than 80g and after initial start sequence, each 
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unit operated totally independently. The sensors for different body sites were physically 

identical and color codes on one side the sensor box were used to differentiate them. 

 
Figure  3-6. First prototype of the ASUR units. 

3.4.2 Synchronization and charge unit 
As each unit operated independently, a synchronization procedure was needed so that 

those algorithms using the data from more than one sensor site could function. A con-

troller station (see Figure  3-7) was designed to solve this problem. To better understand 

the function of this station and method used for the synchronization; let’s take a look at 

the steps taken in a measurement using ASUR prototype units: 

• Before the beginning of the measurements, all ASUR prototype units were con-

nected to the controller station.  

• The start button was pressed on the station. A signal was sent to all units at the 

same time and they started to record. 

• ASUR units were detached from the station, fixed on the body and the measure-

ment session was started. During the measurement the units operated independ-

ently. 

• At the end of the measurement session, all units were connected again to the con-

troller station. The stop button was pressed on the controller station and a signal 

was sent to all units to stop recording simultaneously. 

Despite using high precision quartz crystals in the clock circuits of the units, after 

several hours of recording the clocks of the different units could go out of synchroniza-

tion. We observed that this deviation of clocks could be at most in order of few samples 

per hour at our selected sampling rate of 200Hz: We used five units and performed 13 
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measurements of round 4 hours on a subject doing daily activity (thus, typical changes 

in the temperature, variations in power consumption due to functions of gyroscopes and 

accelerometers, etc.). All modules were started and stopped at the same time. For each 

measurement, we took the module with the least number of recorded samples and 

compared the number of recorded sample of the other modules to it (see Table  3-2). We 

found that on average, the deviation in the number of samples between different units 

were 1.7 ± 0.9 (mean ± S.D.) samples. 

Nr. Extra samples recorded by Test 
Unit 1 Unit 2 Unit 3 Unit 4

Reference
n. samples

Average  
deviation per hour 

1 4 8 14 6 2932122 2.0 
2 6 11 18 8 3522510 2.2 
3 3 6 9 4 1852612 2.1 
4 2 7 13 6 3018267 1.7 
5 3 11 17 7 3903394 1.8 
6 3 7 13 5 3190194 1.6 
7 5 9 14 6 3205353 1.9 
8 4 8 12 5 2905139 1.8 
9 6 9 14 6 3221472 2.0 
10 0 5 9 4 2708749 1.2 
11 5 9 15 6 3388892 1.9 
12 2 5 9 4 2449036 1.5 
13 0 2 8 3 2924968 0.8 

Table  3-2. Clock deviation of the ASUR units comparing to the slowest unit in each test. The 
reported values show the deviation in samples. 

As all units started and stopped recording of the data at exactly the same time, by as-

suming a constant frequency of clock inside each unit, the clock deviation between the 

units could be easily compensated in the data analysis software: 

• The number of recorded samples (n0) of the slowest unit (u0) was taken as the ref-

erence. 

• For all other ui units, the difference δi = ni – n0 between the recorded samples (ni) in 

comparison to u0 was calculated. 

• In the recorded data of each unit, with the assumption of constant clock speed, 

the last sample of each period of ni / δi were removed. 

Besides sending the start and stop commands to the ASUR units, synchronization 

station performed two more tasks: charging the battery of the units while they were 

connected to the station and transferring the recorded data to a personal computer using 

USB connection.  
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3.4.3 System setup 
For the long-term study, we used ASUR prototype systems on five body sites. We could 

reduce two body sites as we developed our gait analysis method further and the new 

algorithm did not need the two thigh sites anymore (see chapter 7). Also instead of using 

3D gyroscopes on hands, 2D gyroscope units were used: By reviewing the results from 

the controlled study, we found that using 2D gyroscopes instead of 3D gyroscopes by 

eliminating the yaw axis, did not significantly affect the performance of the tremor and 

bradykinesia quantification algorithms (see chapter 4). At the same time, removing the 

yaw gyroscope could help to reduce the thickness of the units. An additional technical 

benefit of reduction of one gyroscope was to reduce the power requirements of the unit 

(thus, the size of the battery) as the gyroscopes were the most energy consuming compo-

nents of the system (each one needed round 5mA to operate).  

Another difference comparing to previous system was the use of 16 bits A/D converters 

instead of Physilog’s 12 bits converters. However, by measuring the level of the noise, we 

found out that this change could only make a small improvement: The noise level in the 

Physilog was -65.6dBFS (dB full scale) while in the new system it was -75.4dBFS. 
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Figure  3-7. Components of the ASUR prototype system. 

In summary, we used five units on five body sites (forearms, shanks and trunk). In total 

seven gyroscopes and two accelerometers were used in this setup and sampling fre-

quency was again 200Hz. The weight of the setup carried by the patients was signifi-

cantly reduced from 1125g in the first prototype used in the controlled study to 400g (5 × 

80g) while at the same time the maximum possible period of recording was increased 

from 55 minutes to 14 hours. By elimination of all cables and reduction of the weight, we 

had a very positive feedback from the patients regarding convenience and ease of use of 

the system.  
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3.5 Third and final prototype of the MAS 
Following the path from the pilot study to the controlled study and finally the long-term 

study, step by step the architecture and technical aspects of our MAS were refined and 

matured. The prototype of the ASUR system met almost all of our criteria for a simple to 

use ambulatory monitoring system. The final version of the ASUR units is now being 

used in some further clinical studies (see section 9.2, perspectives and further clinical 

studies).  

In order to optimize the final system, few changes were made to the second prototype 

(ASUR system). The aluminum box of the units was replaced with a plastic one to further 

reduce the weight of the system (Figure  3-8a). Instead of color codes to designate different 

sensors, a picture was added the front face of the units to clearly show the sensor site 

(see Figure  3-8a). The controller unit used in the prototype was divided in to two units: 

one dedicated to transfer the data to PC and the other one to charge and synchronize the 

recording units (Figure  3-8b). The new controller could accept one to three ASUR units 

and provided a connector to be connected to additional controller to synchronize addi-

tional units. 

Internally, the same architecture as the prototype for the recording units were used but 

some electronic circuits were redesigned to reduce the electronic noise of the circuits and 

to replace the Murata gyroscopes with new Analog Device gyroscopes (model ADXRS300) 

that had lower drift and were much more resistant to the mechanical shocks (max 2000g 

vs. max 50g). On the downside, after making the needed changes in the power supply 

circuits, the level of the recorded noise was increased from -75.4dBFS to -71.5dBFS. 

a b
 

Figure  3-8. a) The ASUR unit. b) Components of the ASUR monitoring system. On top left, 
the units, on bottom left the data transfer unit and on the right the charge and synchroniza-

tion unit. 
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To fix the recording units on the body, on the shanks and forearms, new elastic bands 

were used. The new bands had a silicon layer on the side facing the skin with soft but 

bumpy texture. The texture in the silicon layer helped better blood circulation while the 

silicon based material minimized the risk of allergic response of the skin. The attachment 

of the trunk unit was similar to the first prototype system and was based on self-adhesive 

patches.  

3.5.1 Architecture of the third prototype 

The final ASUR recording unit internally consisted of several sections (Figure  3-9). These 

sections were:  

• The kinematic sensors. Up to two gyroscopes (in the roll and pitch axes) and two 

accelerometers could be present in each ASUR recording units. 

• The analog amplifier and interface circuits. 

• Anti-aliasing filters (a RC filter with a cut-off frequency of 17Hz) to limit band-

width of the analog signals.  

• The digital section that itself included a 16bits, four channel multiplexing A/D 

converter, a Micro-controller, clock circuits and a 64Mbytes flash memory. This 

section also included a LED to show the state of the unit: Off when the unit is off. 

Blinking in green when the unit is recording. Blinking in red in case of errors. Red 

when being charged and Green when the battery is fully charged. 

• A miniature, switching power circuits to provide constant and low noise supply for 

the digital and analog sections. 

• A gold-plated connector to connect the unit to the controller. The connector in-

cluded pins for the start and stop commands. It also included an interface to the 

internal flash memory of the unit, so that the recorded data could be read by the 

dedicated data transfer unit. It also included a pin to send ON/OFF command to 

the unit as well as a pin used in charging the internal battery of the unit. 
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Figure  3-9. Internal architecture of the ASUR units. 

The final ASUR unit weighted 50g (i.e. 30g less than the prototype version). This way, the 

total weight of the system fixed on the body was reduced to 250g. The maximum re-

cording capacity of each unit was 14 hours.  

A library of MATLAB functions to calibrate the sensors, access the recorded data and to 

synchronize the data files from recordings with more than one unit were also developed: 

• A MEX1 function called BinInfo to get the number of recorded channels, sampling 

rate and number of sample in an ASUR data file. 

• A MEX function called BinRead to read recorded data file and to calibrate the sig-

nal (conversion from the volts unit to measurement unit of the sensor) using the 

information stored in the header of the file. 

                                                 
1 MEX files are special routines written in C/C++, to be used by MATLAB programs to perform 
system-level tasks. 
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• A MATLAB class called dataset to link several recorded data files together, per-

form synchronization and provide access to the calibrated data in selectable time 

windows. 

A stand-alone visualization program written in C++ was also developed to visualize, 

export and show the header information of the recorded data in the field, using a portable 

computer (see Figure  3-10). 

 
Figure  3-10. A screen shot of the stand-alone data visualization program. 

3.6 Conclusion 
Using a new architecture for the ASUR system, comparing to the first prototype the total 

weight of the setup fixed on the body was reduced from 1125g to 250g, the maximum 

recording period was increased from under one hour to 14 hours and by removing all the 

cables between units and providing a simple interface to use the system, the time and 

complexity to setup the system and ease of use for the patients were dramatically en-

hanced. A comparison of several characteristics of the three systems in presented in the 

Table  3-3.  

In summary, starting from a pilot study, the sensor configuration and recording units 

used in our final MAS were step by step designed, evaluated and refined. Finally, a 
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configuration based on five lightweight, autonomous recording units were proposed to 

record body movement using kinematic sensors during daily activities. 

Parameter First prototype Second prototype Third prototype 
Number of sites on the body 7 5 5 
Number of sensors 13 9 9 
A/D resolution 12 bit 16 bits 16 bits 
Noise level -65.6dBFS -75.4dBFS -71.5dBFS 
Sampling rate Selectable: 1 ~ 1kHz Fixed (200Hz) Fixed (200Hz) 
Total memory capacity 8MB 5 × 64MB 5× 64MB 
Autonomy (power) 3 hours 14 hours 14 hours 
Autonomy (memory) 55 minutes 15 hours 15 hours 
Total weight of the setup 1125g 400g 250g 
Dimensions of the sensors 25 × 25 × 15mm 60 × 50 × 18mm 61 × 44 × 19mm 
Time needed to install the system 15 minutes 5 minutes 5 minutes 
Ease of use according to the patients Poor Good Good 

Table  3-3. Comparison of the characteristics of the three prototype systems 
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Chapter 4  Quantification of  tremor and bradykinesia  

Abstract 
Background—Tremor and Bradykinesia are two of the most important movement ab-

normalities in Parkinson’s disease. The presence and severity of tremor and bradykine-

sia, like other parkinsonian signs, can change during the day and as such, detection, 

assessment and following the changes of these signs during daily activities are of great 

interest.  

Objectives—Design and validation of an ambulatory system based on kinematic sensors 

to detect and quantify tremor and bradykinesia in PD patients while the patients were 

performing daily activities. Accurate detection of the start and end of each period of 

tremor was of interest. Moreover, investigating the highest possible temporal resolution to 

estimate bradykinesia related parameters was another objective of this study. 

Method—Two studies were performed. In the first study, a group of PD patients and 

control subjects followed a 45 minutes protocol of typical daily activities while the whole 

session was recorded on video. Using gyroscopes attached on the forearms, the angular 

velocity of the movements of the hands was recorded. To detect tremor, a method based 

on spectral estimation was developed. Using the speed, the range and the frequency of 

the movements, an algorithm to estimate bradykinesia related parameters was also 

designed. The obtained parameters to quantify tremor and bradykinesia were compared 

to the UPDRS score of the subjects. The detected periods of the tremor were compared to 

the video to find the accuracy of the algorithm.  

In the second study, the movements of the hands of a group of PD patients were recorded 

for several hours while they were free to move on will. The outcomes of the tremor and 

bradykinesia quantification algorithms were compared to the UPDRS score of the pa-

tients. The effect of the selection of the window size to estimate bradykinesia related 

parameters was also studied. 

Results—In the first study, tremor detection algorithm showed a sensitivity of 99.5% and 

a specificity of 94.2%. Estimated tremor amplitude showed a high correlation to the 

UPDRS tremor sub-score (r = 0.87, p < 0.001 for the roll axis). Also, high and significant 
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correlation between the estimated bradykinesia parameters and respective UPDRS sub-

score was found (r = -0.83, p < 0.001 for the roll axis). In the second study, similar 

results to the first study were obtained with a time window of 45 minutes while bradyki-

nesia related parameter showed significant correlation (r = -0.74, p < 0.01) even with the 

smallest window size (5 minutes). 

Main contributions—Two new algorithms to quantify tremor and bradykinesia were 

developed and tested, both in controlled and free conditions. The algorithm to detect 

tremor showed a high accuracy in detection of tremor even when subjects were perform-

ing typical daily activities. Several objective parameters related to bradykinesia were 

introduced. These parameters showed a high correlation to the UPDRS clinical score. Our 

study showed the possibility of objective evaluation of tremor and bradykinesia of free 

moving PD patients during their daily activities. 

4.1 Introduction 
Tremor and Bradykinesia are among the most important movement abnormalities in 

Parkinson’s disease (Stern and Koller 1993). Tremor appears as a beating or oscillating 

movement and is regular (4-6 beats per second) (Deuschl, Bain et al. 1998; Hallett 1998). 

As the tremor in PD usually appears when the muscles are relaxed, it is called resting 

tremor. This means that the affected body part trembles when it is at rest and not doing 

work and often subsides with action (Deuschl, Bain et al. 1998). Figure  4-1a shows 10 

seconds of recorded tremor using a gyroscope attached to the forearm of a PD patient. 

The sensitive axis of the gyroscope was the roll axis. Figure  4-1b. shows the frequency 

spectrum of this signal.  

Bradykinesia is the slowing of voluntary movements. In addition to slow movements, a 

person with bradykinesia would possibly have incompleteness of movement, difficulty in 

initiating movements, and arrests of ongoing movement. Figure  4-2a shows the angular 

velocity of the movements of the hands, recorded by a gyroscope in the roll axis, of a PD 

patient with STN-DBS implantation. The patient was following a protocol of typical daily 

activities. The stimulator was turned ON in this measurement. Figure  4-2b shows the 

angular velocity of the same hand of the same patient, this time with the stimulator 

turned OFF. The patient was following the same protocol of the activities. There is a 

marked reduction of the amplitude of the angular velocity signal during the whole period 

of the recording in OFF state.  
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Figure  4-1. a) 10 seconds of the rest tremor recorded by a gyroscope on the forearm of a PD 
patient. b) The frequency spectrum of this period of tremor. Notice the dominant peak near 

5Hz. 

Currently assessment of motor abnormalities in PD is mainly clinical, based on different 

scales. Amongst them, the most widely used rating scale is the Unified Parkinson’s 

Disease Rating Scale (part III) (Fahn, Elton et al. 1987). Using various techniques, several 

groups have proposed objective methods to detect and quantify tremor (Bacher, Scholz et 

al. 1989; Dunnewold, Jacobi et al. 1997; Eberhart 1999; Norman, Edwards et al. 1999; 

Scholz, Bacher et al. 1988; Spieker, Boose et al. 1998) and bradykinesia (Boraud, Tison et 

al. 1997; Giovannoni, van Schalkwyk et al. 1999; Katayama 2001). Recently, there has 

been a growing interest in applications of body-fixed sensors (BFS) and in particular 

kinematic sensors for long-term monitoring of PD patients. Several groups have used 

accelerometers to detect and quantify tremor (Hoff, Wagemans et al. 2001; Smeja, Foer-

ster et al. 1999; Van Someren 1997; Van Someren, Vonk et al. 1998) and bradykinesia 

(Dunnewold, Hoff et al. 1998; Dunnewold, Jacobi et al. 1997; Ghika, Wiegner et al. 1993; 

Katayama 2001), yet, an other type of kinematic sensors, gyroscopes, that can measure 

angular velocity of the movement of the body segments, has been rarely used but may 

turn to be even more useful to quantify tremor and bradykinesia (Burkhard, Langston et 

al. 2002). 
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The objective of the study was to design a new ambulatory system to quantify tremor and 

bradykinesia during daily activities of the patients. The new system is based on minia-

ture gyroscopes attached on forearms. Two studies have been performed. In the first 

study, PD patients with bilateral STN-DBS implantations and a control group performed 

a protocol of typical daily activities. Sensitivity and specificity of a new algorithm to detect 

tremor and quantify the severity of the tremor and bradykinesia were determined.  

 
Figure  4-2. a) Angular velocity of the movements of the hands in a PD patient with STN-DBS 

while the stimulator was turned ON. Patient was following the protocol of the controlled 
study. b) The angular velocity of the movements of the same hand of the same PD patient, 
following the same protocol of the movements, this time with the stimulator turned OFF. 

During the second study, the method was applied to a group of PD patients that were free 

to perform daily activities at will during several hours of continuous recording while the 

state of the stimulation was changed from ON to OFF and back to ON again. We also 

studied the effect of selection of the window sizes used to calculate the parameters 

related to the tremor and bradykinesia on the correlation between UPDRS and these 

parameters. 
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4.2 Method 

4.2.1 Patients and experiment design 
The data from two studies has been used. In the first study, two groups of participants 

were enrolled in this study. A group of ten PD patients and a second group consisted of 

10 age and sex-matched normal control subjects participated in this study. A series of 

measurements was done while the subjects carried the measuring system and followed 

by a set of typical daily activities like eating, writing, brushing the teeth, several walking 

trials, climbing the stairs etc. It took about 45 minutes for each subject to complete the 

protocol. Before each measurement, PD patients were evaluated using the Unified Park-

inson’s Disease Rating Scale (UPDRS, motor section III, (Fahn, Elton et al. 1987)). Each 

patient performed the protocol twice: once during Stim ON and once during Stim OFF (i.e. 

when both stimulators have been turned off). More details about the patients, protocol 

and the clinical test is provided in section 2.3, the controlled study. 

Eleven PD patients participated in the second study. They included seven males and four 

females with an average age of 66.5 years (max=82.3, min = 59.6, STD = 6.8). In this 

study patients were free to move inside the clinic and to perform activities they wished. 

Subjects started while the STN-DBS stimulation was ON. Subsequently, the stimulators 

were turned OFF for three hours and turned ON again. Typically, each measurement took 

about five hours including one hour during Stim ON, followed by the three hours during 

Stim OFF and followed by another one hour during Stim ON. An UPDRS test was per-

formed at the beginning of the measurement and was repeated at least every one hour. 

More detail about patients and experiment protocol can be found in section 2.5, the long-

term study. 

4.2.2 Measurement system 
In the first study, a system based on two 3D gyroscopes and a Physilog® data-logger has 

been used to record the movements of the forearms (see Figure  4-3). In the second study, 

two ASUR prototype units have been used. The ASUR units included two gyroscopes in 

the roll and pitch axes. More details about the measurement systems are presented in 

the sections 3.3 and 3.4. 

4.2.3 Detection and quantification of tremor 
To detect tremor, the signals from each axis of the sensors were analyzed separately. 

Figure  4-4.a shows the block diagram of the method. The first step was to remove the 

drift of the gyroscope signals using a very fast (i.e. low computation time) first degree IIR 

filter with a cut-off frequency of fc≈ 0.25Hz in the software. To detect tremors, the recorded 
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angular velocity signal was then divided into three seconds windows. Since we were 

interested in the analysis of tremor in PD which normally has a duration in the range of 

at least few seconds after onset, selecting too short window sizes (e.g. less than one 

seconds) could dramatically increase false-positives and also could make it difficult to 

compare the outcomes to the video recording that would not be accurate for very short 

periods. A too large window (e.g. more than ten seconds) would not let us detect short 

periods of tremor accurately before or after a period of activity as the spectrum of the 

signal tended to get flat or to include multiple peaks. 

For each window the frequency spectrum of the signal was estimated using an all-pole 6th 

degree AR model by using the Burg (Burg 1975) method (see Figure  4-5). If a dominant 

peak in the spectrum, i.e. a pole close to the unit circle with an amplitude more than a 

certain threshold (in this case, a threshold of 0.92 gave us the be best results based only 

our data-sets), with a frequency between 3.5 and 7.5 Hz was detected, the window was 

reported as tremor. With the selected window size (3 seconds), we observed that some-

times during the periods that subjects had no tremor, some isolated windows (i.e. with no 

detected tremor before or after them) were misclassified as tremor while subject per-

formed certain activities (like brushing the teeth). To reduce these kind of false-positives, 

those isolated windows where removed from the output by marking them as no-tremor. 

This step reduced false-positives at the risk of potentially reducing true-positives. How-

ever, as extremely short periods of PD tremor are unusual, we found that benefits of this 

method outweighed its drawbacks.  

 
Figure  4-3. The 3D gyroscope used in the first study. The three sensitive axes of the device 

are shown in the picture. 
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 Figure  4-4. The flowchart of the methods. a) The tremor detection and quantification 

method b) Quantification of the bradykinesia. 

The amplitude of the detected tremors in degrees/sec (ωtr) was calculated by taking the 

Root Mean Square (RMS) value of the angular-velocity signal of the gyroscope after filter-

ing using a 280 degrees band-pass FIR filter with cut-off frequencies of 3.5 and 7.5 Hz. 

The filter was used to reduce the effect of movements of the hands with frequencies 

outside of the range of the frequencies associated with PD tremor. (Initially an IIR filter 

with similar cut-off frequencies was considered but finally we found out that this filter 

introduced too much distortion in the signal so we decided to use a computationally more 

expensive FIR filter with lower distortion). To calculate the amplitude of the tremor in 

degrees (θtr), the filtered signal was integrated over the time and again RMS value was 

calculated. 

By taking ωp, ωr and ωy as the amplitude of the tremor for the pitch, roll and the yaw axes 

respectively, considering that the sensitive axes of gyroscopes were perpendicular, the 

amplitude of a combination of axes could be calculated by: 

 2 2
pr p r pr p rω ω ω ω ω ω= + ⇒ = +
G G G

 (4-1) 
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 2 2
py p y py p yω ω ω ω ω ω= + ⇒ = +
G G G

 (4-2) 

 2 2
ry r y ry r yω ω ω ω ω ω= + ⇒ = +
G G G

 (4-3) 

 2 2 2
pry p r y pry p r yω ω ω ω ω ω ω ω= + + ⇒ = + +
G G G G

 (4-4) 

where ωpr represents the amplitude of the tremor in combined axes of pitch and roll, ωpy 

stands for the combination of pitch and yaw axes, and ωry stands for the combination of 

roll and yaw axes. ωpry stands for the combination of all three axes. With change of the 

symbols, the same formulas were used for the angle values: θpr, θpy, θry and θpry. The 

amplitude of the signal could be influenced by the proximity of the sensor to the clinically 

mainly affected part of the limb which is in PD patients normally the hand or the fingers. 
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Figure  4-5. Estimated poles for the period of the tremor shown in the Figure  4-1 using Burg’s 

method.  The arrow shows the pole that signifies the presence of PD tremor. 

4.2.4 Quantification of Bradykinesia 
The method to quantify bradykinesia included two steps: identifying periods of movement 

and calculating parameters related to the movements (see Figure  4-4b). The method was 

based on estimation of related parameters for each consecutive fixed period of time. In 

the first study, the parameters related to bradykinesia were calculated for the whole 

period of measurement (round 45 minutes). In the second study, the periods of the 

recording were broken into a series of fixed sized windows and the parameters were 

calculated for each window. Several sizes for the windows (45, 30, 15, 10 and 5 minutes) 

were considered and the effect of the window size on the ability of the algorithm to follow 

the fluctuations of the bradykinesia was studied.  
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To identify periods of movements, after cancelling the drift of the gyroscope (described in 

the previous section) an IIR low-pass filter of degree eight, with a cut-off frequency of fc ≈ 

3.5Hz was applied to remove the effects of tremor. To find the instantaneous amplitude of 

the low-pass filtered signal of the gyroscope (glp(t)), an analytical signal was constructed 

(Oppenheim and Shafer 1998): 

 ( ) ( ) . ( )lp lpa t g t i g t= +  (4-5) 

Where the bar over glp(t) represents its Hilbert transform. The amplitude and phase of this 

analytical signal at each time t represented instantaneous amplitude and phase of the 

glp(t). 

The periods of movements of the hands were defined as those periods of time when the 

instantaneous amplitude of the gyroscope signal was more than five degrees/sec. Move-

ments of the hands slower than this threshold were hardly visible in practice and were 

very close to the recorded noise or artifacts in our recorded signals. To quantify the 

movements, three aspects of the movements were considered: the average speed, periods 

and the average range of the movements. As such, the average value of three parameters 

were calculated for each time window: The Mobility of hand, Mh, represented the average 

velocity of the hands and was defined as the RMS of the glp(t) during the periods of 

movements. Activity of the hand or Ah was defined as the percentage of the time that hand 

was in movement (i.e. when a(t) was more than the selected threshold) during the period 

of the selected time window. The third calculated parameter was the average Range of 

rotation of hand (Rh). To calculate Rh , the range of the rotations of hands (angles) were 

calculated by integration of the glp(t) during the period of the movements. 

4.2.5 Statistical analysis and comparison to UPDRS 
Sensitivity of the tremor detection can be defined as the proportion of the periods of 

tremor (true-positives) that could be correctly identified. In the same way, specificity of 

the tremor detection can be defined as the proportion of the periods of no-tremor (true-

negatives) that could be correctly identified. We evaluated the sensitivity and specificity of 

the tremor detection method in comparison to video recordings as currently no alternative 

instrumental method could be used as a gold standard. During the first study, where 

subjects performed a 45 minutes protocol of typical daily activities, movements of the 

hands were recorded by video. A reviewer carefully examined the recordings and identi-

fied the start and end of each period of visible tremors of the hands of the PD patients, 

independent of their amplitude or direction. These periods were then compared to the 

outcomes of the tremor detection algorithm, to calculate the sensitivity of the method for 

each axis or combination of axes of the gyroscope. The controls participating in this 
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study, by definition, had no tremor.  In order to estimate the specificity, any detected 

period of the tremor in the gyroscope signals of the control group were considered as 

false-positives. As obtaining optimal images of the hands from a distance was difficult, 

this method avoided uncertainties that could arise when the algorithm detected a period 

of tremor while hands were not completely visible. A similar approach was used by (Van 

Someren, Vonk et al. 1998), where they used the reported periods of tremor in a group of 

patients with Alzheimer’s disease as false-positives. To calculate overall sensitivity and 

specificity for all subjects, total period of false positive/negative were divided by total 

periods of measurements. This approach let us reduce the effect of very low prevalence of 

tremor in some patients, while including all of them in the calculation of the overall 

values. 

To study the correlations between UPDRS and the outcomes of the algorithms, two 

UPDRS sub-scores were used. A sub-score of UPDRS motor section from items 20 and 21 

(rest tremor and action tremor) was used to evaluate the results of the tremor quantifica-

tion. For bradykinesia, the summation of the sub-scores 23, 24 and 25 (finger tapping, 

hand movement, rapid alternate movements of hand) was used. When comparing the 

tremor sub-score of UPDRS and outcomes of the algorithm, the logarithms of the pa-

rameters were considered. As it was possible that tremors would stop for some periods of 

time, where an amplitude of zero was reported, instead of directly taking logarithm of the 

amplitudes, log10(1+ωtr) and log10(1+θtr) were used in calculations. 

During the second study, patients performed a UPDRS test with a frequency of at least 

one test per hour. For each patient, the period between the second UPDRS test after 

turning stimulator off and the third test (i.e. between two hours after turning off the 

stimulator and the third hour) was selected. Using the proposed algorithms, the time 

windows of 5, 10, 15, 30 and 45 minutes before the end of the period, until the end of the 

period were used to study the correlation between the UPDRS and the estimated parame-

ters related to bradykinesia and tremor. 

Wilcoxon’s non-parametric rank-sum test was used to compare different parameters 

between the normal subjects and PD patients. To compare between the Stim ON and 

Stim OFF states, Wilcoxon’s non-parametric paired test, sign-rank test was used. The 

correlation between UPDRS sub-scores and different parameters was estimated using 

Pearson‘s correlation. For all statistical tests, p-values of more than 0.05 were considered 

as non-significant. 
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4.3 Results 

4.3.1 First study: Subjects following the test protocol 
For each period of 3 seconds, the tremor detection algorithm provided two outputs: 

presence of tremor and the amplitude of the tremor. Figure  4-6 shows a typical outcome. 

The periods of the tremor reported by video observations, are also presented. 
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Figure  4-6. A sample of the tremor detection algorithm’s output. a) Raw signal from the 

gyroscope (roll axis). The boxes with hatched patterns signify the periods of tremor detected 
by visual observation b) Output of the algorithm. Black bars shows the periods marked as 

tremor and the height of the bar shows the amplitude of the tremor. 

Table  4-1 shows the results of estimated sensitivity and specificity of the tremor detection 

algorithm, for each axis and each possible combination of axes of the gyroscopes. Among 

the three axes of the sensor, roll axes showed the highest sensitivity and specificity. 

When combining the outputs of two or three axes, the optimal combination always 

included the roll axis. 
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Subject Pitch  Roll Yaw Pitch+Roll Roll+Yaw Pitch+Yaw All axes Prevalence 
Patient 1 68.3% 81.8% 71.1% 88.4% 88.8% 83.3% 91.1% 79.6% 
Patient 2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 10.1% 
Patient 3 49.3% 52.3% 52.3% 81.6% 83.9% 70.0% 98.5% 12.8% 
Patient 4 56.1% 80.3% 45.0% 94.8% 86.6% 71.6% 99.6% 23.7% 
Patient 5 59.0% 0.0% 73.7% 59.0% 73.7% 100.0% 100.0% 1.3% 
Patient 6 45.9% 86.7% 70.4% 88.8% 90.9% 75.0% 92.2% 58.5% 
Patient 7 66.8% 67.4% 68.6% 85.5% 86.7% 89.1% 96.3% 26.6% 
Patient 8 66.3% 70.3% 76.5% 87.0% 95.6% 87.6% 100.0% 31.3% 
Patient 9 88.5% 100.0% 88.5% 100.0% 100.0% 88.5% 100.0% 1.4% 
Patient 10 81.7% 99.1% 45.1% 100.0% 100.0% 87.6% 100.0% 32.4% 
Average 68.2% 73.8% 69.1% 88.5% 90.6% 85.3% 97.8% 27.8% 

Se
ns

iti
vi

ty
 

Overall 65.2% 82.0% 67.6% 93.4% 94.3% 84.1% 99.5% 31.4% 
Control 1 99.8% 99.7% 99.4% 99.5% 99.1% 99.1% 98.8% - 
Control 2 98.5% 98.0% 98.3% 96.5% 96.3% 96.8% 94.8% - 
Control 3 99.3% 99.5% 99.8% 98.7% 99.3% 99.1% 98.5% - 
Control 4 95.8% 98.2% 97.5% 94.0% 95.7% 93.3% 91.5% - 
Control 5 94.9% 97.3% 95.0% 92.2% 92.3% 89.9% 87.2% - 
Control 6 96.9% 97.2% 96.4% 94.1% 93.5% 93.3% 90.4% - 
Control 7 100.0% 98.7% 100.0% 98.7% 98.7% 100.0% 98.7% - 
Control 8 100.0% 97.4% 99.8% 97.4% 97.2% 99.8% 97.2% - 
Control 9 97.0% 96.9% 96.4% 94.0% 93.4% 93.5% 90.4% - 
Control 10 96.2% 98.7% 96.5% 94.9% 95.2% 92.7% 91.4% - 
Average 97.8% 98.1% 97.9% 96.0% 96.1% 95.8% 93.9% - 

Sp
ec

ifi
ci

ty
 

Overall 97.9% 98.2% 98.0% 96.2% 96.2% 95.9% 94.2% - 
Table  4-1. The performance of the tremor detection algorithm comparing to the video 

reference. Average values signify the mean of the values across the patients. Overall values 
were calculated by counting the total number of false-positives (or false negatives) and 

dividing the result by the total period of the measurements. 

In the first study, for each subject during whole period of measurement, one value for 

each of the three bradykinesia related parameters were calculated. Table  4-2 shows these 

results. The results of the hypothesis test for the equivalence of the mean between the 

three groups of Stim OFF, Stim ON an controls show that the Mh and Rh had significant 

differences (except for one case) between the three groups while Ah did not show any 

significant differences. 

Parameter Axis OFF ON Control OFF v.s.
Control 

ON v.s. 
Control 

ON v.s. 
OFF 

Pitch 26.1±8.0 40.8±12.0 54.5±8.4 0.0002 0.0036 0.0020 
Roll 35.8±9.1 56.9±10.5 74.9±10.7 0.0002 0.0028 0.0020 Mh 

(degree/s) 
Yaw 31.8±8.3 51.3±12.2 79.5±11.6 0.0002 0.0006 0.0020 
Pitch 3.4±1.4 4.9±1.5 6.2±1.0 0.0022 N.S. 0.0039 
Roll 3.4±1.1 5.2±1.2 6.5±1.1 0.0003 0.0140 0.0020 Rh 

(degree) 
Yaw 4.3±1.6 6.6±1.9 9.6±2.5 0.0002 0.0113 0.0020 
Pitch 43.1±6.5 44.8±6.5 49.0±5.3 N.S. N.S. N.S. 
Roll 50.6±10.0 49.6±8.5 53.9±5.6 N.S. N.S. N.S. Ah 

(%) 
Yaw 43.9±8.1 44.9±7.6 48.7±3.8 N.S. N.S. N.S. 

Table  4-2. Bradykinesia related parameters calculated for each axis of the sensors. The 
values are shown in mean±S.D. format. The three right-most columns show the p-value of the 

hypothesis test of equivalence of the mean of the parameters in different groups. 

To compare the outcomes of the tremor quantification algorithm with UPDRS, correlation 

between the UPDRS tremor sub-score and logarithm of the tremor amplitude reported by 

the algorithm was calculated. As each PD patient performed the test both in ON and OFF 
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state, a partial correlation coefficient was also performed to remove the effect of ON/OFF 

factor. Table  4-3 shows the results.  

Table  4-4 shows the results of the correlation study between UPDRS bradykinesia sub-

score and the bradykinesia related parameters (Mh, Rh and Ah) where significant correla-

tions in some case were obtained. 

Pearson correlation Partial Correlation 
ωtr θtr ωtr θtr Axis 

r p r p r p r p 
Pitch 0.84 0.0001 0.85 0.0001 0.78 0.0001 0.83 0.0001 
Roll 0.87 0.0001 0.86 0.0001 0.81 0.0001 0.84 0.0001 
Yaw 0.81 0.0001 0.82 0.0001 0.74 0.0003 0.78 0.0001 

Pitch + Roll 0.87 0.0001 0.87 0.0001 0.81 0.0001 0.84 0.0001 
Roll + Yaw 0.86 0.0001 0.86 0.0001 0.81 0.0001 0.84 0.0001 
Pitch + Yaw 0.82 0.0001 0.87 0.0001 0.76 0.0001 0.85 0.0001 

All axes 0.86 0.0001 0.86 0.0001 0.81 0.0001 0.84 0.0001 
Table  4-3. The correlation between UPDRS tremor sub-score and the parameters calculated 
by the algorithm. Partial correlation was performed to remove the effect of ON/OFF factor. 

Pearson correlation Partial Correlation Parameter Axis 
r P r p 

Pitch -0.54 0.0131 -0.25 N.S. 
Roll -0.83 0.0001 -0.68 0.0014 Mh 
Yaw -0.76 0.0001 -0.57 0.0105 
Pitch -0.47 0.0362 -0.32 N.S. 
Roll -0.70 0.0006 -0.48 0.0380 Rh 
Yaw -0.53 0.0163 -0.44 N.S. 
Pitch -0.55 0.0123 -0.59 0.0073 
Roll -0.42 N.S. -0.53 0.0186 Ah 
Yaw -0.45 0.0466 -0.53 0.0203 

Table  4-4. The correlation between UPDRS bradykinesia sub-score and the parameters 
calculated by the algorithm. Partial correlation was performed to remove the effect of 

ON/OFF factor. 

4.3.2 Second study: Long-term monitoring with free moving subjects 

Figure  4-7.b shows a typical result of the outcome of the tremor algorithm when used to 

monitor a subject for 3 hours. Measurement was started with during Stim-ON, the 

stimulator was turned OFF (t = 0 min), and again it was turned ON (t = 180 min). During 

this period, the subject did several UPDRS tests and the values of sub-score related to 

tremor of hands are shown in Figure  4-7.a. As the resolution of the tremor detection 

algorithm is much higher than resolution of the UPDRS tests, to make the comparison 

between the results simpler, a moving average window was run over the tremor ampli-

tude results. Also, the logarithm of the results was calculated. Figure  4-7.c shows this 
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new graph. It can be observed that the results follow the changes of the UPDRS tremor 

sub-score. 
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Figure  4-7. a) The tremor sub-score of UPDRS for a typical PD patient. Several UPDRS tests 

have been performed during the 3 hours period of measurement. Black circles show the 
results of the tests. b) The primary output of the algorithm for the roll axis. For each period 

of 3 seconds, if tremor was detected, a bar representing the amplitude of the tremor was 
drawn. c) Logarithm of the amplitude of the tremor as reported by the algo-rithm.  A moving 

average window with a width of 10 minutes were used to produce this figure (The delay 
caused by the moving average window has been compensated). 

Figure  4-8 shows a typical graph of the output of the algorithm for the bradykinesia. This 

patient started the measurement during the ON period. At t = 0min stimulator was turned 

OFF and at t = 220min it was turn ON again. Figure  4-8.a shows the changes in the bra-

dykinesia sub-score of the UPDRS for this patient. Figure  4-8.b, c and d show the Mh, Ah 

and Rh. In this graph, a window size of 20 minutes was used to estimate these parame-

ters. The first UPDRS was done just before the beginning of the recording and the last 

one just after the end of the recording. As the patient became more bradykinetic, the 
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speed of his movements and his level of activity decreased.  Round t = 110min he was 

almost totally inactive (Ah = 0). By turning the stimulator ON again, the average mobility 

of the hands and the level of activity increased again. 

U
P

D
R

S
 b

ra
dy

ki
ne

si
a

 s
ub

-s
co

re
M

ob
ili

ty
 o

f t
he

 h
an

d
 M

h
(d

eg
/s

)
R

ot
at

io
n 

th
e 

ha
nd

 
R

h
(d

eg
)

A
ct

iv
ity

 o
f t

he
 h

an
d

 A
h

(%
)

a

b

c

d

0

10

20

30

0

20

40

60

0

2

4

6

0

10

20

30

time (minutes)
0 50 100 150 200 250

0 50 100 150 200 250

0 50 100 150 200 250

0 50 100 150 200 250

Stim OFF Stim ON

 
Figure  4-8.  a) The UPDRS bradykinesia sub-score of a typical PD patient. Black circles show 
the results of each UPDRS test. b, c, d) Mh, Rh and Ah estimated for each 20 minutes window. 

The effect of the selection of the size of window size on the correlation between UPDRS 

sub-scores and tremor and bradykinesia related parameters is illustrated in the Figure 

 4-9 where window size was changed from 5 minutes to 45 minutes. Figure  4-9.a shows 

the coefficient of the correlation between the UPDRS bradykinesia sub-score and the 

three bradykinesia related parameters estimated for all patients. Similarly, Figure  4-9.b 

shows the coefficient of correlation between UPDRS tremor sub-score and the estimated 

amplitude of the tremor for all patients in function of the window size. 
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Figure  4-9. a) The effect of the selection of time window in the correlation between the 

UPDRS bradykinesia sub-score and calculated parameters by the algorithm. b) The correla-
tion between UPDRS tremor sub-score and the average value of the amplitude of the tremor 
reported by the algorithm. The symbol * shows where correlations were no more significant ( 

i.e. p > 0.05). 

4.4 Conclusion and Discussion 

4.4.1 Detection and quantification of tremor and bradykinesia 
We have found a good overall sensitivity and specificity (99.5% and 94.2% respectively) 

for tremor detection using a 3D gyroscope (see Table  4-1). The high sensitivity of the 

algorithm can be partially due to the fact that it could be difficult to notice low-amplitude 

tremor with the video, a problem also reported by (Van Someren, Vonk et al. 1998). By 

reducing the number of the sensitive axes to two or only one, the sensitivity reduced but 

specificity increased. The reason of the increase of specificity could be that by combining 

the sensitive axes together, the false-positives added-up. We notice that the activities that 

produced most of the false-positives were brushing the teeth and voluntary, rhythmic 

oscillations of hands.  

We found a high correlation between the parameters estimated by our method and 

UPDRS tremor sub-score (see Table  4-3). For example the estimated amplitude of angular 

velocity of tremor (ωtr) in the roll axis showed a correlation with r = 0.87 (p < 0.001) to the 

UPDRS sub-score. As we had included each subject two times in the calculations of the 

correlation in Table  4-3, once during ON and once during the OFF state, we performed a 

partial correlation study demonstrating that the correlation obtained was not solely 

related to the ON/OFF factor. In this case, by removing the effect of ON/OFF factor (i.e. 

taking the partial correlation), the correlation reduced only marginally to r = 0.81. 
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We found that Mh and Rh measured in any of the axes of the sensor showed significant 

differences between PD patients during Stim OFF period and controls (p ≤ 0.002, see Table 

 4-2). At the same time, we found significant differences in these two parameters between 

Stim ON and Stim OFF states (p ≤ 0.004). While STN-DBS showed a significant improve-

ment of these parameters, in almost all cases (except for the Rh of the pitch axis) the PD 

patients remained significantly different from the healthy control subjects. We also found 

highly significant correlation between these parameters (Mh and Rh) and UPDRS bradyki-

nesia sub-score (see Table  4-4). However, using statistical analysis with partial correla-

tion, we found that by removing the effect of ON/OFF factor from our data, only Mh was 

able to maintain high and significant correlation with the UPDRS (r = -0.83 and r = -0.68 in 

roll axis for normal and partial correlation). Bradykinesia refers to the slowness of the 

ongoing movements. As gyroscopes directly measure the angular velocity of movements 

and all body movements are in fact rotations around joints, these results are not unex-

pected. The third parameter calculated by our algorithm, Ah, was not significantly differ-

ent between the three groups. This result was somewhat expected as all subjects followed 

the same protocol of timed activities and as such, in practice they had the same level of 

activity. 

4.4.2 Long-term measurements 
We evaluated the sensitivity and specificity of the method in the first study while subjects 

performed a protocol of typical daily activities. However, as continuous video recording 

for up to five hours of free moving PD patients including clear view of their hands all the 

time was not possible, we could not evaluate sensitivity during long-term measurement. 

Instead we only compared the results to the UPDRS score of the patients to see how well 

the outcomes of the method could follow the changes in the state of tremor score of the 

patients. Results of the first study showed that the proposed algorithms to quantify 

tremor and bradykinesia have an excellent correlation with the UPDRS scores. Those 

results were obtained using a time window of 45 minutes. To find out the effect of the 

size of the time window on these parameters, we used the data from our second study 

where subjects were free to perform any activity they preferred. The idea was to assess 

whether the system could report accurate results independent of the type and intensity of 

the activities, even with smaller window sizes or not. With a window size of 45 minutes, 

the correlations of most of the estimated parameters to their respective UPDRS sub-score 

were similar to those obtained in the first study (see Figure  4-9). This confirms the 

consistency of the results obtained during the test protocol of the first study. As the 
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windows size decreased, in general the correlations also started to decrease. With the 

smallest sizes of the windows in some cases the correlation was no longer significant.  

Figure  4-9.b shows the results for the study of the parameters related to tremor ampli-

tude. For all window sizes, by averaging the reported amplitude of the tremor for the 

three seconds interval, a significant and high correlation to UPDRS was obtained. Only 

for the smallest window sizes (five minutes) the correlation lost its significance. One 

explanation could be that the tremor of PD patients can momentarily stop due to activi-

ties. The effect of these stops on the mean value of the amplitude gets more and more 

important. As the size of the windows reduces, the average amplitude of tremor can 

dramatically change from one window to another.  

Amongst the parameters related to bradykinesia, Mh showed the highest correlation to 

UPDRS (Figure  4-9.a), even with the smallest window size of five minutes (r = -0.74, p < 

0.01). In the first, controlled study Ah did not show any correlation to UPDRS while in the 

second study, where no protocol of activity was involved, this parameter showed a high 

and significant correlation to UPDRS with large window sizes (r = -0.81 and r = -0.80 for 30 

and 40 minuets windows, p < 0.003). This is probably due to the fact that in the first study 

subjects followed a fixed set of activities for a similar period of time: Ah that measured the 

level of activity was very similar for all subjects and did not show any significant differ-

ences between control subjects and PD patients in any state. Rather than bradykinesia, 

Ah could be more related to other symptoms of PD, i.e. akinesia and hypokinesia which 

refer to the difficulty to initiate movement and reduction of movement amplitude, respec-

tively. As Ah represents the intensity of the activities during a certain period of time, we 

expect this parameter to be a good estimator of hypokinesia. Bradykinesia and hypokine-

sia are intrinsically related and in many cases present at the same time in PD patients. 

This represents the probable basis for Ah showing some correlation with the UPDRS 

bradykinesia sub-score. However, finding an objective relationship between hypokinesia 

and Ah will need further study.  

4.4.3 Comparison to the other systems 
Several studies have addressed the problem of using kinematics sensors for the ambula-

tory detection and quantification of tremor (Hoff, Wagemans et al. 2001; Spieker, Boose et 

al. 1998; Van Someren, Vonk et al. 1998). Hoff et al. reported a good sensitivity and 

specificity (82% and 93% respectively) comparing to video recordings (Hoff, Wagemans et 

al. 2001). They also reported significant correlation between the duration and intensity of 

tremor calculated by their method and UPDRS tremor sub-scores in sitting and standing 

body postures (Hoff, Wagemans et al. 2001). Van Someren et. al also reported a good 
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sensitivity (between 0-5.9% false-positives) in detection of tremor during daily activities 

(Van Someren, Vonk et al. 1998). Comparing to these studies our proposed method 

shows an even higher sensitivity and specificity (99.5% and 94.2% respectively). More-

over, the reduction of the number of sensors from three to two (like in the ASUR units) 

reduced the sensitivity by only a small margin (see Table  4-1).  

In contrast to tremor, bradykinesia has been studied only rarely in a quantitative way 

using ambulatory systems. Katayama (Katayama 2001) used a system based on actigra-

phy to study the effects of drugs on hypokinesia and to determine hypokinetic periods 

during a day. Dunnewold et al. (Dunnewold, Jacobi et al. 1997) used a 3D accelerometer 

to measure the accelerations on the wrist and compared them to Movement Time (MT) 

and Tap Rate (TR) scores (Zappia, Montesanti et al. 1994). They found significant differ-

ences between healthy controls and PD patients; however, they found moderate or no 

correlation to UPDRS.   

4.4.4 Conclusion 
We propose a new ambulatory monitoring system to simultaneously measure tremor and 

bradykinesia in PD patients and to provide objective parameters. The system is simple to 

use and does not hinder the patients, as it consists of only two small and light (50g) 

sensing units (ASUR units) attached on each forearm while offering continuous, long-

term monitoring up to 14 hours. We found a high sensitivity and specificity in detection 

of tremor while subjects were performing typical daily activities. Also a high correlation 

between tremor and bradykinesia related parameters and UPDRS sub-scores were found. 

Finally, our study has shown the possibility of evaluation the bradykinesia during short 

intervals (as short as 5 minutes) while the patient performs his daily activity. 
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Chapter 5  Analysis of  physical activity  

Abstract  
Background—Parkinson’s disease especially in advanced stages can severely reduce the 

physical activity of the patients. Also, compared to the ON state, PD patients have more 

difficulty to perform their daily activities in OFF state. As such, objective assessment of 

PD patients’ physical activity in general, and detecting and following the changes in their 

performance during a day in particular, is of interest. 

Objectives—Design and validation of an ambulatory physical activity monitoring system 

based on kinematic sensors with high accuracy to monitor the patients during daily 

activities. The system should detect start and end of basic body postures during the 

monitoring period and to provide objective parameters related to these activities that 

could differentiate between the performance of the patients in ON and OFF states. 

Method—A new method based on three sensing units attached on the trunk and each 

shank including a combination of gyroscopes and accelerometers has been developed. A 

signal processing algorithm was developed to detect several movement patterns related to 

the basic body postures or changes between postures and to use parameters describing 

these patterns to classify the postures. The algorithm was validated by comparing the 

results to the logs prepared by analyzing video recordings of the activities of the subjects. 

Moreover, the correlation between the obtained objective parameters and UPDRS score 

has been studied. We also tested the method in a group of free moving patients. 

Results—For the control group, the sensitivity and the specificity of classification of body 

postures were: 99.5% and 99.8% for Sitting, 96.1% and 97.9% for Standing, 99.1% and 

99.8% for Walking and 100% and 100% for Lying, respectively. The sensitivity and 

specificity of classification of body postures for the PD patients were: 86.3% and 98.0% 

for Sitting, 83.6% and 96.5% for Standing, 98.5% and 97.8% for Walking and 91.8% and 

99.8% for Lying, respectively. We also found significant differences in parameters related 

to Sit-to-Stand and Stand-to-Sit transitions between PD patients and controls and also 

between the two states of the stimulation. 
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Main contributions—A new method using statistical classification to detect posture 

transitions and fuzzy logic to classify basic body posture allocations, has been designed 

and tested for PD patients. Several objective parameters have been introduced to quantify 

posture transition pattern. These parameters separated PD patients from controls and 

showed significant improvements in performance of PD patients using STN-DBS. Signifi-

cant correlation between these parameters and UPDRS clinical score has been found. 

5.1 Introduction 
Daily physical activity of a person is a complex phenomenon. The number and variety of 

the possible activities that human body can perform is very high.  The objective of physi-

cal activity monitoring is to find the posture allocations during the period of the monitor-

ing. However, even by focusing on static postures, considering the highly articulated 

human body anatomy the number of distinct postures is very high. To simplify the 

problem and bringing the possibility of accurate and objective analysis of the body 

postures, a simpler model for body postures is desirable. Several authors have used a 

rather simple model of four basic body postures to classify daily activities (Aminian, 

Robert et al. 1999; Bussmann, Reuvekamp et al. 1998; Najafi, Aminian et al. 2003; Ng, 

Sahakian et al. 2000; Paraschiv-Ionescu, Buchser et al. 2004; Veltink, Bussmann et al. 

1996a). Figure  5-1 shows this model. The four basic activities that have been considered 

were: Lying, Sitting, Standing and Walking. The activities like Sitting and Standing can be 

further divided to low and high active periods. 

 
Figure  5-1. Simplified model of daily activities and body postures. 

The main objective of this study was to design a new method to find the period of these 

four basic activities using ambulatory techniques in PD patients. Body fixed sensors such 



 Chapter 5 - Analysis of physical activity 

65 

as accelerometers and gyroscopes have been proposed for the ambulatory monitoring of 

daily physical activities in normal, elderly and patients with various medical conditions 

(Aminian, Robert et al. 1999; Bussmann, Reuvekamp et al. 1998; Najafi, Aminian et al. 

2003; Ng, Sahakian et al. 2000; Paraschiv-Ionescu, Buchser et al. 2004; Veltink, Buss-

mann et al. 1996a). However, few studies have applied the technique to PD. For example, 

Van Someren has proposed a system based on actigraphy to determine periods of move-

ments and rest (Van Someren 1997) and Keijsers et al (Keijsers, Horstink et al. 2003a) 

has briefly described a method similar to the Veltink et al’s method (Veltink, Bussmann 

et al. 1996a) to classify different physical activity in PD patient but has not reported the 

performance of this method.  

We have designed a new method for the ambulatory analysis of physical activity in PD 

patients using body fixed sensors. The system is based on a combination of gyroscopes 

and accelerometers with long-term recording capability, and was used to classify four 

basic body postures of Sitting, Standing, Walking and Lying while patients were perform-

ing normal activities. We have proposed a new approach based on statistical classifica-

tion and fuzzy inference to increase the sensitivity and specificity of body posture 

detection. The study was carried out in a particular group of PD patients treated with 

bilateral sub-thalamic nucleus (STN) deep brain stimulation (DBS) (Benabid, Benazzouz 

et al. 1998; Vingerhoets, Villemure et al. 2002), in whom the switching the stimulators 

ON or OFF reproduced the severe motor fluctuations naturally occurring in  levodopa 

treated PD patients.  

5.2 Methods 

5.2.1 Measurement system 
We performed two studies. The system used in both studies, consisted of three sensing 

units attached on trunk and shanks (see Figure  5-2). The unit on the trunk included two 

accelerometers and one gyroscope and the shank units included only a single gyroscope.  

In the first study, the first prototype of the MAS based on Physilog® data-loggers was 

used to record the data. More details about the measurement system can be found in the 

section 3.3. In the second study, we used the second prototype of the MAS based on 

ASUR units. More details about this system are presented in the section 3.4. 
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Figure  5-2. a) Sensors sites on the body: one sensor on the trunk and one sensor on each 

shank b) Sensor on the trunk is attached to the body using adhesive patch c) The Physilog® 
data-logger 

5.2.2 Patients and experimental setup 
A group of ten PD patients and a second group consisted of 10 age and sex-matched 

normal control subjects participated in the first study. A series of measurements was 

done while the subjects carried the measuring system and followed a protocol of typical 

daily activities like eating, writing, brushing the teeth, several walking trials, climbing the 

stairs etc. It took about 45 minutes for each subject to complete the protocol. Before each 

measurement, PD patients were evaluated using the Unified Parkinson’s Disease Rating 

Scale (UPDRS, motor section III, (Fahn, Elton et al. 1987)). Each patient performed the 

protocol twice: once during Stim ON and once during Stim OFF (i.e. when both stimula-

tors have been turned off). More details about the patients, protocol and the clinical test 

is provided in the section 2.3, the controlled study. 

13 PD patients participated in the second study. They consisted of a group of seven 

males and six females. Each measurement took three to six hours during ambulatory 

conditions where patients were free to move and perform activities they liked. An UPDRS 
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test was performed at the beginning of the measurement and then at least after every one 

hour.  

In the second study, an observer followed the patients all the time and prepared a time 

tagged log of all their activities. For six measurements, a second independent observer 

prepared a second log in parallel. This ways it was possible to evaluate the accuracy of 

visual observation by comparing the two logs prepared in parallel. More detail about the 

protocol is presented in the section 2.5, the long-term study. 

5.2.3 Posture analysis 
Detection of different body posture was performed in several steps. In each step, the 

information from one or several body sensors was used. Figure  5-3 shows the flowchart 

of the whole algorithm.  

Trunk
Gyroscope

Shank
Gyroscopes

Drift Cancellation Drift Cancellation

Trunk
Accelerometers

Transforming to polar 
coordinates

Gait detection Calibrate Trunk
sensor’s orientationTransition Detection

Removing 
non-transitions Lying detectionDetecting special 

cases of sitting

Creation of a list of known and unknown activities

Fuzzy classification of the activities

Results
 

Figure  5-3. Flowchart of posture detection and classification algorithm. 

5.2.3.1 Calibration of the trunk acceleration 

Taking the vertical axis as the reference, trunk’s acceleration in the sagittal plane could 

be described as a vector with a norm of atrunk and a phase of θtrunk. Due to the anatomy of 
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the trunk and the physical shape of the sensors module, there could be a bias θ0 between 

sensor inclination θbiased and θtrunk (Figure  5-4): 

 2 2
trunk f va a a= +  (5-1) 

 0trunk biasedθ θ θ= −  (5-2) 

 atan( )f
biased

v

a
a

θ
−

=  (5-3) 

where fa and va  are the frontal and vertical acceleration measured by the trunk sensors. 

 
Figure  5-4. a) During up-right standing the sensor box (S) can have an inclination θ0. b) When 
trunk has an inclination θtrunk, sensor measures θbiased that can be corrected using the θ0 meas-

ured before. 

The trunk inclination during the quiet standing posture has been selected as the refer-

ence value for the θtrunk. To find θ0, θbiased during walking periods was calculated and was 

filtered using a low-pass FIR filter with a cut-off frequency of fc = 1Hz. The median value of 

the filtered θbiased was found as a good estimation of θ0. 

During the measurement protocol each subject was asked to stand in up-right position 

for 20 seconds and the mean value of the θbiased during this period was used for validation 

of the outcome of the algorithm. The method was based on the fact that the accelerome-

ters in the sagittal plane can be used like an inclinometer in the absence of movement. 

However, it is possible to have a rather crude estimation of the true trunk inclination 

(θtrunk) even with presence of the low-intensity activities (like lying or low activity sitting or 
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standing) by removing the high frequency components of the acceleration signal: θtrunk 

signal was filtered with a low-pass filter with fc = 1Hz and the average value over windows 

of one seconds were calculated.  

5.2.3.2 Detection of lying and walking periods 

Using the trunk’s inclination estimated using accelerometers, lying periods can be de-

tected. The method was similar to (Aminian, Robert et al. 1999). The periods of at least 

30 seconds while any of these two criteria could be met, were considered as a lying 

periods: 

• Lying on back or lying prone detected with the criteria: θtrunk < -50° or θtrunk > 50°.  

• Lying on sides. In this case, the amplitude of the acceleration vector (atrunk) will be 

less than 1g. By setting a threshold of a lateral inclination of more than 45º, the 

selected criteria to detect lying on sides was: atrunk < 0.7g. 

Using the algorithm described in the chapter 6, walking periods were automatically 

detected. Walking periods were defined as those periods of alternate movements of the 

feet during which a total of more than two consecutive gait-cycles (four steps) could be 

detected. 

Putting the periods of walking and lying aside, the remaining periods would correspond 

to either sitting or standing. Using the acceleration signals of the trunk, two special cases 

of sitting position were also detected. We hypothesized that:  

• It would be highly unlikely for the subject to have a backward inclination of trunk 

of more than 15º for a period of over 30 seconds during standing; therefore these 

periods were classified as sitting.  

• Periods of more than 30 seconds with almost no movement in the trunk (standard 

deviation of atrunk less than 0.015g) would correspond most likely to sitting.  

5.2.3.3 Detection and classification of posture transitions 

Besides some special cases like those mentioned before, any inertial (acceleration or 

angular velocity) signal of the trunk or the shanks during quiet sitting or standing pos-

tures were very similar and had no distinctive feature to be used for classification. How-

ever, during the transition periods between these postures, the recorded signals showed 

interesting features (Najafi, Aminian et al. 2003). As such, the key element to classify 

sitting and standing periods in our system was to detect posture transitions accurately 

and with a high sensitivity.  
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To detect posture transition candidates, we used the signal of the gyroscope on the trunk 

in an algorithm with the following steps: 

• Drift of the gyroscope was removed using a filter similar to the one for the shank 

signals. 

• The signal was low-pass filtered using an FIR filter with a cut-off frequency of 

0.65Hz. 

• Change in the trunk tilt, θg, was calculated by integration of the above signal. It is 

noteworthy that θg corresponds to the change of trunk orientation in sagittal plane 

(relative angle) while θtrunk which was calculated by the accelerometers, shows the 

absolute orientation of the trunk in (nearly) static conditions. 

Transitions from the sitting to standing posture (SiSt) and from standing to sitting pos-

ture (StSi) produced a special pattern in the θg signal (see Figure  5-5). (Najafi, Aminian et 

al. 2002) have already shown that the positive peaks of the transition patterns corre-

spond to the start and the end of the posture transitions. 
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Figure  5-5. A Sit-to-Stand transition followed by a Stand-to-Sit transition. Transitions start 

and end with two positive peaks and the transition time is defined as the time of the highest 
negative peak inside the transition period. Notice the relative position of the highest nega-
tive peaks in the acceleration and angular velocity signals in these two different types of 

transitions. 

Finally, posture transition candidates were detected using a simple peak-detection in the 

θg signal. Patterns with negative peaks with amplitudes of more than 10º were selected as 

candidates for the posture transitions. The candidates, however, could also include 
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spurious peaks resulting from activities or movements other that posture transitions. 

These peaks and their respective patterns were referred to as non-transitions. 

To separate true transitions from non-transitions for each candidate pattern, several 

features were extracted and the corresponding parameters were calculated (see Figure 

 5-5):  

• Min(θg): The amplitude of the negative peak in the θg signal, showing the maximal 

tilt. 

• TD: Duration of transition. Defined as the difference between end and start of the 

transitions. 

• cTD: Core of the transition period. Part of the transition period during which θg 

was below zero.  

• Max(ωtrunk): Peak value of the trunk angular velocity during the core of the transi-

tion. 

• trunkω : Average trunk angular velocity. Defined as the average value of trunk’s gy-

roscope signal during the core of the transition. 

• RORtrunk: Range of antero-posterior tilt of the trunk. To calculate this parameter, 

the drift of the gyroscope signal was canceled using the same IIR filter as for the 

shank signals; then the signal was integrated during the time of the transition and 

its range was calculated. 

• Range(atrunk): Range of the trunk acceleration signal, atrunk, during the posture transi-

tion. 

• ˆ( )turnkRange a : Range of the low-pass filtered trunk acceleration, ˆtrunka , during the 

posture transition. (a FIR filter with a cut-off frequency of 0.65Hz was used.) 

• ˆ( )turnkMax a  and ˆ( )turnkMin a : Maximum and minimum of the filtered trunk accelera-

tion signal, ˆtrunka , during the posture transition time and also the relative position 

of this peak to the time of the transition ( ˆ{ ( )}turnkt Max a  and ˆ{ ( )}turnkt Min a ). 

Considering ptr to be the probability that a posture transition candidate was a real transi-

tion, it was convenient to model this probability in terms of the log odds of detection, 

usually called logit: 

 logit( ) ln( )
1

tr
tr

tr

p
p

p
=

−
 (5-4) 
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The logistic regression model (Hosmer and Lemeshow 1989) tries to fit the log odds by a 

linear function of the parameters of the transition (as in multiple regression): 

 logit( ) .tr i ip xα β= +∑  (5-5) 

where xi stands for the calculated parameters of the posture transition. In order to esti-

mate α and βi coefficients a training session was carried out, using the exact time of the 

transitions found from reviewing the video recordings. The transition candidates from all 

of the periods of the measurement and for all subjects were sorted in to two groups: 

transitions and non-transitions. For each group, two subgroups were randomly selected 

and one subgroup was used to find α and βi coefficients and the other one was used to 

evaluate the performance of the classification method. 

To classify posture transitions to sit-tand (SiSt) or stand-sit (StSi) transitions, a similar 

approach was used to calculate another series of α and βi coefficients to make a function 

similar to model in (5-5) to estimate the probability (pSiSt) that a transition was of type SiSt 

or StSi. To find these coefficients half of the real transitions confirmed by the video were 

used and the other half was used to evaluate the performance of classification. 

Finally, for each posture transition candidate the time of the posture transition, ptr and 

pSiSt were calculated. For instance, to calculate ptr for each posture transition the parame-

ters related to the features of the pattern (xi) where extracted and using (5-6) the ptr was 

calculated: 

 
( . )

1

1 i i
tr x

p
e α β− +

=
∑+

 (5-6) 

5.2.3.4 Fuzzy classification of the activities 

Using the methods of the previous sections, the periods of walking, lying and some 

special cases of sitting were detected. Also candidates for posture transitions and their 

associated ptr and pSiSt were calculated. To classify the remaining periods of the monitoring 

into Sitting or Standing, a mamdani fuzzy classification system (Mamdani 1977) was 

used. 

Based on the periods of activities detected so far and the time of the transitions, the 

whole period of monitoring was divided into a list of several smaller periods. Each of 

these smaller periods could have either an unknown state or a known state. Starting 

from the first unknown state in the list to the last one, six fuzzy variables were passed to 

the fuzzy classifier to decide the type of the activity: 

• LastState: the activity immediately before the current activity 
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• NextState: the activity immediately after the current activity 

• CurrTR: the strength of the transition at the beginning of the current activity 

• NextTR: the strength transition at the end of the current activity 

• CurrTRtype: type of the transition at the beginning of the period  

• NextTRtype: type of the transition at the end of the current period 

 
Figure  5-6. a) The inputs and the output of the fuzzy controller b) Membership functions in 
the activity state variables c) Three levels of strength of the transitions based on the ptr d) 

Type of the transition 

In all fuzzy variables, fuzzy sets from the trapezoid family were used. To express the 

strength of the transition candidates based on ptr three fuzzy sets were considered. Strong 

transition candidates were those with a very high ptr and None transition candidates were 

those with a very low ptr. Those transition candidates with a ptr round 0.5 were considered 

as weak. Transition candidates with a low value of psist were assigned to the StSi fuzzy set 

and those with a high value of psist were assigned to the SiSt fuzzy set.  

Two input fuzzy variables (LastState and NextState) and the single output variable (CurrState) 

expressed the type of the activity (see Figure  5-6.b). In a scale of -2 to 2, in increasing 

order fuzzy sets has been defined for the Lying, Sitting, Standing and Walking states with 

an overlap of 50% between the adjacent sets. 
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As the output, the fuzzy classifier produced the CurrState fuzzy variable. The fuzzy sets 

used in this method and their membership function are shown in the (Figure  5-6). 

For each transition based on the ptr, three levels of strength have been assigned: Strong, 

Weak, None-transition. A set of 14 fuzzy (see Table  5-1) rules has been used in the fuzzy 

controller. Rules had weights between 0.25 and 1.0. When all needed information to 

classify an unknown state was provided, the stronger activated rule would dominate the 

output and when only partial information was available, only a rule with a lower weight 

would activate. If for a given period no transitions were detected, a rule with a low weight 

would get activated to assign CurrState either a value of Sitting or Standing, based on the 

state of the previous period or next periods.   

For example, if in between two standing periods, a period starting with a strong StSi 

transition and ending with a weak SiSt transition was given to the classifier, two rules 

with the weights 1.0 and 0.5 would get activated (rules number 1 and 7 of Table  5-1) and 

assigned the Sitting as the value of the CurrState.  

Rule 
Nr. Rule Weight 

1 If NextTR is Strong and NextTRtype is SiSt then State is Sit 1 
2 If NextTR is Strong and NextTRtype is StSi then State is Stand 1 
3 If CurrTR is Strong and CurrTRtype is SiSt then State is Sit 1 
4 If CurrTR is Strong and CurrTRtype is StSi then State is Stand 1 
5 If LastState is (Stand or Walk) and CurrTR is Weak and CurrTRtype is StSi then State is Sit 0.5 
6 If LastState is (Sit or Lye) and NextTR is Weak and CurrTRtype is SiSt then State is Stand 0.5 
7 If NextState is (Stand or Walk) and NextTR is Weak and NextTRtype is SiSt then State is Sit 0.5 
8 If NextState is (Sit or Lye) and NextTR is Weak and NextTRtype is StSi then State is Stand 0.5 
9 If LastState is (Sit or Lye) and CurrTR is None then State is Sit 0.25 
10 If LastState is (Stand or Walk) and CurrTR is None then State is Stand 0.25 
11 If NextState is (Stand or Walk) and NextTR is None then State is Stand 0.25 
12 If NextState is (Sit or Lye) and NextTR is None then State is Sit 0.25 

13 If LastState is (Stand or Walk) and NextState is (Stand or Walk) and CurrTR is Weak  
and NextTR is weak and CurrTRtype is StSi and NextTRtype is SiSt then state is Sit 0.75 

14 If LastState is (Sit or Lye) and NextState is (Sit or Lye) and CurrTR is Weak  
and NextTR is weak and CurrTRtype is SiSt and NextTRtype is StSi then state is Stand 0.75 

Table  5-1. List of the all fuzzy rules used by the fuzzy classifier to decide between 
Sitting and Standing states. 

5.2.4 Statistical analysis 
To compare different parameters between the normal subjects and PD patients Wil-

coxon’s non-parametric rank-sum test was used. To compare between the Stim ON and 

Stim OFF states, Wilcoxon’s non-parametric paired test, sign-rank test was used. The 

correspondence between UPDRS sub-scores and different parameters was estimated with 

the non-parametric, Spearman’s rank correlation. 
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To evaluate the performance of the classification algorithms, when possible, four com-

plementary statistics were calculated: Sensitivity, Specificity, Positive Predictive Value 

(PPV) and Negative Predictive Value (NPV). These statistics were expressed as conditional 

probabilities: 

 ( | )Sensitivity P test ref+ +=  (5-7) 

 ( | )Specificity P test ref− −=  (5-8) 

 ( | )PPV P ref test+ +=  (5-9) 

 ( | )NPV P ref test− −=  (5-10) 

Where test+ means positive outcome of the test, ref+ means positive observation by the 

reference, test- means negative outcome of the test and ref- stands for the negative obser-

vation by the reference. The values of these probabilities were presented in the form of 

percentage. In the second study, theses statistics were also calculated by taking the first 

observer as the reference and the second observer as the test to find out the limits of the 

accuracy of the observation. 

5.3 Results 

5.3.1 Automatic calibration of the trunk sensor’s inclination 
An error of -5.5±3.2 degree (mean ± S.D.) between the estimated θ0 by the algorithm and 

mean value of θbiased during the standings periods (identified from the video) was found. 

The negative value of the mean of the error implies that the subjects tend to walk with 

slightly bent forward as compared to the up-right standing. However the magnitude of 

the error for the purpose of the posture analysis algorithm was found to be negligible. 

5.3.2 Transition detection and classification 
The first step in detecting posture transitions was to identify negative peaks in the θg 

signal (Figure  5-5). The time of these peaks were considered as the potential candidates 

of the time of the posture transitions. As shown in Table  5-2, for the normal subjects the 

algorithm could detect posture-transitions with a very high sensitivity (94.4%). In the 

case of PD patients, the sensitivity was reduced to 83.8% yet in both cases it has been 

better than the similar algorithm in (Najafi, Aminian et al. 2003). However, the downside 

of having a higher sensitivity was lower Positive Predictive Value (PPV) because of more 

false-positives. 
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Method Sensitivity PPV 
Normal (N = 232) 

Proposed method 94.4% 56.4% 
Najafi et al. method  91.4% 73.9% 

Parkinson (N = 272) 
Proposed method 83.8% 57.3% 

Najafi et al. method  62.1% 70.1% 

Table  5-2. The performance of the peak-detection algorithm in finding posture-transition 
candidates. N stands for the number of transitions in each case. 

The second step of the transition detection was to use a statistical classifier to separate 

true posture transitions from the false-positives. To demonstrate the potentials of our 

approach, the classifier was first applied to the data from the control subjects (see Table 

 5-3). The results show high sensitivity and specificity (>95%).  

For practical application of our method in monitoring both normal subjects and PD 

patients, α and βi were calculated by running the training algorithm on a group of ran-

domly selected posture transition candidates from the Control and Patient data (see also 

Table  5-3). The results show that the statistical classifier significantly increased the PPV. 

Similarly, a second classifier was trained to separate the SiSt and StSi transitions. Table 

 5-4 summarizes the results obtained using the control data and those obtained using the 

mixed control and patient data. 

Reference Data (video)- control data Reference Data (video)- mixed con-
trol/patient data 

 Transition Non-
transition  Transition Non-

transition  

Transition 63 2 PPV = 96.9% 107 16 PPV = 87.0% 
Non-

transition 3 49 NPV= 94.2% 22 84 NPV= 79.2% 

 Sensitivity Specificity  Sensitivity Specificity  A
lg

or
ith

m
 

 95.5% 96.1%  83.0% 84.0%  
 Table  5-3. Performance of the statistical posture transition classifier trained and applied 

only on the control data and on the mixed control- patient data 

Reference Data (video)-control data Reference Data (video)- mixed con-
trol/patient data 

 SiSt StSi  SiSt StSi  
SiSt 32 1 PPV = 97.0% 61 6 PPV = 91.0% 
StSi 2 32 NPV= 94.1% 6 56 NPV= 90.3% 

 Sensitivity Specificity  Sensitivity Specificity  A
lg

or
ith

m
 

 94.1% 97.0%  91.0% 90.3%  
Table  5-4. Performance of the SiSt/StSi transition classifier trained and applied using only 
control data (152 samples for training, 67 samples for evaluation) and using mixed control 

and patient data (298 samples for training, 129 samples for evaluation) 

5.3.3 Classification of the body postures 

As an example, Figure  5-7 shows a part of the output of the algorithm of a typical case. 

Starting from sitting position, subject has stood up, climbed some stairs, paused for a 
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short while and continued with walking on flat surface followed by a short period of lying 

down and finally standing up.  

Walking periods have been detected using the shank gyroscopes’ signals (Figure  5-7.a) 

and lying periods were detected using θtrunk (Figure  5-7.b). Finally, by detecting SiSt and 

StSi transitions from θg signal (Figure  5-7.c), periods of sitting and standing were de-

tected (Figure  5-7.d). 
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Figure  5-7. a) Right shank's gyroscope signal that together with the left shank's signal was 
used to detect gait. b) θtrunk is the calibrated trunk's inclination angle and is used to detect 

lying periods. c) θg is the filtered trunk's tilt obtained from the trunk's gyroscope sensor used 
to detect posture transitions. d) Output of the fuzzy classifier showing periods of the differ-

ent activities. 
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 Walking Standing Sitting Lying 
Normal 

Sensitivity 99.1% 96.1% 99.5% 100% 
Specificity 99.8% 97.9% 99.8% 100% 

PPV 99.0% 90.2% 99.4% 100% 
NPV 99.8% 99.2% 99.9% 100% 

PD Patients 
Sensitivity 98.5% 83.6% 86.3% 91.8% 
Specificity 97.8% 96.5% 98.0% 99.8% 

PPV 98.0% 83.5% 89.6% 92.3% 
NPV 98.3% 96.5% 97.3% 99.8% 

Table  5-5. performance of the algorithm in classifying four basic body postures. 

Table  5-5 summarizes the results of assessment of sensitivity and specificity of the 

detection of each body posture for the control and patient groups by comparing the 

outcome of our method and the time tagged logs obtained from reviewing the video tapes.   

5.3.4 Posture-transition related parameters 
For each subject, the average value of each parameter related to posture transitions were 

calculated. Results of the PD patient measurement were put into two groups, Stim ON 

and OFF based on the state of the stimulator. For each group of Control, Stim ON and 

Stim OFF, the average value of each parameter and its standard deviation was calcu-

lated. Each group included ten subjects, hence ten samples. The results are shown in 

Table  5-6. 

 Values for each group 
(in mean ± S.D.) 

p-value for the hypothesis test of the equivalence of the 
medians 

Parameter Control Stim ON Stim OFF Control vs. Stim 
ON 

Control vs. Stim 
OFF 

Stim ON vs. Stim 
OFF  

Max(ωtrunk) (º/s) 139.7±38.5 109.6±37.7 91.7±27.5 0.0757 (N.S.) 0.0028 0.0371 

trunkω  (º/s) 13.12±2.02 9.65±2.29 7.85±2.20 0.0010 0.0002 0.0098 

TD (s) 2.82±0.22 3.27±0.42 3.54±0.53 0.0312 0.0058 0.0058 

RORtrunk (º) 21.4±4.4 18.9±4.9 16.7±4.8 0.3847 (N.S.) 0.0539 (N.S.) 0.0273 

ˆ( ) ( )turnkMax a g  1.067±0.009 1.048±0.010 1.036±0.011 0.0006 0.0002 0.0098 

ˆ( ) ( )turnkMin a g  1.036±0.011 0.960±0.011 0.972±0.009 0.0028 0.0002 0.0020 

Min(θg) (º) -21.7±3.3 -15.9±3.5 -13.5±3.4 0.0007 0.0002 0.0371 

( ) ( )turnkRange a g  0.648±0.114 0.505±0.088 0.456±0.067 0.0113 0.0013 0.3750 (N.S.) 

ˆ( ) ( )turnkRange a g  0.124±0.018 0.088±0.021 0.064±0.020 0.0017 0.0002 0.0039 

Table  5-6. the value of posture transition related parameters for each group of Contorl, Stim 
ON and Stim OFF and the p-value of the hypotesis tests to compare the median of groups. 

We have found significant differences (p < 0.05) in many parameters related to the pos-

ture transitions between the control group and the PD patients and also between the 

Stim ON and OFF states. 
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5.3.5 Detection of basic body postures in the free moving patients 

Table  5-7 shows the results of the comparison of the output of the posture analysis 

algorithm to the time-tagged logs prepared by observation. The results also include the 

statistics of the comparison of the logs of the second observer to those of the first one. 

 Algorithm vs. Observation Observer 2 vs. Observer 1 
 Walking Standing Sitting Lying Walking Standing Sitting Lying 
Sensitivity 95.0% 56.6% 84.6% 91.1% 93.8% 81.1% 99.5% 80.0% 
Specificity 99.8% 94.0% 90.3% 80.3% 99.8% 99.5% 85.0% 100% 
Prevalence 5.58% 3.0% 71.4% 20.3% 5.58% 3.0% 71.4% 20.3% 

Table  5-7. Accuracy of the posture analysis algorithm in detection of the four basic body 
postures. 

Walking and standing postures had the least prevalence in the measurements. In total, 

PD patients spent only 8.6% of the time in either of these two positions. Most of the time, 

they selected a sitting position and over all spent more than 71% of the time in this 

position. They spent the remaining 20% of the time in a lying position.  

The algorithm was most accurate in detecting walking and lying postures. Detection of 

standing body posture, however, was rather poor. This body posture also had the least 

prevalence during the measurement period and the two observers showed the least 

agreement about it.  

5.4 Discussion and conclusions 

5.4.1 Transition detection and body posture classification 

As presented in Table  5-2, the sensitivity of the algorithm to detect posture transition 

candidates in the normal, control group is very high. The method described in (Najafi, 

Aminian et al. 2003) also show similar, marginally lower sensitivity. However, while our 

proposed method of transition detection showed almost 10% less sensitivity, the other 

method had nearly 30% less sensitivity in PD patients. Moreover, in both populations our 

proposed method had lower Positive Predictive Value (PPV) because of more false-

positives (56.4% vs. 73.9% for controls and 57.3% vs. 70.1% for PD patients). Najafi et al 

method continues to classify the activities at this point while in the new method, in order 

to improve PPV, we have taken some further steps. Logistic regression was used to 

separate true-positives from false positives: for each candidate a probability was assigned 

to state how probable it was that the candidate was true posture transition. This ap-

proach also integrated well the fuzzy classifier used in a later stage to classify the body 

postures and involves useful information hidden in the features of the posture transition 

pattern. Using this methdo, the PPV of the outcome of the algorithm was significantly 

enhanced (see Table  5-5).  
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The sensitivity of detection of Sitting in both PD patients and controls was a little bit 

higher than the sensitivity of detection of posture transition candidates. The reason was 

that the quality of the output of the fuzzy sitting/standing classifier is not solely based on 

detection of posture transitions. Some special cases of sitting postures can be detected 

using only acceleration signals on the trunk. While these cases are particular, they tend 

to occur during long periods of sitting so their early detection provided an important 

boost to the quality (sensitivity/specificity) of the output of the algorithm. 

In most cases, all unknown states could be classified by running the fuzzy classifier only 

once from the start to the end of the list. In rare cases, a second run of the classifier was 

needed to classify all of the unknown states. In those rare cases, by re-running the fuzzy 

classifier all unknown periods were classified. Running the classifier from start to the end 

of the list or from the end to the start did not show significant differences. 

In the case of PD patients, some limitations increased the error in the classification of the 

transitions and ultimately body postures. For example tremor, could introduce a lot of 

noise on the trunk sensor. Also when PD patients are in OFF periods, sometimes they 

had difficulty performing posture transitions and other activities even with help. The 

rigidity of muscles in PD patients or external help during posture transitions reduced the 

trunk movements and distorted the pattern of the trunk tilt signal thus affecting the 

posture transition detection. Gait detection could also become less reliable when PD 

introduces abnormalities in the gait pattern.  

5.4.2 Posture-transition related parameters 
Because subjects followed the same protocol of activities, duration and type of the activi-

ties were very similar between them. However the calculated parameters related to 

posture transitions showed significant differences between control subjects and PD 

patients (see Table  5-6). During posture transitions, compared to the controls, PD pa-

tients in the Stim OFF period, had a significantly longer posture transition times (3.54 vs. 

2.82 seconds), less average angular velocity of the trunk (7.85 vs. 13.12 degree/seconds) 

and showed a marked and nearly significant (p = 0.054) reduction in the range of the 

rotation of the trunk (16.7 vs. 21.4 degrees). At the same time, PD patients had signifi-

cantly lower accelerations of the trunk ( ˆ( )turnkRange a , Range(atrunk), ˆ( )turnkMax a , ˆ( )turnkMin a ) 

compared to the controls. 

These altered parameters were likely to be related to a mixture of rigidity and bradykine-

sia, hypothesis supported by finding that STN-DBS improved significantly most of them. 

Indeed, during Stim ON, PD patients had significantly shorter posture transition times 
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(3.27 vs. 3.54 seconds), higher average angular velocity of the trunk (9.65 vs. 7.85 de-

gree/seconds) and higher range of rotation of the trunk (18.9 vs. 16.7 degrees). Three of 

the four parameters related to the acceleration of the trunk also showed significant 

improvement during Stim ON compared to the Stim OFF period ( ˆ( )turnkRange a , ˆ( )turnkMax a , 

ˆ( )turnkMin a ). Range of the acceleration of the trunk, Range(atrunk), was not significantly 

different between Stim ON and Stim OFF states while the range of low-pass component of 

atrunk during posture transitions, ˆ( )turnkRange a , showed a significant difference between 

Stim ON and Stim OFF: this is probably due to the removal of noisy, high frequency 

components of atrunk during the transitions (e.g. the impact produced during sitting). 

Although STN-DBS improved most posture transitions related parameters, PD patients 

still showed significant differences in many of these parameters during Stim ON when 

compared to the control subjects. They had significantly longer posture transition times 

(3.27 vs. 2.82 seconds), less average angular velocity of the trunk (9.65 vs. 13.12 de-

gree/seconds) and less ˆ( )turnkRange a  (0.088 vs. 0.124 g). 

Therefore, our data reported in Table  5-6 show significant differences in most, but not all, 

parameters in Stim ON patients compared to healthy controls suggesting that the magni-

tude of improvement provided by STN-DBS, although significant, was by no mean suffi-

cient to normalize the posture transitions in PD. This is in agreement with clinical 

observation that the effects of STN-DBS are more marked on limbs rather than on trunk 

Parkinsonism features. 

5.4.3 Correlation between UPDRS and posture transition 

Three different sub-scores defined as U1 to U3 (see Table  5-8) were made based on a 

combination of different UPDRS III items. Parameters related to the posture transitions 

where compared to these sub-scores. Table  5-9 shows the coefficient of the non-

parametric, rank correlation between the sub-scores and posture transition parameters. 

The first column shows the correlation coefficient related to the whole UPDRS score. 

Sub-score Related symptoms UPDRS III sub-scores 

U1 Gait 29 

U2 Gait & posture 27 + 28 + 29 + 30 

U3 Bradykinesia 23 + 24 + 25 + 26 + 31 

Table  5-8. UPDRS sub-scores used in calculation of correlation coefficients 
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Parameter UPDRS U1 U2 U3 

Max(ωtrunk) N.S. N.S. N.S. N.S. 

trunkω  -0.49 -0.56 -0.56 -0.45 

TD 0.64 N.S. 0.65 0.55 

RORtrunk N.S. N.S. N.S. N.S. 

ˆ( )turnkMax a  -0.55 -0.67 -0.64 -0.49 

ˆ( )turnkMin a  0.69 0.72 0.79 0.60 

( )Min gθ  N.S. 0.49 0.49 N.S. 

Range(atrunk) N.S. N.S. N.S. N.S. 

ˆ( )turnkRange a  -0.65 -0.71 -0.72 -0.59 

Table  5-9. Coefficient of rank correlation between UPDRS sub-scores and posture transition 
parameters. Where the p-value was more than 0.05, the correlation was considered as Not 

Significant (N.S.). 

Several parameters show significant correlation to UPDRS score and/or some of the sub-

scores. Range(atrunk) showed no significant correlation with the UPDRS score or any of the 

sub-scores while ˆ( )turnkRange a showed significant correlations to the UPDRS and all sub-

scores. Figure  5-8 shows a scatter plot of U3 (posture sub-score) and ˆ( )turnkRange a . 
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Figure  5-8. Scatter plot comparing UPDRS sub-score U3 and range of filtered trunk accelera-

tion. 

5.4.4 Posture analysis results in the free moving patients 
The prevalence of walking and standing during the measurements was very small. The 

posture analysis algorithm had the poorest results in detection of standing periods (see 

Table  5-7). Part of the problem could be explained by noticing that deciding between very 

short walking periods and active standing periods depended very much on the subjective 

preferences of the observers. This also explains why standing was the activity that the 

two observers had the least agreement about (Sensitivity was 81.1% and PPV was 87.4%). 
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In the same way, the two observers had a large disagreement in classification of lying 

periods. The source of the problem was deciding that long periods of leaning backward 

should be reported as sitting or lying. Detection of lying using accelerometers on the 

trunk is generally considered highly accurate (Najafi, Aminian et al. 2003; Paraschiv-

Ionescu, Buchser et al. 2004). The algorithm classified long periods of backward inclina-

tions of higher than 45° as lying. Low specificity of the algorithm (80.3%) in detection of 

lying can be attributed mostly to the subjective decision of the observers as to take how 

much leaning backward as lying. A very high prevalence of nearly 92% for sitting and 

lying indicates that although the PD patient were free to move, they either decided to 

remain inactive or could not do much activity in the hospital. 

5.4.5 Comparison to other ambulatory systems 
Recently a system based on kinematic sensors with two sensor sites on the body has 

been reported in (Paraschiv-Ionescu, Buchser et al. 2004) and a comparison to several 

other systems (Bussmann, Reuvekamp et al. 1998; Najafi, Aminian et al. 2003; Ng, 

Sahakian et al. 2000) has been reported. In Table  5-10 our proposed system has been 

added to the same comparison list.  

Sensitivity Specificity 
System Fixation 

sites 
Sub-

ject/hours Sitting Stand-
ing 

Walk-
ing Lying Sitting Stand-

ing 
Walk-

ing Lying 

10/8 (h) 99.5 96.1 99.1 100 99.8 97.9 99.8 100 Proposed 
system 3 

20/15 (p) 86.3 83.6 98.5 91.8 98.0 96.5 97.8 99.8 

Paraschiv 
et. al. 2 21/61 98.2 98.0 97.1 99.2 98.8 98.5 97.9 98.6 

Najafi et al. 1 15/30 87.0 87.6 92.3 99.0 89.4 86.7 94.0 98.7 

Bussman et 
al. 3 8/8 94 84 85 86 - - - - 

5/5 (h) 98.8 95.8 95.0 97.6 99.3 98.4 98.6 99.6 
Ng et al. 2 

20/20 (p) 80.6 94.6 80.3 93.1 98.9 92.8 98.5 93.8 

Table  5-10, comparison of the performance of the proposed method with several other 
methods in controlled conditions (p stands for Patients and h stands for Healthy subjects). 

Based on this comparison, our proposed system not only competes very well with the 

other methods, but also demonstrates that the system is versatile and could be used 

easily in the clinic for the assessment of movement disorders of neurological origin. 

Regarding PD patients, Keijsers et al. (Keijsers, Horstink et al. 2003c) have also proposed 

a system with a method similar to (Veltink, Bussmann et al. 1996a) to estimate periods of 

different body postures, but they did not report the classification performance of their 

algorithm. 
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5.4.6 Conclusions 
We designed and investigated an ambulatory method suitable for the monitoring of daily 

activities in PD patients. With three sensor fixation sites, the system could accurately 

and reliably classify basic body postures in both healthy subjects and PD patients.  

In addition, we have found significant differences in the parameters related to posture 

transitions between normal subjects and PD patients even when optimally treated. At the 

same time, significant and good correlations between some of these parameters and 

commonly used UPDSR score have been found. 

The method presented here provides an effective way of ambulatory monitoring of the 

physical activities of PD patients with good sensitivity and specificity in detection of the 

basic body posture and offers the objective quantification of some aspects that improve 

the assessment of physical mobility not only in PD patients but possibly also in other 

patients with movement disorders. 
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Chapter 6  Gait assessment  

Abstract 
Background—Parkinson’s disease can have a dramatic effect on gait. Typically, PD 

patients’ gait is slow and shuffling, stride length is shortened and velocity reduced. A 

reduced range of motion at the joint level is also present. As the parkinsonian signs can 

change during the day, gait parameters can also change during the day. 

Objectives—Design and validation of a new method of gait analysis of PD patients based 

on kinematic sensors. The method was needed to automatically detect gait and provide 

spatio-temporal parameters of the gait. Finding differences in the gait parameters in PD 

and healthy control subjects and correlations between the gait parameters and clinical 

scores were additional goals of this study. 

Method—A system based on four gyroscopes attached to the lower limbs has been 

proposed. An algorithm has been designed to detect gait events (initial and terminal 

contact) with high accuracy. A two-segment model of the gait has been used to obtain 

stride-length. Using a video recording the sensitivity of algorithm in detection of the PD 

gait was calculated. The obtained gait parameters in PD patients and control group were 

statistically compared. 

Results—We found significant differences in the gait parameters of PD patients compar-

ing to controls. They had 52% less stride length, 60% less stride velocity and 40% longer 

gait cycle time. Also they had significantly longer stance and double support (11% and 

59% more, respectively) than controls. STN-DBS significantly improved gait parameters. 

During Stim ON period, PD patients had 31% faster stride velocity, 26% longer stride 

length, 6% shorter stance and 26% shorter double support. Gait cycle time, however, was 

not significantly different. Some of the gait parameters had high correlation with UPDRS 

sub-scores. 

Main contributions— A new ambulatory gait analysis method based on kinematics 

sensors has been proposed and validated that has a better accuracy and time complexity 

than the previous methods and can detect PD gait with high sensitivity. Using this simple 
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and relatively inexpensive device, clinical results comparable to more complex methods 

based on camera based systems used in gait labs has been obtained.  

6.1 Introduction 
Gait is a particular, semi-automatic motor task which is specifically sensitive to ON-OFF 

changes of parkinsonian state. When OFF, PD patients tend to walk slowly with short 

shuffling steps, reduced arm swing, stooped posture and they may present start hesita-

tions and freezing episodes when turning around or facing an obstacle. During ON state, 

the same patients may walk nearly normally with or without “dancing” steps as a result 

of the presence of dyskinesia involving the lower limbs. Analysis of gait parameters may 

therefore constitute a reliable paradigm to assess global motor function over time in PD 

patients. However, until now there have been a limited number of ambulatory systems to 

analyze human gait. Some of these systems need special footwear with foot-switches or 

other pressure sensitive devices inside (Lackovic, Bilas et al. 2000; Pataky, Faravel et al. 

2000). Using special footwear is not always possible and may also hinder subject’s 

normal gait. Moreover, PD patients often tend to shuffle while walking, making the initial 

and terminal contact detection difficult. In these cases, the gait temporal parameters can 

not be calculated precisely. In addition, the foot-switch techniques do not provide spatial 

parameters. An accelerometer which does not need to be fixed under the foot has been 

used as an alternative (Sekine, Tamura et al. 2002; Willemsen, Bloemhof et al. 1990). An 

automated algorithm for gait temporal parameters estimation was proposed by (Aminian, 

Rezakhanlou et al. 1999) and validated on osteo-arthritis patients. More recently, using 

accelerometers attached to the trunk an original method to estimate mean step length 

and walking speed was described by (Zijlstra and Hof 2003). However this system was 

not validated in pathological gait. 

Our goal in this part of the thesis was to design and validate a new method for ambula-

tory gait analysis in PD patients based on body fixed sensors. As PD patients during OFF 

state quite often walk only for short periods, high sensitivity and specificity in detection 

of gait was a secondary goal to obtain the most out of all walking periods subjects may 

have. 

6.2 Definition of gait parameters 

6.2.1 Introduction 
Human gait is a complex movement that includes activities in many muscles and joints 

of the body. Gait is rhythmic or semi-repetitive in nature. To analyze the gait in an 

objective manner, the first step is to break the repetitive complex movements of the body 
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into (more or less) similar blocks, usually referred to as gait cycles. Each gait cycle can be 

characterized by several spatio-temporal gait parameters (Giannini, Catani et al. 1994; 

Inman, H.J. et al. 1981; Perry 1992), or for short gait parameters. To describe these 

parameters, we rely on the terminology used by GCMAS1 society (Õunpuu 1994). To 

identify a gait cycle, we need to find the respective gait events. There are two important 

gait events in this regard: 

• Initial Contact (IC): The moment in time that the foot touches the ground. 

• Terminal Contact (TC): The moment in time that the foot leaves the ground. 

To have a complete gait cycle, five gait events are needed: ICR(k), TCR(k), ICL(k), TCL(k) and 

ICR(k+1). A complete gait cycle starts from the IC of the right foot and ends with the 

following IC of the same foot.   

6.2.2 Temporal parameters 
Temporal parameters are those parameters of a gait cycle that are related to time. Usu-

ally, temporal parameters are defined as a percentage of the total gait cycle time. Figure 

 6-1 shows a typical gait cycle and the respective temporal parameters. 

Left

Right

Left-Swing(k) Right-Swing(k)

time

Terminal Contact

Initial contact

Left

Ids(k) Tds(k)

Right foot gait cycle (k)

Right-stance(k) Left-stance(k)

 
Figure  6-1.  Temporal parameters of a gait cycle. 

For each gait cycle k, the following temporal parameters can be considered: 

• Gait Cycle Time (GCT): The period of the time between the IC of the right foot to the 

next IC of the same foot. 

                                                 
1 GCMAS: Gait and Clinical Movement Analysis Society. 
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 ( ) ( 1) ( )R RGCT k IC k IC k= + −  (6-1) 

• Stance phase (ST): The period of the time when the foot is in contact with the 

ground. 
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• Swing phase (SW): The period of the time when the foot is not in contact with the 

ground. 

 
( 1) ( )

( ) 100
( )

R R
R

IC k TC k
SW k

GCT k
+ −

= ×  (6-4) 

 
( ) ( )

( ) 100
( )

L L
L

IC k TC k
SW k

GCT k
−

= ×  (6-5) 

• Double Support (DS): The period of time when both feet are in contact with ground. 

This happens two times during a gait cycle: at the beginning and at the end of the 

right foot’s stance. The first one is called Initial Double Support (IDS) and the second 

one is called Terminal Double Support (TDS). The absolute value of the difference of 

the IDS and TDS is called the Limp. As the asymmetry in gait grows, the value of the 

Limp also gets higher. 
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 ( ) ( ) ( )DS k IDS k TDS k= +  (6-8) 

 ( ) ( ) ( )Limp k IDS k TDS k= −  (6-9) 

• Cadence: Rate at which a person walks, expressed in steps per minutes. 

6.2.3 Spatial parameters 
Spatial parameters are those parameters of a gait cycle that are related to the distance 

and velocity. We have considered the following parameters (see Figure  6-2): 

• Stride Length (SL): The distance from initial contact of one foot to the following ini-

tial contact of the same foot, expressed in meters. Sometimes, this parameter is 

normalized to the leg-length and is expressed in percentage (Hof 1996). 
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• Stride Velocity (SV): The average linear velocity of foot during the gait cycle, ex-

pressed in meters/second (m/s). If normalized stride length is used to calculate the 

stride velocity, the unit will be s-1.  
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Figure  6-2. Definition of Stride length. 

6.2.4 Estimation of spatial parameters: gait model 
Human body is a highly articulated structure. For the purpose of gait analysis, even by 

limiting ourselves only to the segments and joints in the lower limbs, the number of 

joints and total degrees of freedom are very high. In some applications like computer 

graphics, with an objective of maximizing the accuracy of the human body models, a 

large number of joints and segments are considered. For example, in the H-Anim1 stan-

dard (Badler, Phillips et al. 1993) a multi-segmented foot, even including the digits is 

considered. Clearly such complex models are too detailed to be used by a system with a 

very small number of sensors (or markers).  

In our approach, a double pendulum model for swing and an inverse double pendulum 

model for stance presented in (Aminian, Najafi et al. 2002) was used (see Figure  6-3a). In 

this figure L1 and L2 are length of the thigh and shank, respectively. By finding the time 

of IC and TC events, swing and stance phases could be detected. The stride length was 

broken into three different segments, d1 to d3. The value of d1+d2 was estimated during 

swing phase and d3 was estimated during the stance phase. To estimate the stride length 

for the right foot, d1+d2 was calculated by calculating α, range of right thigh rotation 

                                                 
1 H-Anim is becoming an ISO/IEC standard 
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during swing phase; and β, range of right shank rotation during swing phase. For the 

same gait cycle, d3 was estimated by calculating γ, range of left shank rotation during 

stance and δ, range of left thigh rotation during stance. The details of the calculations are 

presented in (Aminian, Najafi et al. 2002).  

 
Figure  6-3. Double pendulum model used to estimate gait parameters.  (a) Gait cycle starts 
with Right foot’s Initial-Contact. Right foot leaves the ground at TC and hits the ground at 

IC.  (b) Stride length can be estimated by solving two separate geometries for Swing and 
Stance phases. 

6.3 Methods 

6.3.1 Measurement System and experiment setup 
In this study, we have used the data from our controlled study (see chapter 2.3). As 

stated before, 10 PD patients and 10 healthy normal subjects participated in this study. 

During the walking trials, subjects carried a Physilog® (BioAGM, CH) portable data-

logger. Gyroscopes that measure the angular rate of the rotations were attached to 

selected body segments (see Figure  6-4). 

All measurement sessions were recorded using a portable video camera. After each 

session, a reviewer carefully examined the video tape and counted the number of gait 

cycles in each gait cycle to calculate the sensitivity of the algorithm in gait detection. 
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Figure  6-4. a) Attachment of the sensors on the body. Boxes represent sensors: One sensor 
on each left and right forearms, thighs and shanks.  b) Close-up view of sensor on forearm 

shows its 3 sensitive axes (Pitch, Roll and Yaw). 

6.3.2 Pre-recorded database of gait cycles with a reference system 
For validation purposes a pre-recorded database of gait cycles has been used (Aminian, 

Trevisan et al. 2004). This database included 229 gait cycles of a group of eigth normal 

subjects, seven coxarthorosis and six hip-arthoroplasty patients. Each subject had up to 

8 walking trials for each of the right and left legs and gait cycles were recorded by Physi-

log, force-plate and a camera-based system (Elite). Recorded data was verified for poten-

tial technical problems like incorrect synchronization between the three devices or cases 

when subject did not walk over the force plate or both of his feet touched the force plate 

and finally 229 gait cycles recorded correctly by all three systems were selected. 

6.3.3 Temporal parameters estimation 
To cancel possible offset and drift of the sensors, resulted from changes in temperature 

and also possible variations in supply voltage, a high-pass IIR filter was used. The trans-

fer function of this filter was: 

 
1

1

1( )
1

zH z
zα

−

−

−
=

− ⋅
 (6-12) 



 Chapter 6 - Gait assessment 

92 

To avoid phase distortion, the filter was applied on the input data twice. After filtering in 

the forward direction, the filtered sequence was reversed and run back through the filter. 

With α=0.995 the cut-off frequency of the filter was fc ≈ 0.25Hz. 

Using the signals from shanks, gait cycles and related events were detected and temporal 

parameters of gait were estimated. The first step was to detect initial and terminal con-

tact of feet with the ground (IC, and TC). By simultaneously recording the gait signal 

using Physilog® and force-plate (Kistler, CH), the intervals where these events occurred 

were determined based on the shank angular velocity (Figure  6-5). The swing phase of a 

gait cycle is characterized by a positive shank angular velocity reaching its highest values 

at around Mid-Swing. Prior to swing phase, a negative angular velocity peak can be 

observed which is associated with TC. At the end of the swing period, the IC area is 

characterized by several negative angular velocity peaks. The first negative peak in this 

area is associated with IC. With different populations of normal and pathologic, young 

and elderly subjects, previous studies confirm the presence of these peaks (Aminian, 

Najafi et al. 2002). 
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Figure  6-5. Shank angular velocity. Marked areas show where important gait events occur. 

Taking advantage of these facts, a new algorithm was developed to extract the precise 

instances of IC and TC from right and left shank angular velocity of the respective foot. 

For the clarity of the explanation, let us consider right shank angular velocity as input. It 

is obvious that a similar method applies to the signal from the left side. Starting point 

was the identification of the time events corresponding to the Mid-Swing (tms) of shank 

angular velocity. The tms samples represent approximately the moment of Mid-Swing 

during a gait cycle however their exact significance is not of interest; they were only used 

as references in order to select the intervals in which negative peaks reminiscent of TC 
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and IC were to be found. First, the local maximum peaks of the signal were detected. 

Those peaks that were larger than 50 degree/sec were candidates for marking the Mid-

Swing area. If multiple adjacent peaks within a maximum distance of 500ms were de-

tected, the peak with the highest amplitude was selected and others were discarded. This 

prominent peak in the swing area was taken as the Mid-Swing. 

In next step, local minimum peaks of shank signal inside interval [tms - 1.5s, tms + 1.5s] were 

searched. The nearest local minimum after tms was selected as IC. As the negative peak 

associated to TC was generally a small peak, to smooth the signal and to get rid of spuri-

ous peaks, signal was filtered using a low-pass FIR filter with cut-off frequency of  

fc ≈ 30Hz and pass-band attenuation of less than 0.5dB. The local minima in the signal 

were searched and for each detected Mid-Swing the minimum prior to tms with amplitude 

less than -20 degree/sec was selected as the terminal contact. The -20 degree/sec 

threshold was used to avoid detecting a wrong peak in the swing area instead of the TC. 

To validate these algorithms, we used the pre-recorded data-base of gait cycles (see 

section  6.3.1). 

After detection of ICs and TCs, gait cycles were formed to calculate gait temporal parame-

ters. Each complete gait cycle had five associated time events. In order of occurrence: 

Initial Contact of Right foot (ICR), Terminal Contact of Left foot (TCL), Initial Contact of Left 

foot (ICL), Terminal Contact of Right foot (TCR). The fifth time event was the next Initial 

Contact of Right foot that was also the start of the next gait cycle. This way, the condi-

tions for the time events within k’th gait cycle to be valid were: 

 ( ) ( ) ( ) ( )R L L RIC k TC k IC k TC k< < <  (6-13) 

To form gait cycles conforming to (6-13), for each ICR a simple algorithm was used to find 

correct corresponding gait events. In the case a valid gait event could not be detected for 

a gait cycle, a special Unknown value was assigned to it, practically stopping further 

related calculations on that particular gait cycle. This could happen if any of the following 

happened: 

• Subject suddenly stopped walking, and the started to walk again with the same foot 

he took the last step with. 

• Walking was changed to running, i.e. no double-stance period could be detected. 

• In rare cases that one or more respective IC and TC events could not be detected. 

Figure  6-6 summarizes different steps taken in calculation of temporal parameters. 
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Figure  6-6. Flowchart of  spatio-temporal gait parameter estimation algorithm. 

6.3.4 Estimating spatial parameters of gait 
To find the instantaneous angle of each segment, the angular velocity of that segment 

was integrated during each gait cycle (see Fig. 3). This way, having discrete values of ω[n] 

for each sample and sampling rate of Δ, instantaneous angle θ[n] of the segment will be: 

 [ ] [ 1] ( [ ] [ 1])
2

n n n nθ θ ω ωΔ
= − + + −  (6-14) 

In the above equation, the initial condition, θ[0], is unknown and was assumed zero for 

the start of each gait cycle. The range of rotation of the segments is: 
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where ICn stands for initial contact of the n’th gait cycle. This value is independent of the 

θ[0]. Based on the instantaneous segment angles, the calculation of joint angles was 

trivial. If we have the angle of segments s1 and s2 making the joint j, then the joint angle 

for each sample will be: 

 1 2 0[ ] [ ] [ ]j s s jn n nθ θ θ θ= − +  (6-16) 
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where again the θj0 or the initial condition is unknown and we took the value as zero for 

the start of each gait cycle. The range of joint rotations was also calculated in the same 

way as (6-15). Using this method, the range of rotation of each shank and thigh was 

calculated. Similarly, for each axis of the sensors on the forearms the range of the rota-

tion during each gait cycle was calculated. To validate the results, the database of pre-

recorded gait cycles was used and estimated ranges of angles were compared to those 

obtained from reference system. 

Stride-Length and velocity were then calculated using the range of thigh and shank 

rotations using a double pendulum model similar to (Aminian, Najafi et al. 2002). 

6.3.5 Outcomes 
Following parameters were finally estimated and reported: spatio-temporal gait parame-

ters including gait cycle time, double support, limp and stance, stride length and velocity; 

range of rotation of shanks, knees, forearms and peak angular velocity of shanks. 

Double support, limp and stance were normalized by gait cycle duration and presented 

as percentage of it (0-100%). Stride length and velocity were normalized to subject’s 

height and presented as percentage of stature. 

Mean and standard deviation of parameters were calculated. To compare variability of the 

stride-to-stride parameters, the coefficient of variation, CV (Standard Deviation / mean) 

was calculated. To compare the mean values of different parameters between Stim ON 

and Stim OFF groups, Wilcoxon’s  non-parametric  paired test, sign-rank test (Wilcoxon 

1945) was used and to compare between control group and the PD patients, rank-sum 

test was used. When needed, Jarque-Bera (Judge, Hill et al. 1988) test for goodness-of-fit 

to a normal distribution was used. To estimate the significance of the correlation coeffi-

cients, the Pearson test was used. 

6.4 Results 

6.4.1 Error in estimation of gait parameters comparing to reference mo-
tion-capture systems 

Table  6-1 summarizes the error in estimating gait parameters using our new method 

against the reference motion-capture systems (see  6.3.1). Error was defined as the 

difference between values for the reference system and the values estimated by our 

algorithms. Mean and S.D. of this error, across all gait cycles and all subjects were then 

calculated. Mean of the error in independent parameters (like IC and TC) signifies the 

presence of a systematic error which can be later corrected and S.D. of the error signifies 
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the range of the accuracy of the system in comparison to the references. Further, Jarque-

Bera goodness of fit test confirms that the error has a normal distribution (p < 0.0001). 

Error in estimation of  parameter New Method Previous Method 
 Mean S.D. Mean S.D. 
Initial Contact (ms) 8.7 12.5 12.6 14.3 
Terminal Contact (ms) 2.9 26.8 -6.6 29.2 
Gait Cycle time (ms) -2.2 23.2 -2.4 24.1 
Stance (ms) -5.9 29.6 -19.2 31.4 
Range of Shank rotation (deg) -0.7 3.3 0.3 3.3 
Range of Thigh rotation (deg) -3.5 4.2 -2.4 4.2 
Stride Length (cm) -3.5 8.5 -0.4 9.6 
Stride Velocity (cm/s) -3.0 7.6 -2.5 8.3 
Total execution time (s) 10.5 94.6 

Table  6-1. Error in estimation of gait parameters based on the new method in comparison to 
the reference motion-capture system. As for comparison, the error of a previous method 

(Aminian, Najafi et al. 2002) is also reported. 

6.4.2 Sensitivity of gait cycle and gait event detection 
All controls performed the three walking trials. PD patients however were not consistently 

able to perform all trials and did one to three trials each. For each trial, the first and the 

last two gait cycles were omitted to avoid the effects of gait initiation and termination. 

 PD subjects
Stim ON 

PD Subjects
Stim OFF Controls 

Trials 21 17 30 
Total Gait Cycles 274 248 514 
True-Positive Gait Cycles 274 247 514 
False-Positive Gait Cycles 3 4 0 
True-Positive Gait Events 272 239 512 
False-Positive Gait Events 1 4 2 

Table  6-2. Summary of measured trials and gait cycles. 

Table  6-2 summarizes the measured trials and the number of gait cycles eventually 

obtained for each group. Total Gait Cycles comes from the observation based on the video 

tapes: a reviewer counted the number of gait cycles in each trial. There are two possible 

types of detection errors: errors in detection of a gait cycle (i.e. error in finding Mid-Swing 

peak) and errors in finding related gait events (IC and TC). Based on these values, we had 

a very high sensitivity in detection of gait cycles (100% for controls and 100% for PD 

patients during Stim ON and 99.6% during Stim OFF). Also sensitivity in detection of gait 

events was very high (99.6% for controls and 99.3% for PD patients during Stim ON and 

96.4% during Stim OFF). The positive prediction value (PPV) in detection of gait cycles 

has been 100% for controls, 98.9% for Stim ON and 98.4 for Stim OFF group. PPV for 

detection of IC and TC has been 99.6% for controls and 99.6% for Stim ON and 98.4% for 

Stim OFF group. 
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Figure  6-7. A sample of the recorded signal on shanks. A PD patient with and without 

stimulation shows different pattern of walking. 

Figure  6-7 shows a sample of the recorded signal on the shank. As it can be seen here, 

during the Stim ON, the subject moved his shank significantly faster; however both 

signals show noticeable variability in the peak speed of the shank. 

6.4.3 UPDRS motor score 
The UPDRS motor scores and sub-scores for all PD patients during Stim ON and Stim 

OFF periods are presented in Table  2-2 and Table  2-3. Stimulation significantly improved 

(decreased) UPDRS motor scores (p = 0.002). All UPDRS sub-scores were also significantly 

improved (p = 0.042) but not the sub-scores for Speech and Posture (items 18 and 28) 

6.4.4 Gait Parameters 

Gait parameters are reported in Table  6-3 for both states of stimulation and also for 

controls in (mean ± S.D.) format. The results of the statistical hypothesis tests of equiva-

lence of means and also CV of the three groups are also presented. A paired test was 

used when comparing the Stim ON and Stim OFF groups. 
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Values for each group  
in mean±S.D. 

p-value for the equivalence
 of mean of parameters 

p-value for equivalence 
of mean of C.V, 

Gait Parameters 
Stim OFF Stim ON Control ON/OFF 

paired 

ON 
v.s. 

Control

OFF 
v.s. 

Control

ON/OFF 
 paired 

ON 
v.s. 

Control 

OFF 
v.s. 

Control
Gait Cycle Time (s) 1.4± 0.6 1.2±0.2 1.0±0.1 N.S. 0.0312 0.0312 N.S. 0.0211 N.S. 
Stance (%) 65.7± 8.6 61.5±4.5 59.4±1.2 0.0488 N.S. 0.0312 N.S. 0.0173 0.0211 
Double Support (%) 31.4±17.1 23±9.1 18.7±2.5 0.0488 N.S. 0.0312 N.S. N.S. N.S. 
Limp (%) 7.2±8.6 4.2±2.2 1.4±0.5 N.S. 0.0010 0.0006 N.S. N.S. N.S. 
Stride Length (%h) 46.2±19.4 58.6±17.9 77.1±6.5 0.0020 0.0073 0.0004 N.S. N.S. 0.0017 
Stride Velocity (%h/s) 40.5±23.5 53.1±20.2 77.4±9.2 0.0039 0.0022 0.0003 0.0137 N.S. N.S. 
Range of Shank rotation (deg) 45.6±19.5 56.5±18.5 76±5.9 0.0020 0.0022 0.0002 0.0020 0.0113 0.0028 
Range of Thigh rotation (deg) 28±8.5 34.4±8.6 34.4±11.8 0.0098 N.S. N.S. N.S. 0.0257 0.0028 
Range of Knee rotation (deg) 39.4±13.7 45.4±15.8 60.4±7.9 0.0195 0.0113 0.0003 N.S. N.S. 0.0140 
Range of  hand rotation, Pitch axis (°) 8.4±5.1 17.8±12.6 20.2±6.4 N.S. N.S. 0.0013 N.S. N.S. N.S. 
Range of hand rotation, Roll axis (°) 14±13.3 18.2±6.7 22.9±5 N.S. N.S. 0.0028 N.S. N.S. N.S. 
Range of hand rotation, Yaw axis (°) 10.3±5.3 24.6±12.1 47.6±8.4 0.0039 0.0013 0.0002 N.S. 0.0452 N.S. 
Peak Shank angular Velocity (°/s) 225±103 275±110 386±40 0.0020 0.0058 0.0003 0.0020 N.S. 0.0452 

Table  6-3. Measured gait parameters for Patients during Stim ON and OFF state and Con-
trols. p-values more than 0.05 were considered as Not Significant (N.S.). 

6.5 Discussion and conclusion  

6.5.1 Spatio-temporal parameters 
During Stim OFF, PD patients had significantly (for the p-values and also standard 

deviations see Table  6-3) less stride velocity than controls (40.5 %h/s vs. 77.4 %h/s) due 

to significantly shorter stride lengths (46.2 %h vs. 77.1 %h) and significantly longer gait 

cycle times (1.4s vs. 1.0s). Also, duration of stance (65.7% vs. 59.4%) and double support 

(31.4% vs. 18.7%) was significantly longer for PD patients as compared to controls. Limp, 

defined as the difference between initial and terminal double support, was significantly 

larger in PD patients during Stim OFF than controls (7.2% vs. 1.4%). These results are 

consistent with the clinical observation of PD gait which is typically characterized by 

shortened, shuffling steps, reduced speed and difficulty to initiate lower limb movements. 

These abnormalities are mostly due to the basal ganglia dopamine deficiency-related 

symptom akinesia, and to a lesser extend rigidity, which are the main determinants of 

gait impairment in moderate to advanced PD. This is supported by a striking, although 

incomplete, improvement of these symptoms under levodopa replacement therapy ob-

served in a majority of PD patients, and possibly following STN-DBS, although the latter 

has been recently the matter of some debate. 

Indeed, in this study during Stim ON, STN-DBS significantly improved stride velocity 

(53.1%h/s vs. 40.5%h/s), stride length (58.5 %h vs. 46.2 %h), stance (61.5% vs. 65.7%) 

and double support (23.0% vs. 31.4%) but not the gait cycle time which is in agreement 

with previously reported findings (Ferrarin, Lopiano et al. 2002; Krystkowiak, Defebure et 
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al. 2000; Melnick, Radtka et al. 2000). Limp, however was not changed significantly. 

Despite the improvement obtained during Stim ON, all parameters remained significantly 

different from controls except stance and double support; i.e. gait cycle time (1.2s vs. 

1.0s), stride length (58.6 %h vs. 77.1 %h), stride velocity (53.1 %h/s vs. 77.4 %h/s) and 

limp (4.2% vs. 1.4%). These results confirm that STN-DBS provides a substantial and 

measurable improvement of most gait parameters. However, according to our data, this 

benefit appears selective to certain aspects of gait disturbances (stride length and veloc-

ity, stance, double support), since other parameters were found unchanged (gait cycle 

time and limp) between Stim On and Stim OFF situations. These data suggest that these 

unmodified variables may reflect dopamine-independent features of PD gait, well known 

examples of which being freezing episodes while ON, festination and kinesia paradoxica. 

6.5.2 Segment and joint rotations and angular velocities 
On the lower limbs, during Stim OFF, measured parameters showed differences between 

controls and PD patients. Range of knee flexion (39.4 degree vs. 60.4 degree) was signifi-

cantly different due to different range of shank rotation (45.6 degree vs. 76.0 degree) but 

the range of thigh rotation that did not have a significant difference. The reduction of 

range of knee flexion confirms findings of (Ferrarin, Lopiano et al. 2002; Morris, McGinley 

et al. 1999; Zijlmans, Poels et al. 1996) and is consistent with the common clinical 

observation of bent knees in PD patients, which is mostly due to limb rigidity. Also, the 

peak velocity of shank was significantly lower for the PD patients (225 degree/s vs. 386.3 

degree/s). On the upper limbs, PD patients during Stim OFF had a significantly smaller 

range of rotation of the forearms, namely in yaw axis (10.3 degree vs. 47.6 degree), roll 

axis (14.0 degree vs. 22.9 degree) and pitch axis (8.4 degree vs. 20.2 degree). This repre-

sents the neurophysiological counterpart of the clinical feature of reduced arm swing 

which is an early sign of akinesia exhibited by PD patients while walking. 

STN-DBS improved most of these parameters. During Stim ON, PD patients had a signifi-

cantly larger range of knee flexion than controls (45.4 degree vs. 39.4 degree) due to both 

larger thigh and shank rotation. This finding is in agreement with (Ferrarin, Lopiano et 

al. 2002). Peak velocity of the shank was also significantly higher during Stim ON vs. 

Stim OFF (275 degree/s vs. 225). On the upper limbs however, STN-DBS only signifi-

cantly improved range of forearm rotation in yaw axis (24.6 degree vs. 10.3 degree). 

Despite these improvements, PD patients during Stim ON had significantly lower range of 

knee flexion than controls (45.4 degree vs. 60.4 degree) due to lower thigh and shank 

rotation which is also in agreement with (Ferrarin, Lopiano et al. 2002). Moreover, the 

peak shank angular velocity is also lower than controls (275.4 degree/s vs. 386.3 de-
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gree/s). Also range of forearm rotation in yaw axis was significantly lower in PD patients 

during ON state compared to the controls (24.6 degree vs. 47.6 degree). However, range of 

thigh rotation, maximum knee flexion and rotations of forearm in roll and pitch axis was 

not significantly different from controls during Stim ON. 

In summary, based on the data reported in Table IV, it can be inferred from the signifi-

cant differences found for most, but not all, parameters in Stim ON patients compared to 

healthy controls that the magnitude of improvement provided by STN-DBS, however 

significant, is by no mean sufficient to normalize the gait in PD. 

6.5.3 Correlation between gait parameters and UPDRS 

Six different sub-scores defined as u1 to u6 (see Table  6-4) were made based on UPDRS 

III sub-scores (Table III). Estimated gait parameters were then compared to these sub-

scores.  

Sub-score Related symptoms UPDRS III sub-scores 
u1 Bradykinesia 23+24+25+26 
u2 Rigidity 22 
u3 Tremor 20+21 
u4 Gait 29 
u5 Gait and Posture 27+28+29+30 
u6 Posture 28+30 

Table  6-4. UPDRS sub-scores used in calculation of correlation coefficients. 

 
Figure  6-8. Scatter plot comparing UPDRS sub-score u5 and normalized Stride-Length 

As seen from Table  6-5, the range of rotation in the Yaw axis of the forearms always has 

the highest significant correlation with bradykinesia and rigidity sub-scores among the 

three forearm sensors’ axes. Stride-length, stride-velocity and range of shank rotation 

show a very good correlation with gait sub-score. Figure  6-8 shows a scatter plot of u5 

(gait and posture sub-score) and estimated stride-length, where significant and high 
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correlation was found between a typical estimated outcome and UPDRS. The significance 

of this correlation was confirmed by using a boot-strapping method (Efron and Tibshirani 

1993) where a range of (-0.98, -0.72) was obtained for the 95% confidence interval of 

correlation coefficient. 

Parameter u1 u2 u3 u4 u5 u6 
Gait Cycle Time N.S. N.S. N.S. 0.61 0.65 0.65 
Stance 0.48 0.45 N.S. 0.69 0.67 0.64 
Double Support 0.48 0.45 N.S. 0.69 0.67 0.64 
Limp N.S. N.S. N.S. 0.51 0.49 0.50 
Stride Length  -0.68 -0.74 N.S. -0.90 -0.87 -0.80 
Stride Velocity  -0.58 -0.65 N.S. -0.84 -0.83 -0.79 
Shank ROR -0.64 -0.72 N.S. -0.88 -0.84 -0.76 
Thigh ROR -0.59 -0.72 N.S. -0.79 -0.81 -0.78 
Range of Knee flexion N.S. -0.57 N.S. -0.68 -0.68 -0.63 
Forearm, Pitch axis ROR -0.47 N.S. -0.46 N.S. N.S. N.S. 
Forearm, Roll axis ROR -0.51 -0.56 N.S. -0.60 -0.63 -0.55 
Forearm, Yaw axis, ROR -0.71 -0.69 -0.56 N.S. -0.59 -0.52 
Peak Shank angular Velocity -0.56 -0.63 N.S. -0.81 -0.78 -0.72 

Table  6-5. Coefficient of correlation between UPDRS sub-scores and gait parameters. 
 p-values more than 0.05 were considered as Non Significant (N.S.). ROR stands for Range of 

Rotation 

6.5.4 Validations 
Two validation studies have been performed. In the first study the sensitivity of the 

algorithm in detection of gait and temporal parameters has been assessed and in the 

second one the error of the system in comparison to reference systems has been calcu-

lated. 

For the first study using portable video camera, after each session a reviewer counted the 

actual gait cycles in each walking trial. The results were compared to the output of the 

algorithm. Despite the sever abnormalities during Stim OFF period, the algorithm could 

detect gait cycles and related gait events (IC and TC) with very high sensitivity (more than 

96%) and with PPV more than 98%.  

In the second study, we used the data recorded with Physilog® and a reference system 

based on a motion-capture system (Elite) to find the accuracy of the algorithm in detec-

tion of gait temporal and spatial parameters. For this validation, however, we only used 

the gait data from normal subjects and pathological gait. The estimated error (see Table 

 6-1), considering the 200Hz sampling rate of the system, was around two samples for IC 

and 5 samples for TC. The relative error in estimation of the gait cycle time was 2% and 

for Stride-Length and Stride-Velocity were less than 8%. These results have been proved 
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to be accurate enough to show significant differences between Stim ON and Stim OFF 

states of the PD patients. 

6.5.5 Comparison to other ambulatory systems 
Our gyroscope based method has several advantages over other ambulatory systems. 

Unlike some of the foot-switch or other pressure sensitive devices, no special footwear is 

needed which is more comfortable for long term monitoring. Also the available foot-switch 

based devices limit the gait analysis to the temporal parameters (Lackovic, Bilas et al. 

2000; Pataky, Faravel et al. 2000) while our method can provide both temporal and 

spatial parameters. The same thing is true for many of the accelerometry methods as 

they do not provide spatial parameters (Aminian, Rezakhanlou et al. 1999). 

The idea of using gyroscopes to assess gait has been also used in different studies 

(Aminian, Najafi et al. 2002; Tong and Granat 1999). Despite the similarities, our new 

method uses a totally different signal processing approach from (Aminian, Najafi et al. 

2002): While we kept using the same model and sensors (only sensors on the forearms 

has been added), more traditional IIR and FIR filters were used instead of the Wavelet 

approach. The results of the validations show that compared to the previous method, the 

new method has higher precision (lower S.D. of error in Table  6-1) for spatio-temporal 

parameters estimation, higher accuracy (mean in Table  6-1) for temporal event detection, 

while slightly lower accuracy is observed for spatial parameters. In particular, the sys-

tematic error in detection of IC and TC has been reduced by a large margin (31.0% and 

56.1% reduction respectively). As a result, the systematic error in detection of stance is 

now 69.3% smaller. Also, the standard deviation of error in estimation of IC is now 

12.5%, of TC is 8.2% and of stance is 5.7% reduced. Moreover, the standard deviations of 

errors in estimation of stride length and stride velocity are now reduced by 11.5% and 

8.4%, respectively. These improvements have been achieved while the new method 

performed the analysis almost nine times faster than the pervious method. Also, the new 

algorithm specifically addresses the cases that IC or TC can not be correctly detected, in 

order to prevent the propagation of error to the next gait cycles. 

6.5.6 Conclusions 
An ambulatory method capable of quantifying a number of parameters related to the gait 

of PD patients has been introduced. The results can be summarized as follows: 

• Using minimal attachment sites and without any need for per-person calibrations, 

the system could successfully estimate gait parameters with a high degree of ac-

curacy. 
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• The results confirmed previous findings that were obtained using sophisticated 

gait analysis methods restricted to gait labs while preserving the possibility of an 

ambulatory monitoring of the subjects. 

• Together, the results form sections  6.5.1 and  6.5.2 support the method described 

in this study as a sensitive tool to assess subtle changes of gait parameters over 

time, and to distinguish physiological from parkinsonian gait, even in optimally 

STN-DBS treated PD patients where the gait is frequently reported as normal. 

The method presented here, provides a simple and effective way of ambulatory gait 

analysis in PD patients. We therefore believe that by using units like ASUR (see section 

3.4) instead of Physilog, with increased memory capacity and battery stamina, the pro-

posed system can be used in long-term monitoring; to assess gait in PD patients in their 

daily life. 
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Chapter 7  Gait analysis of  free moving patients  

Abstract 
Background—Previously, we have proposed a gait analysis method based on four sensor 

sites on the lower limbs and had evaluated it in a controlled study. Reducing the com-

plexity of the setup helps to make the system more comfortable to use by PD patients 

even in advanced stages of the disease. As such, reducing the number of sensor sites 

needed for gait analysis can improve the ease of use of the system for the patients. 

Objectives—Design, validation and clinical evaluation of a gait analysis method based on 

only two sensor sites on the shanks. The method should be able to estimate all of the gait 

parameters that the previous method provided, without a significant sacrifice of the 

accuracy. The system should be evaluated by comparing the outcomes to a reference 

camera based system and also by using the system to record and analyze the gait of a 

group of free moving PD patients for several hours. 

Method—The angles of the thighs and the shanks were represented using a parametric 

representation based on Fourier series. The parameters that describe the curve of the 

thigh angles were estimated using the parameters describing the shank angles. The thigh 

angle curves were reconstructed from the parametric representation so that the previous 

gait analysis algorithm that used a two-segment model for gait could be used to estimate 

the spatial parameters of gait. The accuracy of system was evaluated by comparing the 

outcomes to those of the previous method and also by comparing to a camera based 

reference system. The method was used to record and analyze gait on group of free 

moving PD patients for several hours and the estimated gait parameters are statistically 

compared to their UPDRS scores. 

Results—We have found that by using only six Fourier series harmonics, thigh angles 

can be reconstructed by our prediction method with good accuracy. The error in  estima-

tion of thigh angles comparing to values directly measured by a gyroscope was -2.0 ± 5.0 

degrees (mean ± S.D.) for the healthy controls, -0.9 ± 5.1 degrees for the PD patients 

during ON state and 0.5 ± 6.3 degrees for the PD patients during OFF state. Comparing to 

the camera based system, the estimated stride-length using the new method had a 
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slightly higher error than the previous method (2.4 ± 9.3 cm vs. -3.4 ± 8.5 cm) while the error 

was better than a system using three gyroscopes (2.4 ± 9.3 cm vs. -2.8 ± 10.3 cm). 

For the free moving PD patients, comparing to the visual observation, our system had a 

sensitivity of 95.0% and a specificity of 99.8% in detection of gait which were close to the 

limit of the accuracy of the visual observation itself. The estimated gait parameters for 

the free moving PD patients showed a significant correlation to the UPDRS gait and 

posture sub-score (e.g. stride-velocity with ρ = -0.46 and p < 0.001).  

Main contributions—A new ambulatory gait analysis system has been proposed that 

needs only one gyroscope on each shank to estimate spatio-temporal parameters of gait 

with good accuracy over a large range of different walking speeds. Using this system, gait 

analysis of PD patients for several hours while they are freely doing daily activities is 

possible. 

7.1 Introduction 
In chapter 6, an ambulatory gait analysis system has been introduced and evaluated. 

That system was based on four sensor sites on the lower limbs (one uni-axial gyroscope 

on each shank and thigh). In this chapter, a new system is presented that can provide all 

of the spatio-temporal parameters of gait calculated by the first system with just two 

sensor sites: one on each shank.  

Reduction of the number of sensor sites from four to two had several advantages: reduc-

tion of the total weight of the system, reduction of the time needed to install the system 

on the body and increase in the reliability of the system (by reducing the number of the 

components of the system). The importance of these improvements becomes more evident 

by considering that we already have three other sensor sites on the body for other pur-

poses (the sites on the trunk and forearms). Moreover, based on the feedbacks from the 

patients we noticed that the sensors fixed on the thighs using elastic bands were not 

exactly the most convenient part of the system for long-term measurements.  

The downside of removing the sensors on the thighs was that we no longer could meas-

ure the thigh angles during gait that were imperative to estimate the spatial parameters 

of the gait using our gait model. Gait is rhythmic movement where flexion-extension of 

lower limbs are limited and controlled both by the neural system and the bio-mechanical 

limitations of the joints. Therefore we can assume a certain level of relationship between 

the movements of thigh and shank. In our approach, we propose a new method that 

enables us to predict movements of the thighs based on the movements of the shanks.  
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We have preformed three studies. In the first study, the prediction coefficients needed by 

the system are calculated and the outcome of the new system is compared to the four 

sensors system in a small population of PD patients and control subjects. In the second 

study, the accuracy of the system is evaluated by comparing it to a camera based system 

and finally in the third study, the system has been used to automatically detect and 

analyze gait in a group of PD patients moving freely for several hours. 

7.2 Methods 

7.2.1 Measurement system and experimental setup 
The data from three different studies have been used in this chapter. The data from the 

controlled study (see chapter 2.3) was used in the first study to train the thigh predictor 

and later, to evaluate the error of the algorithm in calculating the thigh angles. 10 PD 

patients and 10 normal subjects participated in the first study. Subjects carried the first 

prototype of MAS (see section 3.4). This system included four uni-axial gyroscopes on the 

lower limbs (see Figure  7-1a). Previously, (Aminian, Najafi et al. 2002) has proposed a gait 

analysis system based on three sensors sites, one on the right thigh and two on the 

shanks (see Figure  7-1b). The accuracy of these two configurations has been compared to 

our new proposed configuration (Figure  7-1.c). In the first study, subjects followed a 

protocol of typical daily activities and performed several walking trials in different speeds 

(see section 2.3).  

In the second study, accuracy of the new method has been evaluated by using a database 

of pre-recorded gait cycles and comparing to the outcomes of a camera-based reference 

system (Elite) (Andreeva, Ivanova-Smoielnskaya et al. 1985). This database included 229 

recorded normal and pathological gait cycles from a group of 15 subjects. More details 

can be found in the section 6.3.2. The measurement system was similar to the previous 

study: four uni-axial gyroscopes attached on the shanks and thighs and a Physilog® 

data-logger. 

Finally, 12 PD patients participated in the third study. They consisted of a group of seven 

males and four females. Each measurement took up to five hours in ambulatory condi-

tions where patients were moving freely and performed activities they liked. An UPDRS 

test was performed at the beginning of the measurement and then at least once every one 

hour. Patients started with STN ON, which was subsequently turned OFF for three hours 

and ON again for the last hour. An observer followed the patients during the measure-

ment and using a portable computer and a data-logging program made a time tagged log 

of the activities of the patients. These logs were used to assess the sensitivity and speci-
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ficity of automatic gait detection. To find the limits of the accuracy of the logs, for six 

patients two observers prepared two separate logs in parallel that were later compared to 

each other. More details about patients and experiment protocol can be found in section 

2.5, the long-term study. The measurement system used in this study was the second 

prototype of the ASUR system (see section 3.4). Two sensing units were used and each 

one included a single uni-axial gyroscope. 

 
Figure  7-1. The configuration of the sensors. a) Our four sensors gait analysis system in-

cluded two sensors on the shanks and two sensors on the thighs. b) A three sensors system 
based on the configuration suggested by Aminian et al (Aminian, Najafi et al. 2002) c) The 
suggested configuration based on using only two sensors on the shanks, in this chapter. 

Previously in section 6.4.4, we showed that the estimated gait parameters in a controlled 

study had a high correlation to the UPDRS motor scores. In this study we investigated to 

see if in unfavorable conditions (i.e. considering the limitations of the system, gait model 

and having free moving patients) the estimated gait parameters could yet show any 

significant correlation to the UPDRS motor score. 

7.2.2 Gait model 
The biomechanical model of the gait used in this method was the same as to the previous 

algorithm (see section 6.2.4). It was based on a double pendulum model for the swing 

and an inverse double pendulum model for the stance period. Figure  7-3 shows the 

details of this model. The hip was considered as a simple joint, connecting the two 

thighs. Leg had two rigid segments, shank and thigh. Stride-length was estimated by 
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calculating the movement of the body during the swing phase of the gait (d1 + d2) and the 

movement during the stance (d3).  

 
Figure  7-2. Our gait model based on two segments for the lower limbs. 

To solve this model, the length of the segments (L1 and L2) and the range of rotation of 

the shank and thigh segments during swing and stance phases were needed. In our new 

proposed algorithm, as we only had the shank sensors, the range of rotation of the thigh 

during swing and stance phases were unknown; hence the model could not be solved. To 

overcome this problem we used a prediction method to estimate thigh angles based on 

the shank angles and kept using the existing gait model.  

7.2.3 Overview of the method 

Figure  7-3 shows the flowchart of the algorithm. Those parts of the algorithm related to 

the detection of the gait events and estimation of the temporal gait parameters are identi-

cal to the previous method (see section 6.3.3 for the details). The important change in the 

new algorithm was removal of the thigh sensors and instead, prediction of the thigh 

angles based on the shank angles. 

7.2.4 Predicting thigh angles from the shank angles 
The main hypothesis behind the method was the possibility of predicting the thigh angles 

only based on the known shank angles during the gait. The method was based on para-

metric representation of the shank angle curves during each gait cycle and to use a 

transformation matrix, to find the corresponding parameters describing the thigh angle 

curve. 

Figure  7-4a shows a typical angular velocity signal during walking for the case of a PD 

patient. As mentioned earlier in the section 6.2, a gait cycle is defined as the period of the 

time between two consecutive Initial Contacts (IC) of the right foot. In the Figure  7-4a the 

start and end of a gait cycle is marked. By integration of this signal, the shank angle 
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could be found (see Figure  7-4b). The initial value needed for the integration was un-

known and as finding absolute angles was not important for our application, a value of 

zero was used. Next, the curve representing the relative angle of the shanks for each gait 

cycle was separated (see Figure  7-4c). Finally, by infinite repetition of this pattern, a 

period signal was made (see Figure  7-4d). 

Mid-Swing 
Detection

Shank signals

IC and TC 
detection

Building gait 
cycles from 
ICs and TCs

Temporal 
Parameters

Range of 
Rotations of 

joints

Spatial 
Parameters

Integration

Prediction
of thighs’ 

angles

Drift 
Cancellation

 
Figure  7-3.  The flowchart of the gait analysis algorithm. 

This periodic signal, could be parametrically represented using Fourier series (Oppenheim 

and Shafer 1998): calling this N-periodic periodic shank angle signal for the right foot θSR, 

it could be represented by a linear combination of complex exponential signals 

 0 0 0 00 2 ( 1)1, , , ,j n j n j n j N ne e e eω ω ω ω−= "  (6.17) 

as 
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−

=

= ∑  (6.18) 

where j stands for the square root of -1 and ω0 is the discrete-time fundamental frequency: 

ω0 = 2π/N.  
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Figure  7-4. a) A typical pattern of the shank angular velocity during a walking trial of a PD 
patient. The small circles that correspond to two consecutive Initial Contact events, desig-
nate the start and end of a gait cycle b) Integration of the shank angular velocity, produces 
the relative angle of the shank. c) The pattern of the gait angle in the designed gait cycle 
period. Notice the slight tilt of the pattern. d) By repeating the pattern on the two sides, a 

periodic signal is produced. 

The complex coefficients a0, a1, … , aN-1 could be calculated using this formula: 
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As shown in the Figure  7-4c, it was possible that the value of the shank angle (or the 

thigh angle) at the start and end of a gait cycle were not equal. If the curve was repeated 

with no modifications, the difference between these values would result in a discontinuity 

at the beginning and end of each period of period signal of Figure  7-4d.  

The presence of such discontinuities could produce overshoots or undershoots in the 

signal reconstructed using the Fourier harmonics due to the famous Gibbs phenomenon 

(Jerri 1998). To avoid this problem, for each gait cycle, the angle curves were corrected by 
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removing the trend line passing through the start and the end of the curve (see Figure 

 7-4c). To de-trend the signal, the slope of the trend line was calculated: 

 
[ ] [1]

1
SR SR

SR
N

m
N

θ θ−
=

−
 (6.20) 

The offset of the trend line was not important for our application as later we’d only use 

the range of the rotations and not the absolute values of the angles.  

The number of the ak coefficients needed to fully describe the angle patterns depends on 

the N, the number of samples in each gait cycle. By keeping only a fixed and small 

number (n) of the first coefficients and also the slope of the trend line (mSR), an approxima-

tion of the curves could be represented using <a1, a2, … , an, mSR> parameters for the right 

shank. Similar method was used to find the <b1, b2, … , bn, mSL> parametric representation 

of the left shank’s angle curve for each gait cycle. As for our application we only needed 

relative angles and not the absolute angles the mean values (DC component) of the shank 

angles during the gait cycles, a0 and b0 were not needed in our list of the parameters. 

In order to predict thigh angles from shank parameters, we considered the prediction 

matrixes XR and XL that were used to predict thigh parametric representation (<ci, mTR> 

and <di, m> for the right and left thighs, respectively) from the shank parameters. This 

way, for each gait cycle we could estimate the right thigh parameters from the shank 

parameters: 

 1 2 1 2 1 2, , , , , , , , , , , , ,n SR n SL R n TRa a a m b b b m X c c c m× =… … …  (6.21) 

In the same way, the left thigh parameters could be calculated: 

 1 2 1 2 1 2, , , , , , , , , , , , ,n SR n SL L n TLa a a m b b b m X d d d m× =… … …  (6.22) 

 
The prediction matrixes XR and XL were calculated using recorded signals of seven normal 

control subjects and seven PD patients form the controlled study. As a reminder, in this 

study each subject had several walking trials with normal and fast speeds and PD pa-

tients did the test twice, once with STN-DBS turned ON and once with STN-DBS turned 

OFF; thus providing a large variety of the stride lengths and stride velocities.  

To calculate XR and XL matrixes, for each of the m gait cycles of the training data, <ak, mSR> 

and <bk, mSL> parameters describing the shank curves and <ck, mTR> and <dk, mTL> describ-

ing the real thigh curves were calculated. XR and XL were the least squares solution 

(Anderson, Bai et al. 1999) to these over-determined linear systems of equations: 
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XR and XL matrixes were calculated only once using the mentioned training data.  

The curves of thigh angles could be reconstructed using the respective parameters of the 

right and left thigh, for each gait cycle of the length of N samples: 
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To find the suitable number of the Fourier series coefficients, different values of n be-

tween 2 to 12 were used, XR and XL matrixes were calculated using the training data and 

the error in prediction of the thigh angles based on the shank angles were evaluated 

using the data of the remaining three normal and three PD patients. For each case, the 

mean and standard deviation of the error in estimation of the relative thigh angle (θthigh), 

the range of the rotation of thigh during the gait cycle (RORGC), range of rotation of thigh 

during the stance phase (RORST), range of the rotation of the thigh during the swing phase 

(RORSW), stride length and stride Velocity were calculated.  

To evaluate the outcomes, the gait parameters estimated using this method have been 

compared to the outcomes of the previous system based on four gyroscopes. For the 

evaluations, we used the recorded data of the remaining three controls and three PD 

patients that were not used for training (i.e. calculating XR and XL matrixes).  

7.2.5 Comparison to the reference, camera based system (Elite) 
The value of four spatio-temproal parameters of gait provided by the Elite system for 229 

gait cycles has been compared to the results estimated using the new algorithm. The 

error in estimating range of the rotation of the thigh (RORthigh), range of the rotation of the 

knee (RORknee), stride length and Stride velocity in comparison to the reference system has 

been calculated.  

Using the same dataset, the errors of three other methods were also calculated:  

• Our previous method based on four gyroscopes on the lower limbs (see chapter 6). 
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• A method based on two gyroscopes on the shanks and one gyroscope one the 

right thigh with an assumption of equal ranges of thigh movements (Aminian, Na-

jafi et al. 2002). 

• An alternative method using only two gyroscopes on the shanks with a simpler, 

one segment gait model. 

The third method used a compass-like gait model. In this model the lower limbs were 

considered as a rigid segment connected at the hip joint. By finding the range of the 

rotation of the shank during the swing phase of the gait (θshank), the stride length could be 

estimated: 

 2 2cos shankd l θ= −  (6.27) 

Where l stands for the length of the segment (from hip to ankle) and d stands for the 

stride length. This model and our proposed model addressed the same problem, missing 

thigh angles, with two different approaches: in our proposed method we tried to estimate 

the missing parameters based on other available data while the alternative method tried 

to drop the missing parameters by simplifying the gait model. 

7.2.6 Statistical analysis 
Correlation between gait and posture sub-scores of UPDRS motor section (including sub-

scores 27, 28, 29 and 30) and the estimated gait parameters were calculated using 

Spearman’s rank correlation. For each walking period, the mean values of the parameters 

were considered. Each PD patient had several walking periods, hence the simple rank 

correlation between gait parameters and the UPDRS sub-score (ρxy) included both the 

effect of the parameter and the effect of repeated measurements. To solve this problem, 

for each subject the mean value of each gait parameter for the whole measurement period 

was also calculated. The patients were ranked between one to 12 (number of patients) for 

each gait parameter and the correlation between the rank of the patient and the UPDRS 

sub-score (ρyz) and also correlation between rank of the patient and value of the parame-

ters (ρxz) were calculated to finally let us remove the effect of multiple walking periods 

from the correlation between gait parameters and UPDRS sub-score (ρ) using Spearman’s 

partial rank correlation (Blalock 1961): 

 
2 2(1 ) (1 )

xy xz yz

xz yz

ρ ρ ρ
ρ

ρ ρ

− ⋅
=

− + −
 (6.28) 

The average value of the spatio-temporal parameters of gait and ranges of the angles of 

thigh and shank of the PD patients during the period of Stim ON and Stim OFF were 

calculated. Wilcoxon’s non-parametric paired test, the sign-rank test, was used to test if 
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the differences between the estimated parameters in the two groups were statistically 

significant. To calculate the accuracy of the gait detection algorithm, the periods of 

walking recorded by the observer in the time-tagged logs were compared to the periods of 

the walking detected by the algorithm. Sensitivity, specificity, positive predictive value 

(PPV) and the negative predictive value (NPV) were the calculated statistics to assess the 

accuracy. 

7.3  Results 

7.3.1 Estimating thigh angles from shank angles 

Figure  7-5 shows a typical outcome of the algorithm. For three values of n (2, 4 and 6) the 

prediction matrixes XR and XL were calculated using the training data, and have been used 

to reconstruct thigh angle of in gait cycle of a subject out of the training data. The graph 

shows that as the number of Fourier harmonics increased, the similarity of the recon-

structed thigh to the reference data increased. 

 
Figure  7-5. Results of estimating thigh angle from shank angles for a typical case not in-

cluded in the training set.  
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7.3.2 Results of the controlled study 
In total, 1666 gait cycles (including 615 gait cycles of the seven controls, 545 gait cycles 

of seven PD patients in the OFF and 506 gait cycles of the same seven PD patients in the 

ON state) were used to calculate the prediction matrixes XR and XL. To evaluate the effect 

on selection of different values of n, number of Fourier harmonics, 887 remaining gait 

cycles (including 295 gait cycles of three controls, 267 gait cycles of three PD patients in 

OFF and 325 gait cycles of the same three PD patients in ON state) were used to evaluate 

the error in prediction of spatial gait parameters and thigh angles. 

n θthigh  
(degrees) 

RoRGC  
(degrees) 

RoRST 
(degrees) 

RoRSW 
(degrees) 

Stride-
Length (cm) 

Stride 
Velocity 
(cm/s) 

2 1.1 ± 6.6 -3.4 ± 4.3 0.8 ± 7.6 -0.9 ± 7.8 2.7 ± 8.1 3.6 ± 6.4 
3 0.2 ± 6.2 -2.2 ± 3.9 0.4 ± 7.0 -0.8 ± 7.7 3.0 ± 7.4 3.6 ± 6.3 
4 0.0 ± 6.2 -2.2 ± 4.0 0.0 ± 7.1 -0.4 ± 7.9 3.0 ± 7.2 3.6 ± 6.2 
5 -0.6 ± 6.2 -1.3 ± 4.0 -0.5 ± 7.0 0.0 ± 7.7 3.3 ± 7.4 3.8 ± 6.3 
6 -0.7 ± 5.7 -1.3 ± 3.7 -0.2 ± 6.6 -0.2 ± 7.5 2.7 ± 6.9 3.2 ± 6.1 
7 -0.7 ± 5.9 -1.5 ± 4.2 -0.1 ± 6.6 -0.3 ± 7.4 2.1 ± 7.0 2.6 ± 6.2 
8 -0.6 ± 5.9 -1.7 ± 4.3 0.2 ± 6.5 -0.7 ± 7.5 1.6 ± 7.3 2.2 ± 6.5 
9 -0.9 ± 5.9 -1.5 ± 4.2 -0.0 ± 6.5 -0.5 ± 7.5 2.0 ± 7.5 2.6 ± 6.8 

10 -0.7 ± 6.0 -1.4 ± 4.2 -0.1 ± 6.6 -0.4 ± 7.8 2.1 ± 7.7 2.7 ± 6.9 
11 -0.8 ± 6.0 -1.2 ± 4.2 -0.3 ± 6.6 -0.2 ± 7.7 2.1 ± 7.7 2.7 ± 6.8 
12 -0.8 ± 5.9 -1.4 ± 4.4 -0.0 ± 6.6 -0.5 ± 7.7 1.7 ± 7.6 2.3 ± 6.8 

Table  7-1. Error of estimation of thigh angles and spatial parameters (values in Mean in ± 
S.D. format) in the two sensors system in comparison to the four sensors system for differ-

ent values of the number of Fourier harmonics (n).  

Table  7-1 shows the mean and standard deviation of the error (difference between the two 

systems) for different values of n. The results were rather close.  The value of n = 6 had 

one of the lowest error figures for all parameters. For the rest of the study, we have used 

the prediction matrixes XR and XL calculated for the case n = 6. 

Figure  7-6 shows a comparison of the estimated stride length of our previous method 

based on four gyroscopes and the new algorithm based on two gyroscopes. Six Fourier 

coefficients were used in this case to predict thigh angles. The results show a very good 

agreement between the results of the two methods over a wide range of stride lengths. 

The estimated error in predicting the thigh angle (θthigh) for the three control subjects not 

included in the training set was -2.0 ± 5.0 degrees (mean ± S.D.) and for the three PD 

patients not included in the training set during ON and OFF state were -0.9 ± 5.1 and 0.5 ± 

6.3, respectively. Table  7-2 shows the error (estimation – reference) and the value of the 

reference for the estimated ranges of thigh angles and spatial parameters for the case n = 

6, for each of the groups of controls, PD patients with Stim ON and OFF.  
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Figure  7-6. Comparison between the Stride-Length estimated using the four sensors system 
vs. the system with two sensors and thigh prediction method. Six Fourier harmonics (n = 6) 

was used to predict the thigh angles from shank angles. 

Group  RoRGC  
(degrees) 

RoRST 
(degrees) 

RoRSW 
(degrees) 

Stride-
Length (cm) 

Stride 
Velocity 
(cm/s) 

Error -1.7 ± 3.6 -1.3 ± 4.9 1.4 ± 6.3 7.6 ± 5.6 7.9 ± 5.7 Control Reference 46.7 ± 5.3 -38.4 ± 4.8 38.2 ± 5.3 132.4 ± 11.6 135.2 ± 22.5
Error -1.1 ± 3.3 0.1 ± 6.5 -0.7 ± 7.1 1.6 ± 5.4 1.6 ± 4.8 Stim-ON Reference 30.5 ± 8.0 -21.6 ± 6.6 21.5 ± 6.9 78.6 ± 33.7 70.2 ± 40.1 
Error -1.1 ± 4.2 0.6 ± 8.1 -1.3 ± 8.9 -1.3 ± 6.8 -0.0 ± 4.6 Stim-OFF Reference 27.3 ± 7.2 -19.3 ± 5.8 19.2 ± 5.7 75.8 ± 28.3 59.8 ± 38.2 

Table  7-2. The error in estimation of thigh angles and spatial parameters for the three 
groups of controls, PD patients with Stim ON and OFF. The four sensors system was used as 

the reference. (values in Mean in ± S.D. format)  

7.3.3 Comparison to the reference, camera based system (Elite) 
The error of the four gait analysis methods in calculating four different gait parameters 

comparing to the Elite system are presented in Table  7-3. The new algorithm’s errors are 

slightly higher than the method based on four sensors and slightly better than the 

method based on three sensors. The results also shows that the method of using two 

sensors and a simplified gait model (one segments for the lower limbs) highly under-

estimated the stride-length and stride velocity and was very different in comparison to all 

other methods. 
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Parameter Four sensor 
 method 

Three sensors 
method New algorithm 

Two sensors 
method with single 

segment 
gait model 

RoRthigh (degrees) -3.1 ± 4.4 -3.4 ± 6.2 -2.1 ± 5.3 N.A. 
RoRknee (degrees) 3.8 ± 9.6 N.A. -5.5 ± 11.2 N.A. 
Stride length (cm) -3.4 ± 8.5 -2.8 ± 10.3 2.4 ± 9.3 -27.5 ± 8.6 

Stride velocity (cm/s) -2.6 ± 7.6 -2.1 ± 9.1 2.7 ± 8.3 -23.9 ± 7.9 
Table  7-3. Error of four different algorithms compared to the reference system (values in 
Mean in ± S.D. format). Where an algorithm could not provide a parameters, the value was 

marked as Not Available (N.A.). 

7.3.4 Gait analysis of free moving patients 
The walking periods of the PD patients were automatically detected using the algorithm 

presented in section 6.3.3 and were analyzed using the new algorithm. Table  7-4 shows 

the results of the assessment of the accuracy of the gait detection algorithm for free 

moving PD patients.  

Parameter Algorithm vs. Observer Observer vs. Observer 
Sensitivity  95.3% 93.9% 
Specificity  99.8% 99.8% 
Positive Predictive Value (PPV) 95.9% 95.7% 
Negative Predictive Value (NPV) 99.4% 99.7% 
Prevalence 5.6% 5.6% 

Table  7-4. Accuracy of the gait detection algorithm for the case of free moving PD patients 
in comparison to visual observation. 

As the patients were free to move on will, the number of walking periods, the walking 

distance and their speeds varied. Some of the walking periods were short and inside the 

room and some were not in a straight line. For each detected walking period, the first and 

the last gait cycles were discarded and the average and stand deviation of the gait pa-

rameters for the remaining gait cycles were calculated.  

Figure  7-7 shows a typical outcome of the algorithm. The average stride length of each 

walking period of a PD patient measured during more than four hours of the recordings 

is presented. The gait and posture sub-score of the UPDRS is also displayed. 

Table  7-5 shows the summary of the results obtained in gait analysis of free moving PD 

patients. The results show that for some of the parameters estimated by the system, 

significant differences between Stim ON and Stim OFF could be found. During periods of 

walking, PD patients with Stim ON had significantly higher peak shank angular velocity 

(238.4 vs. 198.4 degrees/s), higher stride velocity (77.1 vs. 58.1 cm/s), shorter stance 

periods (62.4% vs. 67.5%) and shorter double support (24.9% vs. 34.9%) which are in 

agreement with the findings of gait analysis in controlled conditions in our previous 

study (chapter 6) and those of the other groups (Ferrarin, Lopiano et al. 2002; Krystko-
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wiak, Defebure et al. 2000; Melnick, Radtka et al. 2000; Morris, McGinley et al. 1999; 

Zijlmans, Poels et al. 1996). Two other parameters i.e. limp and gait cycle time were not 

significantly different between Stim ON and OFF conditions (similar to our previous 

findings in chapter 6). However, although the remaining parameters i.e. range of rotation 

of thigh and shank, range of flexion-extension of knee and stride length showed differences 

between Stim ON and OFF in the same direction as previous findings, the differences 

were not statistically significant.  
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Figure  7-7. Stride velocity of a PD patient and his UPDRS sub-score of gait and posture. The 
circles on the graphs show when subject was walking and when UPDRS tests were performed. 

The results of the study of the correlation between different gait parameters and the 

UPDRS gait and posture sub-score are presented in Table  7-5. All of spatial parameters 

and the angles showed significant correlation to the UPDRS gait and posture sub-score, 

after eliminating the effect of the repeated measurements. The temporal parameters 

however, unlike previous study in the controlled conditions did not show significant 

correlation to the UPDRS sub-score. 



 Chapter 7 - Gait analysis of free moving patients 

120 

The stride-to-stride variability of all of the parameters were also calculated but in every 

case, it was neither significantly different between Stim ON and OFF conditions nor had a 

significant correlation to the UPDRS sub-score. 

 Stim ON Stim OFF Sign-rank Rank Correlation 
   p-value ρ p-value 
Peak shank angular velocity (º/s) 238.4 ± 53.9 198.4 ± 61.6 0.04 -0.46 < 0.001 
Stride length (cm) 87.2 ± 24.7 77.0 ± 36.1 0.65 (N.S.) -0.34 0.003 
Stride velocity (cm/s) 77.1 ± 23.9 58.1 ± 28.9 0.02 -0.46 < 0.001 
Range of rotation of shank (°) 49.4 ± 11.3 43.1 ± 18.2 0.30 (N.S.) -0.31 0.009 
Range of rotation of thigh (°) 30.3 ± 6.2 26.5 ± 9.0 0.13 (N.S.) -0.35 0.002 
Range of flexion-extension of knee (°) 40.0 ± 4.9 35.8 ± 9.7 0.20 (N.S.) -0.34 0.003 
Stance (%) 62.4 ± 4.1 67.5 ± 7.0  0.004  -0.17 0.15 (N.S.)
Double Support (%) 24.9 ± 8.1 34.9 ± 14.1 0.004 0.17 0.15 (N.S.)
Limp (%) 3.3 ± 1.4 7.3 ± 7.9 0.16 (N.S.) 0.16 0.16 (N.S.)
Gait cycle time (s) 1.16 ± 0.18 1.38 ± 0.32 0.06 (N.S.) 0.03 0.80 (N.S.)

Table  7-5. Summary of the results gait analysis of free moving PD patients. The values for 
the parameters are shown in Mean in ± S.D. format. Where the p-value was more than 0.05, it 

was marked as N.S.  

7.4 Discussion and conclusion 

7.4.1 Estimation of thigh angles from shank angles 

The results presented in Table  7-1 show that using only a few Fourier harmonics, thigh 

angle can be estimated using shank angles with acceptable accuracy. As the number of 

the harmonics increases from two to six, the accuracy also increases. However, by in-

creasing the number of harmonics more and more, the accuracy remains constant or 

even starts to decrease. This could be explained by the fact that each of the XR and XL 

matrixes for n harmonics, included 2×2n+2 rows and 2×n+1 columns. Moreover, the 

harmonics are complex numbers so each element of the matrixes corresponded to two 

real valued coefficients. So in total, for each prediction matrix the number of needed 

coefficients N(n) was: 

 2( ) (2 2 2) (2 1) 8 8 2N n n n n n= × + × × + = + +  (6.29) 

For example, for each of the XR and XL matrixes for the cases n = 2, 6 and 12 the number of 

real valued coefficients would be 50, 338 and 1250, respectively. The number of gait 

cycles used to calculate XR and XL matrixes were constant and relatively small (1666 gait 

cycles). By increasing the number of harmonics, the accuracy in estimation of the XR and 

XL elements would eventually reduce (because of lack of enough training data) and at a 

certain value of n, would out weight any benefits of using a model with higher number of 

harmonics. 
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7.4.2 Comparison to the reference, camera based system (Elite) 
The results of evaluation of accuracy of four different approaches to calculate spatial 

parameters of gait have been presented in Table  7-3. The system with four sensors on the 

lower limbs had the best accuracy in comparison to the reference system. The system 

based on three sensors reduced one sensor (the left thigh’s sensors) by assuming that the 

difference between the movement of the right and left thigh during the gait is small. The 

disadvantage of this approach was that the system could no longer estimate the knee 

angle of the left side and the error of the system in estimation of the stride-length and 

stride-velocity was slightly increased. The simplified model using compass-like gait model 

with two gyroscopes on shanks had the disadvantage of losing two gait parameters, range 

of rotation of thighs and flexion-extension of the knees and also showing the highest 

average value of the error in estimation of the stride length (see the rightmost column of 

the Table  7-3).  

Our new algorithm was based on the two gyroscopes and predicting thigh angles. Looking 

at the Table  7-3 shows that estimation of thigh angles based on the shank angles could 

produce more accurate results than the system with three sensors. It means that as-

sumption of small differences between the left and right thigh angles during the gait and 

taking them equal was weaker than the assumption of the predictability of thigh angles 

based on the shank angles. By better estimating the thigh angles, the error in estimation 

of stride-length and stride-velocity were also decreased in our method. 

Moreover, the results show that estimated value for the stride-length and stride-velocity 

by the reference system lies almost in the middle of the estimated values using the new 

algorithm and the four sensors algorithm (similar standard deviation of the errors; 

systematic errors with similar magnitude but different signs). It means that while one 

method under-estimates the stride length, the other system over estimates it by almost 

the same magnitude, practically making them of the same value for clinical practice. 

Finally, by comparing the new method to the four sensors method in Figure  7-6, we can 

see that over a very large range of stride-lengths (from 20cm to 160cm, i.e. eight times 

difference between minimum and maximum) there was a highly linear relationship 

between the outcomes of the two methods. 

7.4.3 Gait analysis of free moving PD patients 
The new system could be used to record movements of the lower limbs in PD patients for 

several hours. Periods of gait could be detected automatically. The results presented in 

Table  7-4 show that comparing to the visual observation, the sensitivity of gait detection 
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was high (95.0%) and specificity was very good (99.8%). In the previous chapter and in 

the controlled study, we had reported that the sensitivity of the system to detect the gait 

was 99.3% during Stim ON and 96.4% during Stime OFF comparing to video (see section 

6.4.2).  

For the case of the free moving PD patients, by comparing the logs recorded by two 

independent observers following the patients at the same time and taking one of them as 

the reference, results listed in Table  7-4 show that visual observation itself could not 

have a much higher accuracy. The problem could be mostly in deciding between very 

short periods of walking and active standing periods where subject may take a few steps 

while subjectively, observers would not consider that as walking.  

Our previous study in the controlled situation showed that almost all of the gait parame-

ters had a significant correlation to the UPDRS gait and posture sub-score (see section 

6.5.3). The present study shows that the correlation between many gait parameters and 

UPDRS gait and posture sub-score was present though it was weaker than the controlled 

situation. Although the system could not differentiate between possible types of walking 

during long-term monitoring of free moving subjects (walking straight, walking indoor or 

outdoor, performing cognitive tasks while walking, etc.), yet gait parameters estimated in 

these unfavorable conditions showed significant correlation to the clinical score. More-

over, several parameters (Peak shank angular velocity, stride-length, periods of stance 

and double support) showed significant difference between Stim ON and Stim OFF 

conditions. These findings strongly suggest that our ambulatory monitoring system can 

provide clinically relevant objective evaluation of gait in PD patients even without any set 

protocol of activities and in conditions similar to the daily life. 

7.4.4 Conclusions 
Our ambulatory method to detect and analyze gait in PD patients has been evolved to a 

much simpler system, with half of the sensors sites of the previous method without 

significant increase of the error in estimation of the gait parameters. The results can be 

summarized as follows: 

• With only one uni-axial gyroscope on each shank, it was possible to estimate all of 

the spatio-temporal parameters of gait in normal and PD patients that were previ-

ously obtained with a system with four sensors. 

• The proposed method has good accuracy in estimation of the gait parameters 

comparing to the previous method or to a camera based reference system. 
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• By training the prediction coefficients used by the algorithm on a certain popula-

tion and evaluating the system on different populations, we suggest that the 

method is robust enough to be used without any per-subject calibrations or train-

ing. 

• The accuracy of automatic detection of gait in free moving PD patients reached 

almost to accuracy of the subjective visual observations. 

• Gait analysis of free moving PD patients without restricting the type of the activi-

ties and without any set protocol of known tasks, can provide results that show 

significant correlation to a widely used clinical score. 
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Chapter 8  Detection of  the periods of  ON and OFF  

Abstract 
Background—Currently, no objective ambulatory method exists to classify ON and OFF 

states of the PD patients with good accuracy. While detection of ON and OFF by itself is 

of high clinical interest, reporting objective parameters associated with different symp-

toms of PD along side the ON/OFF state of the patient, can help us to put the reported 

parameters in to context and provides a more elaborated view of the state of PD patient in 

long term monitoring. 

Objectives—Design and evaluation of a statistical classifier to detect periods of ON and 

OFF states based on the kinematic parameters provided by previous algorithms. 

Method—15 different estimated parameters with addition of UPDRS motor score during 

ON period of the 13 PD patients monitored for several hours were used to train and 

evaluate a statistical classifier. All possible combinations of the input parameters were 

evaluated using a method based on k-fold cross validation approach to select the best 

group of the parameters to have a good accuracy in the classifier. 

Results—Many combinations of the input parameters (more than 70 cases) could result 

in a good classification (i.e. good sensitivity and specificity) of ON and OFF states.  The 

classifiers also could show the rapid changes in the performance of the patients occur-

ring immediately after switching the state of the STN-DBS stimulator.  The results show 

that it was possible to detect ON and OFF periods with a resolution of 10 minutes in 

ambulatory conditions. Moreover, a good detection and accuracy was possible using a 

relatively simple statistical classification method. 

Main contributions—An objective approach has been proposed to classify ON and OFF 

states of the PD patients during long-term recordings using kinematic sensors.  

8.1 Introduction 
Fluctuations in the motor performance of the PD patients are a common and adverse 

problem of chronic levodopa therapy (Nutt, Carter et al. 1995). With progression of time, 

the therapeutic duration of each levodopa dose shortens resulting in reappearance of PD 

signs after a few hours (OFF state). Many patients, when levodopa is active (ON periods) 
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experience periods of involuntary abnormal movements, known as dyskinesia or levodopa 

induced dyskinesia (LID) (Nutt 1990). The diurnal pattern of changing between ON and 

OFF states has to be known in order to adjust the time and the dose of each levodopa 

intake during the day (Marsden, Parkes et al. 1981; Petit, Allain et al. 1994). Automatic 

detection of periods of ON and OFF during normal daily activities of the PD patients can 

provide an objective and potentially more reliable way of finding these patterns than 

relying on the diaries kept by the patients themselves. 

In the previous chapters we have presented different methods to quantify several impor-

tant aspects of motor functions in PD patients. We have shown that both in the tests 

inside the laboratory and also for the case of the free moving patients, many of the 

estimated parameters related to the motor function, such as tremor, gait, bradykinesia 

and body posture, show significant differences between the ON an OFF states. 

However, finding significant differences in the objective parameters between ON and OFF 

state does not automatically translate into the possibility of finding ON and OFF periods 

accurately. A classification method is needed to be designed, applied and tested on the 

long-term recorded data from the free moving PD patients. 

Recently, using accelerometry (Hoff, Van Der Meer et al. 2004) have used the outcomes of 

several methods to assess bradykinesia, hyperkinesias, tremor, dyskinesia and body 

posture (Dunnewold, Hoff et al. 1998; Dunnewold, Jacobi et al. 1997; Hoff, vander Plas et 

al. 2001; Hoff, Wagemans et al. 2001) to detect ON and OFF periods of the patients at 

home. However, they reported that the methods used in their study, yet are not able to 

perform the detection of these periods with high accuracy. To our knowledge, no other 

system exists that can successfully detect ON and OFF periods in the PD patients in 

ambulatory conditions.   

In this chapter, based on a combination of the parameters obtained using the algorithms 

presented so far, we propose a statistical method to classify ON and OFF periods with a 

resolution down to 10 minutes, in a group of free moving PD patients. 

8.2 Methods 

8.2.1 Measurement system and experiment setup 
13 PD patients participated in this study. They consisted of a group of seven males and 

six females. Each measurement took three to six hours (in total more than 59 hours for 

all patients) during ambulatory conditions where patients were free to move and perform 

activities they liked. An UPDRS test was performed at the beginning of the measurement 
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and then at least after every one hour. More details about patients and experiment 

protocol can be found in section 2.5, the long-term study. 
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Figure  8-1. An example of the measurement protocol. Measurement started and 9:00am and 
ended at 14:00. The curve shows the UPDRS motor score of the subjects and circles shows 

when each UPDRS test has been performed. Periods of ON and OFF has been marked. 

Figure  8-1 shows the details of the measurement protocol. Patients started the measure-

ment while the stimulator was on. After a while (usually less than one hour) the stimula-

tor was turned off. Until this time, patients were in the ON state. For a period of three 

hours the stimulator remained off, before it was turned on again. The period of time 

between one hour after turning off the stimulator until the time it was turned on again 

was considered as the OFF period (Vingerhoets, Villemure et al. 2002). Measurement 

continued for at least one more hour while the stimulator was on. Patients were consid-

ered to be in the ON state from 30 minutes after turning the stimulator on till the end of 

the measurement (Vingerhoets, Villemure et al. 2002).  

The measurement system included five ASUR units (see Figure  8-2). One unit was at-

tached on the trunk, two on the forearms and two on the shanks. In total, seven gyro-

scopes and two accelerometers were used in this configuration. The data was recorded 

with a sampling rate of 200Hz.  More details about the measurement system is presented 

in the sections 3.4 and 3.5. 
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Figure  8-2. a) The attachment of the ASUR units on the body. The sensitive axes of the 

sensors are shown. b)  An ASUR unit. All units have the same physical size and a logo on top 
of them designates the attachment site. 

8.2.2 Ambulatory monitoring of motor function 
In the previous chapters, we have presented different algorithms to detect and/or analyze 

tremor (chapter 4), bradykinesia (chapter 4), posture transitions (chapter 5), body pos-

ture (chapter 5) and gait (chapters 6 and 7). Each method provided several parameters. 

Most of them were significantly different between periods of ON and OFF states and 

moreover, many of them had significant correlation to the UPDRS clinical score (see 

respective chapters for more details).  

Number Parameter name Description Related symptoms 
1 Mh Movement of the hands Bradykinesia 
2 Rh Range of the rotation of the hands Bradykinesia 
3 Ah Activity of the hands Bradykinesia, Akinesia 
4 ωtr-h Amplitude of the tremor of the hands Tremor 
5 ωtr-l Amplitude of the tremor of the legs Tremor 
6 Max{ωshank} Peak angular velocity of the shanks during swing Gait 
7 Stance Period of the stance phase Gait 
8 Stride Stride length Gait 
9 Speed Stride velocity Gait 
10 RoR{θshank} Range of the rotation of the shanks Gait 
11 RFX{θknee} Range of the flexion-extension of the knees Gait 
12 DS Period of double support Gait 
13 Posture Body posture Posture 
14 TD Transition time Posture 
15 ˆMin{ }trunka  Minimum acceleration of the trunk during transitions Posture 
16 UPDRS-ON The UPDRS motor score during ON state The clinical score 

Table  8-1. List of the parameters used in this study.  
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Table  8-1 shows the list of parameters used in this study, derived from our previous 

methods. The methods of estimation of parameters 1 to 15 have been already discussed 

in their respective chapters. We also used a 16th parameter, the UPDRS motor score 

during ON period: a patient with an advanced PD during ON may perform much worse 

than another patient in early stages of PD even during OFF state. Including the UPDRS-

ON parameter may help performing a better classification of ON and OFF periods, both 

for the early and advanced PD patients. 

Among the motor related parameters listed in Table  8-1, the only new parameter is 

number 13, Posture: the output of the posture analysis algorithm is series of time period 

designating each of the four basic body postures, i.e. Sitting, Standing, Walking and 

Lying. The Posture(t) parameter is simply a signal that combines the output of the posture 

analysis program in a time series: 

 

1 Walking
0.5 Standing

( )
0.5 Sitting
1 Lying

if Subject is at timet
if Subject is at timet

Posutre t
if Subject is at timet

if Subject is at timet

⎧
⎪
⎪= ⎨−⎪
⎪−⎩

 (8.1) 

 
Figure  8-3. Part of the estimated Posture(t) signal for a patient. 

Figure  8-3 shows a segment of the Posture(t) signal estimated for a PD patient. In this 

segment, he started from standing position, walked for round 40 seconds with some 

short stops in between, and round time t = 880 sit on a chair. After nearly 25 seconds he 

walked toward a bed and laid down on it.  
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The differences in anatomy of the patients, we normally expect a taller person to have a 

longer stride length than a shorter person. To compare two of the gait parameters, stride 

length and stride velocity, we normalized these two parameters based on each subject’s 

leg length (Hof 1996; Hof and Zijlstra 1997).   

8.2.3 Detecting ON and OFF states 
The general idea of ON/OFF detection algorithm was to use a statistical classifier to 

estimate a probability pOFF for each period of fixed sized time windows, using the average 

value of the estimated parameters from different analysis algorithms during that window 

(see Figure  8-4). 

The method to estimate the parameters related to bradykinesia (Mh, Rh and Ah) was al-

ready based on fixed size time windows. The tremor detection algorithm could provide 

outcomes with a resolution of three seconds. The average value of the outcomes of this 

algorithm (ωtr-h and ωtr-l) during each time windows was used. The algorithms to detect 

gait and to classify body postures, however, only provided their outcomes (gait parame-

ters, parameters related to the posture transitions and Posture(t) signal) only when the 

respective activities were detected. Therefore, it was necessary to interpolate the values of 

these parameters before the averaging step. 
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Figure  8-4. Flowchart of ON/OFF detection algorithm. 
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We used a window size of 10 minutes for this algorithm. Based on the study presented in 

the chapter 4, a window size of the 10 minutes was the smallest size that the bradykine-

sia and tremor related parameters could show a significant correlation to the UPDRS 

scores of the patients. 

We used logistic regression (Hosmer and Lemeshow 1989) to classify each time window 

based on a subset S of the parameters presented in Table  8-1. (For a brief description of 

the logistic regression method see section 4.2.3.3). The regression function took the 

parameters estimated for a time window as the input and calculated a pOFF probability 

showing how probable it was for that window to belong to an OFF period. In the output 

we marked the windows with a pOFF of more than 0.5 as OFF and those with a value less 

of than 0.5 as ON. 

As the number of the parameters was relatively small, we used a brute-force approach to 

evaluate all possible combinations of the parameters to find the best model for the 

classifier. UPDRS-ON (parameter number 16), however, was included in all models. With 

the remaining 15 parameters, the number of possible subsets Si were 32767 (i.e. 215 -1). 

To compare classifiers based on different possible subsets Si of the input parameters, we 

selected geometric mean of the sensitivity and specificity as the goal function to maximize 

the both statistics at the same time: 

 ( )G S Sensitivity Specificity= ×  (1.2) 

To train and evaluate the classifier for each model, k-fold cross-validation method (Hastie, 

Tibshirani et al. 2001; Wasserman 2004) was used: We used k = 13 (i.e. number of the 

patients). For each model Si, we used the data of the k-1 patients to fit the model using 

logistic regression, then estimated G(Si) using the remaining PD patient’s data. This 

process was repeated for each of the k PD patients and the average of the G(Si) was calcu-

lated. This average indicated the quality of the selected model. 

8.2.4 Statistical analysis 

The average values of each of the input parameters (see Table  8-1) for each patient during 

the selected ON and OFF periods were calculated. Wilcoxon’s non-parametric paired test 

(sign-rank test) was used to test if the median for the parameters were equal during the 

two states or not. 
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8.3 Results 

8.3.1 Comparing ON and OFF states 
The average value of all of the 15 parameters in the 13 PD patients participated in this 

study during ON and OFF states is presented in Table  8-2.  

Number Parameter name ON state OFF state p-value 
1 Mh (º/s) 51.1 ± 47.7 44.93 ± 37.98 0.233 
2 Rh (°) 4.1 ± 0.9 3.29 ± 0.87 0.009 
3 Ah (%) 33.4 ± 24.4 22.8 ± 12.9 0.110 
4 ωtr-h (º/s) 2.26 ± 4.56 16.15 ± 23.91 < 0.001 
5 ωtr-l (º/s) 0.00 ± 0.00 0.78 ± 1.64 < 0.001 
6 Max{ωshank} (º/s) 205.2 ± 57.5 178.81 ± 61.53 0.083 
7 Stance (%) 64.6 ± 4.5 67.85 ± 5.62 0.005 
8 Stride (m) 0.79 ± 0.29 0.66 ± 0.34 0.151 
9 Speed (m/s) 0.65 ± 0.25 0.52 ± 0.27 0.019 
10 RoR{θshank} (°) 44.6 ± 15.3 37.11 ± 17.89 0.064 
11 RFX{θknee} (°) 36.9 ± 8.7 32.30 ± 8.91 0.067 
12 DS (%) 29.2 ± 9.0 35.71 ± 11.23 0.005 
13 Posture 0.56 ± 0.36 0.46 ± 0.24 0.092 
14 TD (s) 4.30 ± 0.95 4.48 ± 0.88 0.910 
15 ˆMin{ }trunka (m/s2) -0.04 ± 0.06 -0.05 ± 0.05 0.677 

Table  8-2. The mean and standard deviation of the estimated parameters for the periods of 
ON and OFF. The p-value is the results of the Wicoxon’s non-parametric paired test. p-values 

greater than 0.05 can be considered as non-significant.  

The UPDRS motor score of the patients was 23.7 ± 10.7 during the ON state and 54.0 ± 

14.2 during the OFF state (p < 0.001). Among the measured parameters, range of rota-

tion of the hands (Rh), the amplitude of the tremor in hands and legs (ωtr-h and ωtr-l), 

periods of stance and double support and stride velocity showed significant difference 

between ON and OFF states. Some of the other parameters including activity of the 

hands (Ah), peak shank angular velocity (Max{ωshank}), range of the rotation of the shanks 

and the range of the flexion-extension of the knees (RoR{θshank} and RFX{θknee}) and body 

posture (Posture(t)) showed a marked difference between the two states (p-value near 0.1). 

8.3.2 Model Selection and Classification results 
Using 10 minutes windows, in total 127 windows for the OFF period and 81 windows for 

the ON periods were selected. With this data set, all possible combinations for the 15 

parameters used in this study were used with a k-fold cross validation method (k = 13, the 

number of PD patients) to train and evaluate the statistical classifier. Figure  8-5 shows 

the histogram of the goal function for all possible combinations of the input parameters.  
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Figure  8-5. The histogram of the value of the goal function for all possible models. 

Table  8-3 shows the results for some of the possible models. All models including only a 

single parameter had poor sensitivity and specificity (G(S) < 42.4). The best model had G(S) 

of 77.0 and more than 70 different models had a G(S) better than 75. The full model, i.e. 

the model including all parameters also didn’t perform very well. 

Rank Parameters in the model G(S) Sensitivity Specificity 
1 1,  2,  3,  4,  10,  11,  13,  15,  16  77.0 90.1% 76.3% 
2 1,  2,  3,  4,  6,  10,  11,  15,  16 76.9 89.6% 75.8% 
3 1,  2,  3,  4,  10,  11,  15,  16 76.9 89.5% 76.3% 
4 1,  2,  3,  4,  8,  9,  11,  15,  16 76.9 91.6% 74.4% 
5 1,  2,  3,  4,  8,  9,  11,  13,  15,  16   76.9 91.6% 73.9% 
6 1,  2,  3,  4,  9,  11,  15,  16 76.9 90.9% 73.5% 
5147 full model (all parameters 1 to 15) 62.2 85.5% 56.6% 

Table  8-3. Some of the evaluated models used to detect OFF state. Ranks of the models in 
comparison to all other possible models, the scores of the models and their sensitivity and 

specificity in detection of OFF state are presented. 

Using the best model a typical outcome of the algorithm in estimating pOFF is presented in 

the Figure  8-6. 
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Figure  8-6. A typical output of the program. a) Estimated pOFF b) The UDPDR score of the 

subject. The periods of ON and OFF are marked on the figure. 

8.4 Discussion and conclusion 

8.4.1 Selection of the classifier's input parameter  

The histogram in Figure  8-5 shows that in this study, model selection was not really a 

very critical issue. Many of the possible models could separate ON and OFF states with 

similar accuracy. This encourages us to turn our attention also to the other considera-

tions in model selection, rather than only focusing on the power of the classifier.   

For example one can select models that included relatively simpler to calculate parame-

ters or parameters that we can estimate with higher accuracy that characterized different 

aspect of PD abnormalities. This way, the model ranked two in Table  8-3 could be pre-

ferred to the model ranked one, as it uses Max{ωshank} (Parameter number 6, the peak 

shank angular velocity during gait) which is an accurate and relatively easy to estimate 

(as gyroscopes directly measure angular velocity) instead of Posture(t) parameter (parame-

ter number 13) which is much more complex and less accurate to estimate parameter. 

We observed a significant improvement of the accuracy of the outcomes, by including 

UPDRS motor score during ON state as a parameter in all models. For example in the 



 Chapter 8 - Detection of the periods of ON and OFF  

135 

case of the best model in Table  8-3, by removing parameter number 16 (UPDRS-ON 

score) the specificity of OFF detection would fall from 76.3% to 56.5%. This could be 

explained by the fact that the PD patients in the advanced staged of the disease, even 

during ON state could yet show some parkinsonian signs (for example, high bradykine-

sia) while the patients in the earlier stages of the disease would only show similar signs 

only during the OFF state. UPDRS-ON parameter in our models acted as a case-

dependant, bias value to reduce the effect of inclusion PD patients in different stages of 

the disease in our input data.  

As stated in the method section, we didn’t use the periods of the first hour after turning 

the stimulator off and 30 minutes after turning it on in neither the training nor the 

evaluation of the classifier. It is interesting to see how the classifier performs during 

these periods.  

p O
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Figure  8-7. a) The average estimated valued of pOFF during the first hour after turning STN-
DBS off. b) The average estimated valued of pON during the first half an hour after turning 

STN-DBS on. 

Figure  8-7 show the average value of the pOFF and pON among our 13 PD patients during 

these periods. The very quick effect of changing the state of the stimulation (Temperli, 

Ghika et al. 2003) is visible in these graphs. By turning the stimulator OFF, in the first 

10 minutes time window pOFF was on average more than 0.75. The average value of pON 10 

minutes after turning the stimulator ON, however, was less than 0.5 and only in second 

time window which is 20 minutes after turning the stimulator ON, reached 0.5. Most of 

the patients had tremor during the OFF state and no tremor during the ON state (see 

Table  2-5 and Table  2-6). The classifier was trained using these periods of ON and OFF 
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and detection of tremor played an important role in separating these periods. Changing 

the state of the stimulation very quickly affects tremor (Temperli, Ghika et al. 2003). 

When patients were during ON state with no tremor, by turning off the stimulator within 

a few minutes tremor re-emerged and was picked up by the classifier as an important 

sign of OFF state. At the end of the period of OFF where possibly the patients had tremor, 

however, by turning the stimulator on, tremor rapidly diminished however the sensitive 

tremor detection algorithm yet could pick up low amplitude tremor for a few more min-

utes before it was finally completely stopped. 

To train and evaluate the statistical classifier, we used k-fold cross validation by separat-

ing the data from each patient from the others during the training and test of the classi-

fier so that the same data would never be used for the both purposes at the same time.  

An alternative approach would be to first randomly shuffle all the data and then to use k-

fold cross validation with k groups of randomly selected, equally sized of data groups. At 

the beginning we considered this alternative and using a value of k = 8, we observed that 

some models have a G(S) score better than 85 which is significantly higher than the best 

models in the Table  8-3. However, in this approach part of the data of the same patient 

would be used for training while another part would be used for the evaluation. This 

could leave a memory effect in the classifier that would limit the power of the method to 

predict the pOFF for new patients not included in this study. 

The measurement protocol for this study, however, was not optimal as finally we had a 

much shorter total periods of ON than the OFF periods with a prevalence of less than 

39% (810 minutes vs. 1270 minutes). This unbalanced training and evaluation data 

showed its effect in obtaining higher sensitivity (i.e. pOFF) than specificity (i.e. pON). A more 

balanced approach could include more recordings during ON period to cover a wider 

range of the movement patterns during this period and potentially improve the specific-

ity. 

Another limitation was the fact that the number of the patients and hence the range of 

the different activities they did during the monitoring period was relatively small. More-

over, some patients spent some of the ON periods in an examination by a logopedist 

(speech therapist). This examination took round 20 minutes and patients were all the 

time in an inactive sitting position as they were only supposed to talk and listen. This 

situation, i.e. long periods of inactive sitting position had similarities to some OFF peri-

ods where patients would get blocked, i.e. because of high rigidity and increased akinesia 

they spent a period of time with a very low level of activity, mostly in sitting or lying 

positions.  



 Chapter 8 - Detection of the periods of ON and OFF  

137 

As our sensors could only detect movements on five body sites (trunk, hands and legs), 

periods of inactive sitting in the logopedist’s examinations had a high similarity to the 

recorded signals of those OFF periods. As an example, Figure  8-6 shows a false positive 

period (an ON window detected as OFF) which has happened during the logopedist’s 

examination.  

There was a difference between the reported p-values in this study and those presented 

in the previous chapters for the long-term study, when comparing the parameters related 

to the ON and OFF states. In Table  8-2, the estimated average value of parameters during 

Stim OFF periods were taken from one hour after turning off the stimulator to the 3rd 

hour while in the previous chapters we only considered 3rd hour after turning off the 

stimulator. In the same way, the ON periods in this study were considered from 30 

minutes after turning the stimulation on while in the previous chapter, only period of 

more than one hour after Stim ON were considered. 

8.4.2 Comparing to other studies 
Recently Hoff et al (Hoff, Van Der Meer et al. 2004) have published the results of a study 

with 15 PD patients about detection of ON and OFF periods using accelerometry. Their 

method was based on comparison of the self-assessment of PD patients (time tagged logs) 

and the objective parameters provided by their algorithm. They used 30 minutes windows 

and measured each patient for 24 hours. They reported a poor sensitivity (0.60-0.71) and 

specificity (0.66-0.76) in detection of ON an OFF sates and concluded that “multi-channel 

accelerometry currently can not detect ON and OFF in individual PD patients”.  

There are several important differences between our approach and theirs: We have used 

much smaller windows for evaluation (10 minutes vs. 30 minutes), the period of meas-

urement was shorter in our case (5 hours vs. 24 hours), we used a larger number of 

parameters (15 parameters vs. 4 parameters), our group of PD patient didn’t have any 

dyskinesia during the measurements and finally Hoff et al used per subject calibrations 

while we only used the UPDRS score during ON state. However, we believe that consider-

ing the significantly better sensitivity and specificity of our method, automatic detection 

of ON and OFF periods is possible and within reach. However, a larger number of pa-

tients and a more balanced measurement protocol maybe needed to obtain the optimal 

results. 

8.4.3 Conclusions 
Using five body fixed sensors recording kinematic signals and several analysis algorithms 

to detect and quantify tremor, bradykinesia, gait and physical activity in free moving PD 
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patients, we have proposed a statistical method to detect periods of ON and OFF during 

several hours of continues recording.  

Although dyskinesia is not a symptom of PD per se and is a side effect of the therapeutic 

interventions, it is an aspect of the motor complexities of the PD patients that has not 

been addressed in our study. By adding a robust algorithm to accurately detect periods 

of dyskinesia to our method, we believe that ambulatory monitoring systems using 

kinematic sensors can effectively follow the ON/OFF fluctuations of PD patients during 

their daily activities. 

While until now other groups have reached low accuracy in automatic classification of 

ON and OFF periods, we have found a relatively acceptable sensitivity and specificity 

using our method for time windows of 10 minutes. The classification maybe is not yet 

accurate enough for direct practice in clinic, but we believe by further studies and based 

on the foundations laid by our efforts so far, comprehensive and objective assessment of 

major PD motor abnormalities during daily life of PD patients is possible. 
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Chapter 9  Conclusions 

9.1 Summary and contributions 
The primary objective of this thesis was to design, validate and use a new portable 

movement analysis system (MAS) in clinical conditions. The goal was to use this device 

for long-term monitoring and quantitative assessment of motor abnormalities of PD 

patients during their daily activities. The major results and contributions of this thesis 

were: 

1. The ASUR units.   

Step by step, we have designed, tested and refined our new movement analysis system. 

The final system consisted of five lightweight (< 50g), independent autonomous sensing 

units that could be attached on five sites on the body (trunk, forearms and shanks). 

Depending on the body site, each unit included a specific combination of accelerometers 

and gyroscopes with specific sensitivity ranges. Designed based on the concept of integra-

tion of data-logger and sensors, each unit included the battery, sensors, memory and the 

necessary electronic circuits. Each unit could continuously record up to 14 hours. 

2. Clinical protocols and a database of movement patterns. 

At the same time that our MAS was evolving from a prototype to the final version, several 

clinical studies both in controlled and ambulatory conditions were performed using 

available version of the MAS at each stage. As a result, a rich 118 hours database of 

different movement patterns of 41 PD patients and 10 controls was created. 

We performed a pilot study using available components to determine the basic structure 

of the MAS. In a controlled study, with a very specific protocol of daily activity, a group of 

PD patients and healthy control subjects used the first prototype of MAS for short re-

cording sessions under an hour. The recorded data in this study was used several times 

in the design of movement detection and analysis algorithms. A long-term study was 

subsequently performed with the first prototype of the ASUR system on a group of free 

moving PD patients. The data was used to evaluate the designed algorithms in real 

clinical conditions. Finally, the final version of the MAS is being used for a new series of 

studies (see section 9.2, perspectives and further clinical studies). 
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The most challenging part of the thesis, however, was to devise several new methods and 

algorithms to detect and quantify various motor abnormalities of PD while the patients 

were performing their daily activity. Although the proposed methods used advanced 

signal processing and complex analysis techniques, a common goal and consideration in 

the design of all them was to make them as simple to use as possible for the users. For 

example, we tried to avoid using any per-subject calibrations, pre-test statistics, and 

designed all of the algorithms to be completely automatic in a push-button style interface. 

This way, the final system could be used in the clinic with minimal training and the least 

dependence on the skills of the operator. 

3. Tremor detection and quantification. 

Using gyroscopes attached on the forearms, an accurate algorithm (sensitivity 99.5%, 

specificity 94.2%) based on spectral estimation has been proposed to detect and quantify 

tremor with a resolution down to three seconds. We found that the amplitude of the 

tremor measured by our method shows a very good correlation to the UPDRS tremor sub-

score of the patients (e.g. r = 0.87, p < 0.001 for the roll axis). As expected, the measured 

amplitude of the tremor was significantly different during ON and OFF states.  

4. Quantification of bradykinesia. 

We have proposed a new algorithm to quantify the bradykinesia in PD patients and tested 

it in both controlled and free conditions. We found that the outcomes of this algorithm 

also show significant and good correlation to the UPDRS bradykinesia sub-score (r = -0.74, 

p < 0.01) in the free moving PD patients. The outcomes also could separate controls, PD 

patients in ON and OFF states. The results of this study, together with the results of he 

tremor detection and quantification, has been submitted to be published in an IEEE 

journal (Salarian, Russmann et al. Submitted-b) and has been presented in several 

conferences (Russmann, Salarian et al. 2003a; Russmann, Salarian et al. 2002; Salarian, 

Russmann et al. 2003b). 

5. Gait detection and analysis.  

An algorithm to detect and analyze gait in PD patients was designed and tested. The 

algorithm could detect gait with a high accuracy (specificity of 99.6% for controls and 

99.3% for PD patients during Stim ON and 96.4% during Stim OFF) and could provide 

spatio-temporal parameters of gait with good accuracy. We found that many of these 

estimated parameters separate controls, PD patients in ON and OFF states. We also 

found a high correlation between the gait parameters and UPDRS gait sub-score (e.g. for 

stride length r = 0.90, p < 0.001). The results of this study have been published in a journal 
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article (Salarian, Russmann et al. 2004b) and has been presented in two conferences 

(Russmann, Salarian et al. 2003b; Salarian, Russmann et al. 2003a). 

We have further improved our algorithm and reduced the number of sensor sites on the 

body from four to two while keeping the same accuracy in estimation of the spatio-

temporal parameters of gait. The method was based on predictions of thigh movements 

from the shank movements during the gait. For the free moving PD patients, comparing 

the visual observation, our system had a sensitivity of 95.0% and a specificity of 99.8% in 

detection of gait which were close to the limit of the accuracy of the visual observation 

itself. Again we found that many of these estimated parameters separate controls, PD 

patients in ON and OFF states. The results of this study have been presented in several 

conferences (Russmann, Salarian et al. 2004a; Russmann, Salarian et al. 2004b; 

Salarian, Russmann et al. 2005b; Salarian, Russmann et al. 2004a).  

6. Body posture allocations and posture transitions. 

Although several methods based on body fixed sensors have been proposed in the past to 

detect and classify main body postures in normal subjects, elderly and some pathologic 

cases, the presence of tremor and bradykinesia in PD patients made the application of 

these methods to this particular group of patients very difficult. By combining a statisti-

cal classifier to detect transitions between postures and a fuzzy classifier to detect the 

basic body posture, we have proposed a new algorithm that showed significantly better 

results than the previous methods both in PD patients and aged matched controls. Our 

algorithm had a sensitivity and specificity of 86.3% and 98.0% in detection of Sitting, 

83.6% and 96.5% for Standing, 98.5% and 97.8% for Walking and 91.8% and 99.8% for 

Lying. 

We also o found that many parameters related to the movement pattern of the transitions 

between sitting and standing were significantly different between ON and OFF states and 

some of them showed significant correlation to the UPDRS gait and posture sub-score. 

While some other researchers had used timed UP & GO tests with PD patients (Morris, 

Morris et al. 2001), the ambulatory detection and characterizing posture transitions 

during daily activity in PD patients and quantifying their differences between ON and 

OFF was not reported before. Base on the results of this study an article has been sub-

mitted to an IEEE journal (Salarian, Russmann et al. Submitted-a) and also the method 

and results has been presented in two conferences (Salarian, Russmann et al. 2005a; 

Salarian, Russmann et al. 2005b). 

7. ON/OFF classification. 
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By combining the outcomes of the above algorithms using a statistical method, we 

proposed a new method to detect periods of ON and OFF with a resolution of 10 minutes 

in free moving PD patients. While currently no other objective ambulatory method exists 

to accurately detect ON and OFF states in PD patients, we found that it is possible to 

reach a sensitivity more than 90% and a specificity of more than 76% in detection of OFF 

periods.  

9.2 Perspectives and further studies 

9.2.1 Assessment of dyskinesia 
Dyskinesia or more levodopa induced dyskinesia (LID), which is a side-effect of the 

chronic levodopa therapy (Nutt, Carter et al. 1995) is an important motor abnormality 

associated with ON state. While not a symptom of the PD per se, because of its highly 

disabling manifestation, a comprehensive ambulatory monitoring system for PD patients 

in general, should include its objective assessment. While some other researchers have 

reported ambulatory methods for assessment of dyskinesia (Burkhard, Shale et al. 1999; 

Hoff, vander Plas et al. 2001; Keijsers, Horstink et al. 2003b), the available methods are 

yet young and only been used in small groups of PD patients. Moreover some of the 

proposed systems require sensors sites that are not very useful in analysis of other PD 

symptoms (like sites on the shoulders in Keijsers’s system) and in general are not com-

patible with our approach which is based on minimal number of sensors on the body. 

At the first step, a new study based on the current MAS and sensor configuration is 

required to design and validate an algorithm to detect and quantify dyskinesia in free 

moving PD patient while they are performing their daily activities. In collaboration with 

CHUV and HUG, we have already started a few measurements using the final prototype 

of MAS, however, yet the number of recorded cases with dyskinesia is yet too small to 

develop a reliable algorithm.  

9.2.2 Clinical validation of our new MAS for whole day measurements 
We have now developed a measurement tool capable of recording the main motor features 

of PD, with the exception of rigidity (not accessible to measurement with this technique) 

and dyskinesia. The next logical step is to perform a clinical validation of the method for 

long-term (or whole day) recordings. Accurate detection of ON and OFF periods will be of 

great clinical relevance, which could be based on our proposed method (see chapter 8). 

This will allow a precise understanding of the functional impact of PD for each patient in 

everyday life, based on reliable and continuous data on motor state evolution. 
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9.2.3 Detection of Freezing of Gait (FOG) and Festinating Gait (FSG) 
Freezing of the gait and festinating gait are common symptoms in PD patients during 

OFF state. Festination is a tendency to speed up the walking by taking very short steps 

in parallel with a loss of normal amplitude of the movements. Freezing of the gait occurs 

at the start or end of walking (start hesitation), during festinating gait or suddenly when 

patient turns or goes through a narrow doorway. While FSG and FOG are related to-

gether (Giladi, Shabtai et al. 2001),  some recent studies suggest that FOG is not corre-

lated with other parkinsonian features in OFF like bradykinesia, rigidity or postural 

instability and is apparently an independent motor symptom (Bartels, Balash et al. 

2003).  

We can already detect gait in PD using our method with high accuracy. Therefore, we 

expect that by recognizing very short gait cycle times, the festinating gait can be detected. 

Also by analyzing the movements of the shanks exactly before and after each detected 

walking period, detection of freezing of gait may be possible. 

9.2.4 Comparing MAS measurements to metabolic data in PD patients, 
using FD-PET  

Another interesting direction is to use the objective parameters estimated by our method 

in diagnosis of the Parkinson’s disease, its evolution and treatment monitoring.  

Based on this idea, we have started a new study to compare the objective outcomes of 

our system to the quantitative nigrostriatal deficit detected by 18F-6-Fluorodopa (FD) 

PET (Positron Emission Tomography) analysis in early Parkinson’s disease. FD-PET has 

been validated against clinical scales in PD, and provides quantitative metabolic data on 

levodopa intake by the striatum, which is reduced in a characteristic manner in PD 

patients (Vingerhoets, Snow et al. 1994). Comparison between FD-PET data and MAS 

measurements is an important step in the clinical validation of our system. Some of our 

preliminary results have been presented in the 16th International congress on Parkin-

son’s disease and related disorders (Cereda, Salarian et al. 2005). 

9.2.5 Relationship between blood levels of levodopa and the parameters 
provided by MAS 

Forty years after the discovery of its antiparkinsonian properties, levodopa remains the 

single best treatment for alleviating motor symptoms in PD. There is a correlation be-

tween blood levels of levodopa and motor parkinsonian features. Comparison of our MAS 

measurements with another quantitative parameter is then a further logical step in its 

clinical validation. Furthermore, this simple tool may well replace the cumbersome 

method of levodopa blood levels determination. 
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9.2.6 Other hyperkinetic disorders 
Another direction could be developing new methods to identify postural tremor (or essen-

tial tremor, ET), chorea, tics and dyskinesia, which can be refined, improved and then 

validated against clinical scales. Whenever possible, efforts can be directed to adapt 

existing algorithms developed for PD, rather than designing entirely methods.  

For ET, our PD tremor algorithm will need to be adapted for higher frequencies, since this 

type of tremor usually is in the range of 6 to 10 Hz. Also, ET is a postural and action 

tremor, a feature that will be of help to distinguish it from other types of tremor like the 

rest tremor of PD. Dystonia and chorea share some similarities with levodopa-induced 

dyskinesia of PD.  

By designing these algorithms, our MAS can be used in long-term, ambulatory motor 

assessment of other neurological disorders like Huntington’s disease and Tardive syn-

dromes. 
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