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Abstract

The present PhD thesis deals with the high temperature polymerization of methyl meth-

acrylate in a continuous pilot scale process. The major aim is to investigate the feasibility of a

polymerization process for the production of PMMA molding compound at temperatures in the

range from 140 °C to 170 °C. Increasing the process temperature has the advantage of decreas-

ing molecular weight and viscosity of the reaction mixture, thus allowing to reduce the addi-

tion of chain transfer agent and to increase the polymer content in the reactor. At the same

time, the reaction rates are higher and the devolatilization is facilitated compared to low con-

version polymerizations. Altogether, it leads to an improved space time yield of the process.

However, increasing the process temperature also has an important impact on both, polymer-

ization kinetics and polymer properties.

The first two parts of this work are, therefore, dedicated to the self-initiation respectively

the high temperature gel effect observed for the polymerization of MMA at the given tempera-

ture range. The self-initiation of MMA is mostly caused by polymeric peroxides that form

from physically dissolved oxygen and the monomer, itself. The formation, decomposition and

constitution of these peroxides are intensively studied and a formal kinetic is proposed for the

formation and decomposition reaction.

The polymerization of MMA is subject to a rather strong auto-acceleration, called gel

effect, the intensity of which depends on process conditions and solvent content. There are sev-

eral models proposed in the specialized literature to describe this phenomenon by modifying

the termination rate constant as a function of conversion and temperature. The second part of

this study contains the evaluation of these models with regards to their applicability to high
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temperature MMA polymerization as well as the development of a new variant of an existing

model, which correctly describes the gel effect in the temperature range of interest as a function of

polymer content, temperature and molecular weight. The advantage of this new variant is that it

includes all other factors influencing the gel effect, i.e. chain transfer agent, initiator load,

comonomer and solvent content, and that it is suitable for the description of batch and continuous

processes. A complete kinetic model for the description of the high temperature copolymerization

of MMA and MA, containing the results from the first two parts of this work, is established within

the software package PREDICI® and validated by means of several series of batch polymeriza-

tions.

In the third part of this work, a complete pilot plant installation for the continuous polymer-

ization of MMA is designed and constructed in order to study the impact of increasing the reac-

tion temperature on process properties and product quality under conditions similar to those of an

industrial-scale polymerization. The pilot plant is based on a combination of recycle loop and

consecutive tube reactor, equipped with SULZER SMXL® / SMX® static mixing technology.

Furthermore, it is equipped with a static one-step flash devolatilization and a pelletizer for poly-

mer granulation. At the same time, a refined method for inline conversion monitoring by speed of

sound measurement is developed and tested in the pilot plant. By means of this technique it is

possible to follow the dynamic behavior of the reactor and to measure directly the monomer con-

version without taking a sample. The results of several pilot plant polymerizations carried out

under different conditions are presented and the impact of temperature, comonomer and chain

transfer agent on the thermal stability of the product is analyzed. From these results, the r-param-

eters for the copolymerization of MMA and MA at 160 °C as well as the chain transfer constant

for n-dodecanethiol at 140 °C are determined. Finally, the pilot plant experiments are used to val-

idate the kinetic model established beforehand in PREDICI® for the continuous copolymeriza-

tion.

Keywords: High Temperature Polymerization, Methyl methacrylate, Copolymerization, Reactiv-

ity ratio, Chain Transfer, Ultrasound conversion monitoring, Gel effect, Thermal sta-

bility, Kinetic Modeling, Pilot Plant Technology, Static mixing
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Version abrégée

Cette thèse traite de la polymérisation à haute température du méthacrylate de méthyle

dans un procédé à l'échelle d'un système pilote. Le but principal est l'étude de faisabilité d'un

procédé de polymérisation pour la production de PMMA fondu à des températures entre

140 °C et 170 °C. Dans ce procédé l'augmentation de la température a pour avantage la dimi-

nution de la masse moléculaire et de la viscosité du mélange réactionnel, ce qui permet de

réduire l'ajout d'agent de transfert de chaîne et d'augmenter la quantité de polymère dans le

réacteur. En même temps, les vitesses de réaction sont plus élevées et la dévolatilisation est

facilitée par rapport à des polymérisations à basse conversion. Pris ensemble, ces éléments per-

mettent d'améliorer le rendement en espace et en temps du procédé. Toutefois, augmenter la

température du procédé a aussi un effet important sur la cinétique de polymérisation, ainsi que

sur les propriétés des polymères.

Les deux premières parties de ce travail sont, par conséquent, dédiées à l'auto-initiation

et à l'effet de gel à haute température, observés dans l'intervalle de température considéré.

L'auto-initiation du MMA est principalement causée par des peroxydes polymères formés par

réactions des monomères avec de l'oxygène dissous dans les derniers. La formation, la décom-

position et la constitution de ces peroxydes sont étudiées de manière intensive et une cinétique

formelle est proposée pour les réactions de formation et de décomposition.

La polymérisation du MMA est sujette à une auto-accélération conséquente appelée

"effet de gel", dont l'intensité dépend des conditions du procédé et de la quantité de solvant.

Plusieurs modèles proposés dans la littérature spécialisée décrivent ce phénomène en modifi-

ant la constante de vitesse de terminaison en fonction de la conversion et de la température. La

seconde partie de cette étude comprend l'évaluation de ces modèles au regard de leur applica-
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bilité à la polymérisation à haute température du MMA, ainsi que le développement d'une nou-

velle variante d'un modèle existant, décrivant correctement l'effet gel dans l'intervalle de

température considéré en fonction de la quantité de polymère, de la température et de la masse

moléculaire. Les avantages de cette nouvelle variante sont le fait qu'elle inclut tous les autres fac-

teurs influençant l'effet gel, à savoir l'agent de transfert de chaîne, la charge d'initiateur, les quan-

tités de comonomère et de solvant, et sa capacité à décrire les procédés en batch et en continu. Un

modèle cinétique complet pour la description de la copolymérisation à haute température du

MMA et du MA, contenant les résultats des deux premières parties de ce travail, est établi à l'aide

du logiciel PREDICI® et validé par plusieurs séries de polymérisations en batch.

Dans la troisième partie de ce travail, une installation pilote complète pour la polymérisa-

tion du MMA est conçue et construite, de façon à pouvoir étudier l'effet de l'augmentation de la

température de réaction sur les propriétés du processus et la qualité du produit dans des conditions

similaires à celles d'une polymérisation à l'échelle industrielle. L'installation pilote est formée à la

base de la succession d'un réacteur avec recyclage en boucle et d'un réacteur tubulaire, équipés de

mélangeurs statiques Sulzer SMXL® / SMX®. Elle est en outre équipée d'un dévaporisateur flash

à une étape et d'une granuleuse. De plus, une méthode affinée pour la surveillance de la conver-

sion en ligne par mesure de la vitesse du son est développée et testée sur l'installation pilote. Il est

possible au moyen de cette technique de suivre le comportement dynamique du réacteur et de

mesurer directement la conversion de monomère sans prendre d'échantillon. Les résultats de plu-

sieurs polymérisations en installation pilote effectuées dans différentes conditions sont présentés,

et les influences de la température, du comonomère et de l'agent de transfert de chaîne sur la sta-

bilité thermique du produit sont analysées. Ces résultats permettent en outre la détermination des

paramètres r pour la copolymérisation du MMA et du MA à 160 °C, et de la constante de transfert

de chaîne pour le n-dodécanethiol à 140 °C. Finalement, les expériences en installation pilote sont

utilisées pour valider le modèle cinétique établi auparavant avec PREDICI® pour la copolyméri-

sation en continu.

Mots-clés: Polymérisation radicalaire, Haute température, Méthacrylate de méthyle,

Copolymérisation, Surveillance en ligne par ultrason, Effect de gel, Stabilité ther-

mique, Modélisation cinetique, Pilot Plant Technologie, Mélangeurs statiques.
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1

Preface

There is nothing new under the sun, 
but there are lots of old things we don’t know.

- Ambrose Gwinnett Bierce (1842-1914)

The research on pilot scale polymerization reactions in the polymer reaction engineering

group at EPFL began more than 20 years ago. The first PhD thesis of 1982 [1] dealt with a

newly developed tubular reactor concept that was based on tubes equipped with Sulzer mixing

elements. Up to that moment, industrial polymerization reactors consisted mainly of stirred

tank reactors, whereas tubular reactors played only an unimportant role due to their bad heat

exchange properties and small capacities. The aim of that first thesis was to describe the fluid-

and thermodynamical behavior of this new type of reactor, which generally consists of a recy-

cle loop and a consecutive tube, as well as to prove its superiority to classical stirred tank reac-

tors. In the following years, this concept was continuously further-developed in various

different projects [2-4] and although first researches concentrated on the polymerization of sty-

rene as a model reaction, the same kind of reactor setup has lately been employed with great

success for methyl methacrylate (MMA) polymerizations:

The work of P.-A. Fleury [5] in the 90’s dealt for the first time with the high-temperature

polymerization of MMA in the Sulzer pilot plant. 

Between 1998 and 2001, the plant was used in the frame of a European research project

that aimed for the reduction of residual volatiles’ concentration (LOWRESCO) in industrial

polymerization and degassing. From the side of EPFL it was the thesis of Thomas Zeilmann

[6] that contributed to this project. The pilot plant setup designed for that project was the basis
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for the one used in the present work: recycle loop, consecutive plug flow tube and devolatilization

chamber with continuous polymer discharge. Also the ultrasound conversion measurement,

which had been developped by Renken and Cavin shortly beforehand [7, 8], was applied for the

first time in an installation of this size.

When I came to EPFL in January 2001 for my diploma work [9], which was a part of the

before-mentioned project, Thomas Zeilmann was in the last year of his thesis. During the follow-

ing time, various interesting features concerning PMMA, itself, and the continuous polymeriza-

tion of MMA were investigated. These were in particular the thermal stability and thermal

stabilization of PMMA during devolatilization, the two-phase devolatilization strategy and the

addition of a stripping agent to the reaction mixture for improved devolatilization.

At the end of 2001, a first contact with the Degussa Röhm GmbH&Co KG in Darmstadt,

one of the most important producers of acrylics in the world, was established with the aim of a

joint research project between Röhm and EPFL. This was also the moment when I took the deci-

sion to stay in Lausanne for my PhD thesis. Luckily, we received a very positive feedback from

Degussa Röhm concerning the cooperation and in the beginning of 2003, after one year of prepa-

rations and defining the general frame for this quest, the project officially started.

This cooperation with Degussa brought a new, rather industrially orientated drive into the

research on pilot scale polymerization at EPFL, with a major focus on the high temperature poly-

merization process and the kinetic particularities connected to it. Also, for the first time, the pro-

duced polymer had actually to compete with the commercial grade product and, although the

“real” production conditions remained a well-kept secret, the process conditions for the pilot plant

experiments came much closer to reality than they had been in earlier projects.

During the three years of this PhD project, I had the opportunity not only to present my

results at various international conferences but also in various meetings with the industrial part-

ner, from where I received constant feedback concerning the progress of my work, which, looking

back, I would not have liked to miss.

In the following chapters and appendixes, the results of this joint research project, which

unfortunately has to end with the present report, are presented and I already want to express my

deep gratitude to all persons that have been involved in it, no matter to what extent.



3

CHAPTER 1

Introduction

1.1 General

Since its discovery in the late nineteenth century, poly (methyl methacrylate) or PMMA

has been continuously developed and gained an important role in our daily life. Better known

as PLEXIGLAS®1, they can be found not only as a more robust alternative to glass in the

building and construction industry but also in automobiles, in many electronic devices, and

increasingly also in the medical sector. An application that underlines the mechanical and opti-

cal properties of PMMA is its use for aircraft windows and canopies.

With a worldwide capacity of around 840'000 tons per year [10], poly (methyl methacry-

lates) have become an important product for the manufacturers of thermoplastics. Their aim to

increase the number of applications and thus the demand for PMMA on the market at the same

time requires better and more specific product properties. Furthermore, with the intensifying

1. PLEXIGLAS is a registered trademark of the DEGUSSA Röhm GmbH, Germany
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competition on the world market, the need to optimize processes and process yields has become

even more evident.

For a long time, PMMA was only manufactured by casting. A few applications, i.e. aircraft

windows and thick polymer sheets, where very high molecular weights are mandatory in order to

guarantee a maximum mechanical strength, still require this discontinuous process. However,

with the increasing demand for lower molecular weight types, especially for extrusion and injec-

tion moulding, continuous polymerization processes are needed to meet production capacity and

product quality requirements.

The continuous technical and product development has produced a huge amount of different

polymer and copolymer types, the composition of which strongly depends on their application.

There are highly specialized mixtures for applications in the optical and coating industry on the

one hand, and on the other hand large-scale copolymer commodities for the automobile and con-

struction industry. Most of them have in common to be polymerized in solution or bulk polymer-

ization processes. The by far mostly spread process variant is the CSTR - tube reactor

combination with process temperatures up to 140 °C. In order to improve the thermal and

mechanical strength of the polymer, comonomers and other additives (e.g. transfer agents) are

added in small amounts. At the end of the polymerization process, the polymer melt is degassed in

several steps and the devolatilized polymer is pelletized for transport and storage.

For the production of work pieces with the desired shape (e.g. car lights), the polymer pel-

lets are molten up in an extruder and injected into part-specific molds. During this last production

step, the thermal stress on the polymer is the highest and thermal stability of the polymer becomes

a very important issue.

1.2 Historical background

When Polymethylmethacrylate was synthesized for the first time in the year 1877 [11], the

general understanding of polymerization and its products was still in its infancy. Polymers were

regarded as useless side products and discarded. The person who started the research and further

development of PMMA was Otto Röhm by his thesis in 1901. Yet, it took him another 30 years to

build up the first production of cast PMMA sheets. This was the basis for his company, the Ger-

man Röhm GmbH, today subsidiary of the Degussa AG, which introduced in 1934 Polymethyl-
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methacrylate under the registered trademark Plexiglas®, still the most common name for this

polymer. At the same time, the British Imperial Chemical Industries (ICI), started the production

of PMMA.

During the Second World War, the polymer gained importance in the production of military

aircraft canopies because of its, compared to glass, smaller specific weight and its strong mechan-

ical properties. It was considered as war-important and thus, the production capacity was

increased considerably in the United States, Britain and Germany. After the war, the demand for

PMMA drastically decreased until other, civil applications were found, among which the use for

streetlamps, neon tubes, safety glass and optical lenses. Also, first copolymers with acrylonitrile

were applied for their better impact strength. With the ability to injection mould poly (methacry-

lates), the continuous production of molding compound pellets catched up quickly with the cast-

ing and, nowadays, more than two thirds of monomer are converted to moulding compound.

Four European manufacturers - Atoglas (Atofina), Degussa-Röhm, Barlo PLC and Ineos -

and four Asian manufacturers dominate the present PMMA market. Together, they have a produc-

tion capacity of about 840'000 tons / year. Yet, compared to other thermoplastics, PMMA holds

only a small share of all thermoplastics on the world market, as figure 1.1 shows. In order to

increase this share, manufacturers of acrylics make every effort to develop new product qualities

for highly sophisticated applications. These include the use of acrylic polymers for optical discs,

for example new generations of the DVD, where the concurrence with polycarbonates is the driv-

ing force for new product developments.

Figure 1.1: Thermoplastic consumption in Western Europe 2001-2003 [12]
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1.3 Aim of this work

The aim of this work, which has been carried out in close cooperation with industry, is to

kinetically describe the high temperature polymerization of methyl (methacrylate), to investigate

the feasibility of a polymerization process at 140 °C < T < 170 °C and to study the impact of tem-

perature on the product quality in a continuous pilot-scale process.

The polymerization of methyl methacrylate is probably the best described polymerization

reaction in polymer science. However, most research that has been published in the specialized

literature deals with the polymerization at a rather low temperature range (< 100 °C). Unfortu-

nately, increasing the reaction temperature above this value changes significantly the underlying

polymerization kinetics. In particular, the following three phenomena have to be reevaluated:

• the self-initiation reactions

• the gel effect

• and the depolymerization

It was, therefore, necessary to start with the determination of kinetic parameters and the

development of a gel effect model for the given temperature range and to validate both with the

help of experimental data. These features could then be included in a general kinetic model for the

description of the whole polymerization process. Several series of experiments were carried out at

bench-scale and various analytical methods had to be established in order to accomplish this

important part of this work.

The second step was the design and setup of a continuous pilot plant in order to investigate

the polymerization under conditions similar to the industrial process. For the present work, a

setup based on the combination of a recycle loop and tube reactor was chosen, as it had been

already successfully employed in earlier research studies of this workgroup. The frame of the

continuous polymerization process also allowed a development study of a relatively new process

monitoring technique based on the speed of sound measurement and the determination of copoly-

merization and chain transfer related parameters from steady-state polymerizations.

The various goals of this PhD project are itemized once again in the following list contain-

ing each individual part of this work together with a brief description of the work carried out to

achieve them.
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Self-Initiation at high temperatures

• Determination of the formation kinetics of MMA peroxides in batch experiments:

Development of an analytical method for the determination of organic peroxides

• Determination of the decomposition kinetics of MMA peroxides by DSC:

Synthesis and Isolation of MMA peroxides

Method for the determination of reaction kinetics by DSC

• Characterization of MMA peroxides by GPC, TGA and NMR

• Investigation and characterization of other mechanisms influencing the self-initiation 

of MMA (thermal initiation, initiation by CTA, dimerization)

• Verification of the entire self-initiation kinetics in batch polymerization experiments

Gel effect at high temperatures

• Evaluation of existing gel effect models toward their application at high temperatures

• Derivation of an adapted model for the correct description of the high temperature gel 

effect

• Determination of the parameters influencing the gel effect

• Model verification by means of batch polymerization experiments

Continuous High Temperature Polymerization

• Design and construction of a pilot plant with a capacity of 1-5 kg PMMA per hour

• Development of a method for the direct and inline monomer conversion monitoring 

by speed of sound measurement

• Determination of r-parameters for the copolymerization MMA / MA

• Determination of the chain transfer constant for n-dodecanethiol

• Evaluation of the obtained product at high temperatures concerning molecular 

weight, residual monomer and thermal stability

• Production of several batches of polymer pellets for the evaluation of the product qual-

ity in injection molding experiments (carried out by the industrial partner)

• Establishing a kinetic model in PREDICI® for the description of the continuous copo-

lymerization process and validation with experimental data
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CHAPTER 2

Self-Initiation at high temperatures

Monomers used in radical polymerization are unsaturated compounds that can undergo

various reactions and therefore exhibit only a limited stability. Many of them polymerize

already at room temperature when not sufficiently stabilized by radical scavengers. Styrene,

for example, has a very distinctive self-initiation potential, which is caused by intermolecular

interactions due to its molecular structure, i.e. the formation of an unstable dimer [13]. There-

fore, it usually needs to be stored under cooling or with rather large amounts of stabilizer.

Since this self-initiation gets more important with increasing temperature, it is usually referred

to also as “spontaneous thermal initiation”.

For MMA, the thermal initiation also exists but, due to the different molecular structure

compared to styrene, the mechanism is much slower. Depending on the temperature, it usually

takes days if not months for a sample of purified MMA to polymerize to noticeable extents.

However, if technical MMA as supplied by the producers is heated to above 100°C, quickly a

considerable polymerization with monomer conversions of more than 20% can be observed.

This motivates the question of which nature the initiation that is the cause for this polymeriza-

tion might be and, if there are radicals involved in the mechanism, what their origin is.

In literature, several reasons for thermal polymerization of MMA can be found. Stickler,

Lingnau and Meyerhoff, for example, have carried out extensive research on this topic. In their

series of publications “The Spontaneous Thermal Polymerization of Methyl Methacrylate 1-6”

[14-19], they determine the rate constants for the reproducible spontaneous thermal initiation,

which is not overlaid by initiation reactions of impurities, and discuss furthermore the forma-
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tion of di- and trimers as well as the initiation potential of chain transfer agents. Even the initia-

tion by cosmic and environmental radiation is taken into account and evaluated by them. As

concerns initiation reactions caused by impurities, the attention is quickly drawn to peroxides in

the relevant literature. The possibility that MMA and other unsaturated compounds react with

oxygen traces to form peroxides has already been described in the 50‘s by Mayo and Miller [20]

and Barnes et al. [21]. These peroxides have been proven to decompose at higher temperatures

and to form radicals that can initiate polymerization. This mechanism is even supposed to be the

dominant reason for “thermal initiation” of MMA at temperatures above 100°C [22].

In this chapter, the different initiation mechanisms1 are discussed, first of all the MMA per-

oxide initiation, and experimental results that were obtained in this work are presented. The char-

acterization of MMA peroxides, their formation and decomposition has been one of the key

interests of this project. Especially in industrial processes, where impurities and atmospheric

gases are always present, it is of great importance to carefully characterize these reactions since

they may have a significant influence on process safety and are able to falsify results in pilot plant

experiments, which can then lead to misinterpretation of data.

2.1 MMA peroxides

2.1.1 Introduction

Methyl methacrylate is in most cases stabilized for transportation and storage with stabiliz-

ers of the hydroquinone type, e.g. hydroquinone and 4-methoxyphenol. The active principle of

this class of stabilizers is based on an interaction with oxygen, since they are not capable of cap-

turing radicals themselves [23, 24]. However, they readily react with peroxy radicals. In the fol-

lowing, the stabilization mechanism is presented and the role of oxygen in the stabilization

becomes evident.

The primary radical R. is generated by not further defined, arbitrary processes as for exam-

ple radiation, molecular interactions or decomposition of other impurities in the system. The oxy-

1. The dimerization does not represent an initiation mechanism for the radical polymerization of MMA but 
is discussed nevertheless in this chapter as it can have significant effects on the monomer conversion at 
high temperatures.
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gen molecule O2 is a biradical with a very high affinity to other radicals. Therefore, the radical R.

rather reacts with oxygen than with another radical [23]. As long as there is enough stabilizer and

oxygen present in the system, radical initiation of the polymerization is inhibited: 

(EQ 2.1)

(EQ 2.2)

(EQ 2.3)

(EQ 2.4)

Hence, it is important to store the monomer under oxygen containing atmosphere so that the

inhibition is guaranteed.

In the absence of stabilizer, either in purified monomer or due to its consumption by reac-

tions as in equation 2.3 and equation 2.4, the radical ROO. from equation 2.2 is no longer trapped

by the methoxyphenol, but can react freely with other molecules. Thus, if there’s enough oxygen

present, it creates an alternating, copolymeric chain of oxygen and monomer, as it was proven by

NMR, FTIR and pyrolysis studies [25, 26]:

 (qualitative mechanism) (EQ 2.5)

The peroxide obtained is also referred to as PMMA peroxide, MMA polyperoxide, MMA-OO

or simply PMMAP. Since these chains are stable at medium temperatures (i.e. in general below

100 °C), also oxygen indirectly has a stabilizing effect on the monomer (by scavenging radicals

and forming peroxides), which means that storage under oxygen containing atmosphere is already

enough in order to prevent polymerization. The principle of this stabilization with oxygen was

first investigated in 1955 by Schulz and Henrici [27]. However, with time the peroxide chains

accumulate in the monomer, a fact that becomes an issue at higher temperatures. As reported by

several authors, the thermal decomposition of PMMAP starts between 130 °C [28] and 150 °C

[25]. In the latter article also a decomposition mechanism via radical chain scission is proposed:

OH OCH3 + R.

R. + O2 ROO.

ROO. + OH OCH3 ROOH O OCH3+

+ O OCH3ROO O
OCH3

OOR

ROO + M ROOM ROO(MOO)n
O2
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(EQ 2.6)

The produced radicals have a high initiation potential [29] and, therefore, PMMAP can be

also considered as a high-temperature initiator for radical polymerizations.

An alternative to equation 2.5 is the formation of hydroperoxides [30]. These are supposed

to consist of one or more monomer units with a hydroperoxide -OOH group at the alpha methyl

group and, therefore, to be more volatile than polyperoxides. However, it is difficult to distinguish

with the available analytical methods between poly- and hydroperoxide. One possibility could be

the use of MALDI mass spectroscopy but, unfortunately, the time frame of this work did not

allow further investigations. Only the presence of polyperoxide could be proven by NMR,

whereas hydroperoxides were not detected in any sample (see also “Isolation and Characteriza-

tion of PMMAP” on page 21).

In the following, the formation, decomposition and structure of poly (methyl methacrylate)

peroxide is once again discussed on the basis of various experiments carried out during this

project, and the results are compared to the above mentioned literature data. Due to their initiation

ability at high temperature, it is very important for modeling the high temperature polymerization

to carefully describe the properties of PMMAP and the results of the following subchapters will

be found again in the modeling section of this work.
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2.1.2 Formation of poly (methyl methacrylate) peroxide (PMMAP)

For the determination of the PMMAP formation kinetics, several approaches are possible.

One is to measure the oxygen absorption or consumption rate in MMA at different temperatures

[23, 31, 32]. With the above mentioned formation mechanism, the kinetics can then be estimated.

Another way, which was chosen in this work, is to determine directly the peroxide concentration

in the monomer. However, this proved to be a non-trivial problem, since most methods for perox-

ide determination work in aqueous media only. Few titration methods for organic peroxides were

found, working with sodium iodide (NaI) and thiosulfate (NaS2O3) and glacial acetic acid as

reagents in solvents like isopropanol [33] or chloroform / methanol mixtures or even two-phase

systems with water. The problem is already to dissolve the inorganic salts in the organic solvents.

A second weak point of these methods is that iodide is readily oxidized by atmospheric oxygen in

these solvents, so the measurement error is relatively high. Additionally, within the expected

rather low concentration range (< 100 ppm O2), the precision of titration methods was considered

to be not sufficient for kinetic investigations.

Finally, a method found in [34] from 1946, which is described by the authors to be not influ-

enced by air in the same extent than other methods, was modified to work in combination with

UV-Vis spectrophotometry. The only difference between this procedure and the previously men-

tioned one is that it uses acetic anhydride as a solvent, which acts as solvent and proton donor for

the oxidation of I- at the same time and exhibits excellent solubility for NaI.

For the peroxide analysis according to the modified method presented in appendix 1,

“Organic Peroxide Determination by UV”, samples of 5 ml MMA were mixed with 10 ml of ace-

tic anhydride containing ca. 0.1 g of dissolved NaI. After 15 minutes of stirring, the mixture has

turned yellow depending to its peroxide content. The coloration is caused by the iodine formed

according to equation 2.7 [30] or equation 2.8, which shows the reduction of a commercial perox-

ide (e.g. benzoyl peroxide) used for calibration of the UV.

(EQ 2.7)ROOR 2 H+ 2 I- I2 2 ROH+ + +
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(EQ 2.8)

This iodine can then be either determined by titration with NaS2O3, or directly by UV-Vis

Spectrophotometry, since it absorbs light with a maximum at 360nm. UV-Spectrophotometry has

the advantage that it is fast and very precise in given calibration intervals, and the problematic of

finding a calibrated NaS2O3 solution that dissolves in acetic anhydride does not present itself.

Detailed information on the employed UV method can be found in appendix 1 together with the

other analytical methods.

One important point concerning the investigation of the PMMAP formation is the quality of

the monomer. As mentioned before, the monomer is usually stabilized for transport and storage

with 4-methoxyphenol, which consumes oxygen and prevents the formation of PMMAP until it is

completely consumed. Therefore, to obtain reproducible measurements, it is necessary to purify

the monomer prior to the experiments. The purification method is described in the appendix. 

MMA-peroxide formation experiments

In the beginning, the monomer was only washed with 2N NaOH, neutralized with

H2Odemin., dried over CaCl2 and used without further distillation. During subsequent storage, the

contact with atmosphere was guaranteed by closing the flask with a drying tube containing CaCl2
instead of a stopper. Proceeding like this was necessary to ensure oxygen saturation. For the

experiments, the MMA was filled into 7.4 ml screw cap vials (Fluka 27149), which were filled to

the top in order to avoid air in the vial and subsequently completely submerged into temperature-

controlled oil-baths (see figure 2.1 a). Due to the complete submersion, it can be excluded that

atmospheric oxygen could penetrate the vials through their sealings.

R

O

O

O

O

R
2 I-+ I2+2

R
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After given periods of time, one vial at a time was removed from the oil bath, quenched in

iced water and directly analyzed as described above.

The following graphic, figure 2.2, shows the measured peroxide concentrations in this non-

distilled monomer over time for different temperatures. After 50 hours at 40 °C, still no signifi-

cant peroxide concentration was measured. Also the time scale for higher temperatures is remark-

ably large, i.e. it takes hours for a noticeable peroxide content to appear in the sample. Only at

80 °C, respectively 90 °C, the peroxide concentration increases significantly within the first two

hours.

(a) (b)
Figure 2.1: (a) Oil bath with monomer-filled screw cap vials for peroxide formation experiments 

(b) Testing of the influence of stainless steel on the formation of MMA-OO

MMA
1.4571

stainless steel
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Since it cannot be said for sure that all inhibitor is removed from the monomer by the wash-

ing, as well as all water removed by drying, it might be due to these factors that the peroxide for-

mation appears rather slow in the above experiments. Therefore, the complete series was repeated

with distilled monomer (see appendix for distillation procedure). However, the distilled monomer,

too, was stored in an open flask afterwards, in order to ensure oxygen saturation.

For the distilled monomer the peroxide formation rate was found to be much higher. Also

the reproducibility between several series of measurements was high, contrary to the non-distilled

monomer where this was not the case. The results of one series of experiments are presented in

figure 2.3, which has the same y-scale than figure 2.2 but a much shorter time scale. This proves

Figure 2.2: Peroxide formation in NaOH-washed, dried and air-saturated monomer
(non-distilled, filled in gas-tight vial)
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that in distilled monomer, the rate of peroxide formation is by a factor of approximately 10 higher

than in the non-distilled one.

A possible explanation for this observation is, as mentioned before, the presence of water in

the monomer. At least it was found that the time the monomer was dried over CaCl2 after washing

with NaOH had a major influence on the obtained monomer conversion in blind experiments: the

longer the monomer was dried the higher were the conversions. Inversely, when water was added

to dried monomer, the conversion decreased. This might be evidence for an inhibiting effect of

water. However, due to the strongly irreproducible character of these results, they are not pre-

sented at this point. Future experiments should concentrate on this effect and especially investi-

gate the influence of water on the formation of MMA peroxide.

Figure 2.3: Peroxide formation in distilled, air-saturated monomer (filled in gas-tight vials)
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In order to use this data in a way to obtain formation kinetics for PMMAP, some mechanis-

tic considerations and simplifications had to be made. Since PMMAP is a polymeric peroxide

with only ideally an alternating copolymeric structure, the correct mathematical description of its

formation would be quite complicated. Therefore, an idealized unimolecular approach was cho-

sen to determine the kinetic constants according to Arrhenius, which will be explained in the fol-

lowing. One unknown in this approach is the oxygen concentration in the monomer at the

beginning of the experiment, i.e. the temperature-dependant saturation concentration of O2 in

MMA. This oxygen concentration has been determined experimentally for acrylic acid / meth-

acrylic acid [23] and for tripropylene glycol diacrylate (TPGDA) [35]. In both cases, the results

were in the order of 60 ppm or 10-3 mol/l, so it seems justified to assume this value also for MMA

in this work. 

The simplified mechanism for the peroxide formation is:

(EQ 2.9)

The rate of peroxide formation is therefore:

(EQ 2.10)

Due to its great excess with regards to oxygen, the MMA concentration can be considered

constant:

(EQ 2.11)

Since not the oxygen concentration but the peroxide concentration at time t is measured, it

is necessary to express [O2] by [ROOR’] and the initial oxygen concentration [O2]0:

(EQ 2.12)

Hence, the rate of peroxide formation becomes:

(EQ 2.13)

2MMA + O   ROOR'→

[ ] [ ] [ ]m n
2
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 = k MMA O

dt
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(EQ 2.14)

Integration of equation 2.14 yields equation 2.15 and equation 2.16 for n = 1, respectively,

n ≠ 1. However, with equation 2.15, a straight line is obtained in the Arrhenius diagram, which

legitimates the assumption of first order kinetics with regards to oxygen and of zero-th order

kinetics with regards to monomer.

(EQ 2.15)

(EQ 2.16)

The Arrhenius diagram for this simplified formation kinetics is shown in figure 2.4. From

its slope and y-axis interception, the parameters k0 and EA were determined. Their values are

reported in table 1. In comparison to the data previously published [36], they have slightly

changed due to the addition of two more measurement series. 

For higher temperatures, i.e. above 70 °C, the data becomes less reliable since PMMAP

already starts decomposing and the measured concentration might already have been reduced by

this decomposition. In addition, with a boiling point of Tb=100 °C for MMA, the monomer can

partly evaporate from the vials due to its increasing vapor pressure. This might explain why the

upper data points in figure 2.4 seem to break out of the line.

Table 1: Arrhenius parameters of the PMMAP formation in distilled monomer

Value Error

ln k0 [s-1] 14.386 ± 3%

EA [kJ mol-1] 70.3 ± 2%
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On the other hand, the precision of the measurement gets worse for low temperatures,

where very small concentrations in the region of the measurement uncertainty have to be deter-

mined.

In order to investigate whether there is an influence of stainless steel on the MMA-OO for-

mation reaction, several runs were carried out with HNO3-treated swarfs of 1.4571/316Ti steel

(compare figure 2.1 b), by which it could be shown that the formation is not at all influenced by

the metallic surface in a reactor.

Figure 2.4: Arrhenius diagram for the formation of PMMAP (several series of experiments) 
according to equation 2.15
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2.1.3 Isolation and Characterization of PMMAP

The amounts of PMMAP produced in the formation experiments of chapter 2.1.2 are cer-

tainly not sufficient for further analysis and characterization of the peroxide. In order to carry out

GPC and NMR experiments for conformational analysis, sample weights in the order of some

milligrams are needed. Thus, the aim was to synthesize and isolate the polymeric peroxide.

 Since the oxygen, which is physically dissolved in the monomer at equilibrium state

(20 °C, <100 ppm, compare appendix 1, “Oxygen determination in organic solvents”), is not

present in sufficiently large amounts to produce enough peroxide for the different analyses, it was

necessary to bubble pure oxygen directly from a gas cylinder through the monomer at elevated

temperature. Therefore, distilled MMA was heated to 70 °C under reflux for several hours (see

figure 2.5). After this, the content of the round flask was reduced in a rotary evaporator at reduced

pressure (from 150 mbar to 2 mbar) until a viscous, clear liquid was obtained. The condensed vol-

atile phase was checked for peroxides but the concentration was below the detection limit of

2 ppm. Hence, it can be excluded that any volatile peroxides were formed. The viscous residue

was precipitated in fridge-cold petroleum ether (bp. 40-60 °C) at a volume ratio of 1:20 (volume

of the liquid : volume of petrol ether), centrifuged and redissolved in 2 ml chloroform (CHCl3).

This procedure was repeated several times until a white, sticky substance was obtained. 

Figure 2.5: Experimental setup for the synthesis of PMMAP
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The obtained sticky polymer was supposed to be or at least to contain the PMMAP. How-

ever, it could not be excluded that also ordinary PMMA had been formed during the oxygen bub-

bling due to radicals produced by the various reactions described above. Thus, in order to clarify

the composition of the substance, at a first instance GPC analysis was done (details about the used

GPC method in appendix 1).

Size Exclusion Chromatography (SEC/GPC)

Figure 2.6 shows the result of a GPC injection of three different solutions of the same poly-

mer in THF (c = 1.8, 2.4 and 3.7 mg/ml). It can be seen that there are two peaks that change with

concentration, corresponding to molecular weights of Mw ~ 2.5 106 g/mol and of Mw ~ 8’200 g/

mol, respectively. These average molecular weights were obtained by conventional calibration

with PMMA standards (PSS, Mainz, Germany, Mw values can be found in appendix 1).

The smaller one is attributed to the PMMAP, which is in good agreement with literature

data: Sivalingam et. al. [37] found a molecular weight of Mn ~ 2’750 g/mol for their PMMAP,

which was polymerized at 50 °C with 0.01mol/l azoisobutyronitril (AIBN). Subramanian [28]

reports a molecular weight of 1’800 g/mol for PMMAP that was polymerized at 40 °C with AIBN

as radical source. However, in the latter case it is not clear if the reported molecular weight is Mn

or Mw. The rather low molecular weight of PMMAP is explained by a high transfer activity and

mutual termination of peroxy radicals [38].

The higher molecular weight peak is assumed to correspond to a high molecular PMMA

that is formed in parallel to the peroxide by radical initiation at 70 °C. The high molecular weight

is caused by the small amount of radicals following thermal breakdown of peroxides in the system

and the rather low polymerization temperature.

This hypothesis of two separate polymers formed during the experiment also corresponds to

the conclusion that Bamford and Morris come to in their work [38]. Looking at the surface under

each peaks, which corresponds to the concentration of each component, reveals a ratio PMMA :

PMMAP of 75% : 25%. However, the concentration is only comparable for identical dn/dc1 val-

1. dn/dc stands for the change in refractive index n of a solution with increasing solute concentration c. This 
value is characteristic for various polymers and other substances.
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ues of each polymer. In this case, it can, therefore, only be an approximation, as the dn/dc value

for PMMAP is not known but likely to differ from the one for PMMA. Anyway, the peroxide con-

tent of the sample will be discussed later together with the results from the TGA measurements.

Figure 2.6: GPC analysis of the substance obtained in the PMMAP synthesis experiment

Table 2: Molecular weights of different PMMAP syntheses (GPC analysis)

Mn [g/mol] Mw [g/mol] PD

1 1’961 7’451 3.8

2 2’893 6’921 2.4

3 3’654 8’172 2.2
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Mw ~ 8200 g/mol
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NMR

For conformational analysis as well as for identification of PMMAP in the polymeric resi-

due, 1H- and 13C-NMR spectra were taken. Due to the strong deshielding effect of the oxygen

[30], peroxide groups in the polymer can be identified by several chemical shifts as explained in

the following.

The 1H-NMR spectrum, taken on a Bruker NMR at 400MHz, is depicted in figure 2.7. Cor-

responding to literature data [25] and information provided by an NMR specialist from the indus-

trial partner [39], the spectrum shows the expected signals for PMMAP: 

• 1.44 ppm -CCH3-

• 3.76 ppm -OCH3

• 4.34 ppm -OCH2-

The same applies for the 13C-NMR spectrum, shown in figure 2.8, despite a small shift

towards lower values with respect to the following literature data:

• 18.47 ppm CH3-C-

• 52.33 ppm CH3-C=O

• 75.79 ppm, 75.41 ppm -CH2-O-

• 84.78 ppm -C-O-

• 171.03 ppm -C=O

The decomposition product of PMMAP, methyl pyruvate or propanoic acid-2-oxo-methyl-

ester, could be identified (1H: 2.46, and 3.86 ppm). On the other hand, no evidence of hydroper-

oxides was found (1H: 6.4, 5.9 and 4.7ppm, 13C: 165.8, 128.7, 135.1 and 72.8 ppm). 
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Figure 2.7: 1H-NMR spectrum of the polymeric residue

Figure 2.8: 13C-NMR spectrum of the polymeric residue
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2.1.4 Decomposition of PMMAP

The decomposition mechanism for PMMAP has already been mentioned before (see equa-

tion 2.6) and was proven by the identification of the pyrolysis products formaldehyde and methyl

pyruvate. However, when it comes to the determination of the decomposition rate, respectively

the decomposition kinetics, the data found in literature are quite inconsistent. Mukundan and

Kishore [25] report a starting point of 100 °C with a maximum rate at 150 °C for the decomposi-

tion measured by DSC and TGA. Subramanian [28] mentions a thermal degradation temperature

determined by TGA of 132 °C - 134 °C, respectively of 145 °C in case of DSC measurement. It

seems that both, the method of measurement, and possible differences in the molecular structure

of the peroxide itself influence the results. At least it seems plausible that polymerization temper-

ature and the fact that initiator was added or not can have an effect on the thermal stability of the

produced peroxide.

In this work, different approaches have been undertaken to determine the decomposition

kinetics for PMMAP. First of all, DSC scanning experiments were carried out in combination

with a software-integrated calculation method for the kinetics (see below). Secondly, TGA-MS

experiments were used to verify the degradation mechanism by its products. Finally, the decom-

position kinetics were determined in batch polymerizations by means of the Odian method [40]

(dead-end polymerization).

Differential Scanning Calorimetry (DSC)

A very comfortable way to determine kinetics in general is by DSC scanning experiments

(compare “Differential Scanning Calorimetry”in appendix 1). Since due to the linear heating

ramp the reaction virtually runs through an infinite number of infinitesimal isothermal tempera-

ture steps, the Arrhenius parameters k0 and EA can be determined from only one experiment. For

the mathematical treatment of the measured data, there are several methods available (e.g. Fried-

man method, Chang method, Kissinger method [37]). The software of the DSC device uses a mul-

tilinear regression for the determination of k0, EA and reaction order n as explained in the

following [41].

The time-dependent degree of conversion X for a reaction of n-th order can be expressed by

equation 2.17.
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(EQ 2.17)

In order to solve this equation, either one variable needs to be held constant (this is the case

in isothermal experiments: ) or related with another one. The latter can be achieved for

constant heating rates by relating the temperature with time, since it is

(EQ 2.18)

the definition of the heating rate. Now, combining equation 2.17 with equation 2.18 leads to

the following expression, which is used in its linearized form (equation 2.20) to determine the

kinetic parameters.

(EQ 2.19)

(EQ 2.20)

From the DSC curve, values for ΔH and ΔHpartial(t) are derived, which, in the case that the

reaction terminates with full conversion, can be related with the conversion by the following

expression:

(EQ 2.21)

In this equation, ΔH corresponds to the total energy dissipated by the reaction and

ΔHpartial(t) to the dissipated energy from t=0 to t (area under the DSC curve). With this informa-

tion, the software can now determine k0, EA and n by multilinear regression.

Figure 2.9 shows the heat flux diagram for the decomposition of the bulk PMMAP contain-

ing residue (i.e. not in solution). The strong exothermal character of the reaction is clearly visible.

At a heating rate of 3 °C/min, the decomposition starts at approximately 100 °C with a maximum

rate at 145 °C. This corresponds very well to the above mentioned literature data.
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The specific heat of reaction of this sample was determined to be ΔHR = 190 J/g. However,

the total amount of sample contained probably both, PMMAP and regular PMMA. Therefore, this

heat of reaction needs to be normalized to the weight of the peroxide only. To obtain this informa-

tion, i.e. how much peroxide, respectively, polymer there is in the residue, experiments with a

thermobalance were carried out as described later in this chapter (see “Mass-spectrometer cou-

pled Thermogravimetry (TGA-MS)” on page 33). Assuming a peroxide content of 36.5% (com-

pare figure 2.14), the corrected value becomes ΔHR = 520 J/g (for comparison: the heat of

decomposition of tert.butyl peroxide (DTBP was determined to be ΔHR = 1113 J/g as shown in

appendix 4).

For the determination of the kinetics by means of the above equations this effect has no

influence, though, since for the calculation of X in equation 2.21 a relative heat of reaction is

used. The result of the scanning kinetics analysis is depicted in figure 2.10 in the form of an

Arrhenius diagram. Although the software allows to fit also the reaction order n, it was preferred

Figure 2.9: DSC diagram (heat flux over time) for the PMMAP decomposition with integration 
for kinetic analysis (heating rate 3°C/min)
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to fix it to n=1. Trials with the fitting of all three parameters always lead to results for n close to 1,

which is confirmed by literature (Sivalingam et al. [37] determined reaction orders between

n = 0.8 and n = 1.3 depending on the method). Yet, since an irrational reaction order is not justi-

fied by the mechanism (unimolecular degradation), the fitting was reduced to 2 parameters by fix-

ing the reaction order to n = 1.

An important aspect in the kinetic investigations of the degradation of PMMAP is the possi-

bility of autocatalysis, i.e. the phenomenon that the reaction is accelerated in the bulk substance,

while it appears slower in solution. The DSC decomposition experiment was therefore repeated in

several dilutions and solvents. It was observed that, indeed, there seems to be a difference

between the diluted and the bulk reaction. In table 3, the Arrhenius constants for different perox-

ide samples in different solvents are listed. It is evident that, for the undiluted peroxide, these con-

stants are significantly higher. Furthermore, there also seems to be a difference between the

solvents, themselves. 1,2-Dichlorobenzene and biphenyl exhibit the lowest decomposition values,

whereas in butyl acetate, as quite polar solvent, both, prefactor and activation energy, are higher.

This allows the assumption, that the decomposition is influenced by interactions with polar

Figure 2.10: Example of an Arrhenius diagram (ln k over 1/T) from DSC scanning kinetics
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groups, therefore also with other peroxidic groups, which might be a reason for the, what it seems,

faster decomposition of the undiluted samples. The consequences of these differences are demon-

strated by the halflife-time values for each sample, which are traced in figure 2.11.

 Also given in table 3 is a literature value for the decomposition taken from Fenouillot et al.

[42], who describe an “impurity” that decomposes quickly as reason for the fast increase in con-

version in their blind experiments. It is reckoned by the author of the present work that this impu-

rity is, indeed, PMMAP, which seems justified considering the agreement of the kinetic data

(compare also figure 2.17).

Table 3: Kinetic values for the decomposition of PMMAP under different conditions (each sample 
comes from a different PMMAP synthesis)

Peroxide 
Concentration k0 [s-1] EA [kJ mol-1]

Sample 1 Undiluted - 2.79.1014 134.60

Butyl Acetate ~ 10 % 3.41.106 73.84

1,2-DCB ~ 10 % 9.81.105 68.64

Sample 2 Undiluted - 1.56.1013 123.43

Butyl Acetate ~ 30 % 9.44.107 82.78

Sample 3 Butyl Acetate ~ 10 % 4.72.105 65.76

1,2-DCB ~ 10 % 1.18.105 60.87

Biphenyl ~ 3 % 5.68.105 66.33

Sample 4 Undiluted - 2.72.1014 132.9

Literature [42] - 1.93.1010 104.4
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In order to obtain kinetic values for kpo,d to use in PREDICI® for the modeling of the initi-

ation by MMA peroxides, the averages of the above described values for the undiluted and the

diluted case were calculated by linear regression of the ln k over 1/T curves for the different sam-

ples kinetics. The result is depicted in figure 2.12. From the average ln k over 1/T curves, the fol-

lowing kinetics constants were calculated:

Figure 2.11: Half-life time - temperature plot for different peroxide samples and dilutions
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For the modeling of the decomposition kinetics it was found that the average value for the

diluted peroxide sample describes best the experimental data obtained in batch polymerizations

(compare “Verification of the Kinetics in Batch Experiments” later on). This is reasonable consid-

ering that in a batch polymerization, the peroxide is present only in very small concentrations and

the interactions between the peroxide molecules influencing the decay as in the undiluted sample

will be negligible.

Table 4: Average values for the kinetic constants of the PMMAP decomposition

k0 [s-1] EA [kJ mol-1]

diluteda

a. This value was used in the kinetic model

1.775.106 70.38

undiluted 1.058.1014 130.31

Figure 2.12: Calculation of average values for the decomposition kinetics of PMMAP for the 
diluted and undiluted samples by linear regression of the different lnk against 1/T curves
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Mass-spectrometer coupled Thermogravimetry (TGA-MS)

In order to determine the composition of the polymeric residue, i.e. how much peroxide,

respectively normal polymer was formed during the oxygenation reaction, TGA-MS runs were

carried out with different samples. Thermogravimetry allows the determination of weight losses

as a function of temperature. Furthermore, often a calorimetric signal is produced, which can help

to describe the nature of the weight loss (i.e. exothermic, endothermic).

In this part of the project, TGA was employed to investigate and understand the composi-

tion of the peroxide samples obtained from the above oxygenation experiments. It has been

already conjectured that the samples do not consist of polymeric peroxide only but that there is

also “ordinary” PMMA present. If this is the case, then in the thermogravimetry there should be

different weight loss steps, according to the amount of peroxide and polymer present. In fact, the

samples decompose in two steps, as can be seen from figure 2.13, which shows the weight loss

curve with increasing temperature (heating rate 5°C/min) under inert conditions. Here, the sample

weight over temperature is depicted together with the SDTA® (single differential thermal analy-

sis, trademark of Mettler Toledo, Switzerland) signal. The SDTA signal represents the tempera-

ture difference between the temperature near the sample and a reference program temperature.

Analogous to the differential scanning calorimeter (DSC), the SDTA signal indicates whether a

weight loss measured by the thermobalance is an exothermic or endothermic process. The SDTA

signal can also measure heat flow of transitions that do not involve a weight change, i.e. melting

of the sample.

The first weight loss corresponds to the decomposition of PMMAP. Firstly, it starts at

approximately 100 °C and has its maximum rate between 140-150 °C, which is in perfect agree-

ment with data from DSC experiments. Secondly, it is an exothermic weight loss, as can be seen

from the SDTA curve, a fact, which underlines that this weight loss is due to the peroxide. The

second weight loss, on the other hand, is endothermic. This is typical for a scission mechanism of

a polymeric chain like PMMA. Also the temperature range of this step between 300 °C and

400 °C is typical for PMMA main chain scission [43].

In figure 2.14, the integration of the weight loss curve from figure 2.13 is shown. By step

integration, it is calculated that of the total sample mass, 36% decompose during the first step and

50% during the second. The remaining 14% of the sample weight decompose in the transition
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period between the two steps, probably due to weak linkages in the PMMA chains. The amount of

residue in the crucible due to unreacted tar is negligible. Therefore, the amount of PMMA decom-

posed during the experiment can be estimated to be of 64% in total.

Still, this ratio is a little more in favor of the peroxide, compared to the results obtained by

GPC before (see figure 2.6), where only 25% of the sample were assigned to PMMAP and 75% to

PMMA. The reason for this difference might be that PMMA starts decomposing at temperatures

as low as 150°C due to head-to-head bonds in the polymeric chains. Having a closer look at the

TGA curve in figure 2.14 reveals that the weight loss between 150 °C and 200 °C is of approxi-

mately 10%. It might, therefore, be that within the 36% weight loss of the first decomposition

step, there is already a significant part of “normal” decomposing PMMA included. Another

important reason for the lower value found by GPC might be, as mentioned above, a difference in

the dn/dc ratio for homogeneous PMMA and PMMAP. Each species has a different increment of

the refractive index with concentration. The peak areas are - being strict on it - only comparable if

this value is identical for both polymers. Otherwise the direct comparison of the peak areas in the

GPC spectrum does not make sense. For PMMA and PMMAP a difference in dn/dc is possible

since due to the peroxide groups the conformation of the polymer chains is no longer the same as

for linear PMMA. The TGA result is, therefore, the more reliable as concerns the peroxide con-

tent of the sample.

Last but not least, the amount of peroxide in the sample also depends to a large extent on the

synthesis conditions (temperature, duration). It is, thus, not necessarily a reproducible parameter.



2.1:  MMA peroxides

35

Figure 2.13: TGA curve (5°C/min) with SDTA signal for the decomposition of PMMAP in inert 
atmosphere

Figure 2.14: TGA curve with step integration for quantification of weight loss

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400

T [°C]

re
l. 

w
ei

gh
t l

os
s 

[%
]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
D

TA
 s

ig
na

l [
°C

]

TGA SDTA

exothermal
endothermal

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400

T [°C]

re
l. 

w
ei

gh
t l

os
s 

[%
]

36.5%

50.6%



Chapter 2:  Self-Initiation at high temperatures

36

An even more powerful tool for the analysis of solids is the coupling of TGA with mass

spectrometry (TGA-MS). The principle of this kind of measurement is the identification of the

pyrolysis products, which are transfered from the sample crucible through a capillary directly into

the MS, by their molecular mass. Like this, it becomes possible to say something about the mech-

anism of the decomposition or to prove that a certain expected mechanism takes place.

The major decomposition product of PMMAP is methyl pyruvate (see equation 2.6),

whereas linear PMMA decomposes by unzipping mostly back to MMA. The mass spectrum of

methyl pyruvate and methyl methacrylate have their most important peaks at 43 amu, respectively

41 amu [44]. These masses represent the following fragments that are produced by alpha-scission

of the respective molecules:

(EQ 2.22)

 Thus, as presented in figure 2.15, these masses were tracked simultaneously by the MS for

the time of measurement. The above made assumption that the first decomposition step corre-

sponds to PMMAP and the second to PMMA is well supported by the result of this experiment,

which shows that during the first step, mostly methyl pyruvate is produced, while during the sec-

ond step MMA is the dominant product. The presence of the mass 43u also during the second step

might be due to the fact that it appears in the mass spectrum of MMA, too.

H3C

H2C

H3C

O41 amu 43 amu
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Odian method

It is generally preferable to determine decomposition kinetics of a species under the same

conditions under which the decomposition takes place in the real process, rather than in isolated

experiments where concentrations and interactions with other molecules are different. This means

that rather than determining the decomposition in a DSC with the undiluted peroxide, it should be

determined from a polymerization experiment in a stirred reactor. The Odian method [40] allows

the estimation of both, initiator decomposition rate and efficiency, from dead-end batch polymer-

izations. A dead-end polymerization is a polymerization that stops short of its final conversion

due to insufficient initiator (so-called “initiator burn-out”).

Based on the expression

(EQ 2.23)

Figure 2.15: TGA-MS curves for the decomposition of PMMAP / PMMA
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where  is the dead-end conversion (obtained by extrapolation of the measured conver-

sion to ), the parameter kd can be determined from the slope of the graph -ln[...] against t.

The initiator effiency at zero conversion f0 is then calculated in a second step by the following

equation:

(EQ 2.24)

However, for the calculation to be precise, it is necessary to have isothermal reaction condi-

tions. This is not the case for the decomposition of PMMAP in a batch reaction, since it starts

decomposing already during the heating phase. The resulting kinetics will, therefore, be much

slower than the ones determined by DSC, since the effective temperature is significantly below

the set temperature for each experiment. Only the efficiency value can be considered as reliable,

when it is estimated according to equation 2.24 with the temperature dependent values for kd, kt

and kp, determined previously by other methods.

Yet, for initiators added later to the reaction, i.e. under isothermal conditions, the method is

suitable. Results for the thermal initiators TBPEH and DTBP are presented in the section “Verifi-

cation of the Kinetics in Batch Experiments” of this chapter.

For PMMAP, three curves were measured in a bench-scale batch reactor (VR = 1 L) at dif-

ferent temperatures (130 °C, 150 °C, 170 °C). The graphs are presented in figure 2.16. For each

curve, a kd value can be determined with help of equation 2.23 and the following Arrhenius

decomposition kinetics were calculated:

Table 5: Kinetic parameters for the PMMAP decomposition as calculated by the Odian method

k0 [l mol-1s-1] EA [kJ mol-1] f [-]

PMMAP 4.72.107 a

a. These values are too small due to non-isothermal 
conditions (compare text). For modeling purposes 
use values provided in table 4.

85.6a 0.21b

b. Value estimated according to equation 2.24 consid-
ering the heating ramp and using literature kt, kp as 
well as the kd determined by DSC.

X∞

t ∞→

f0
1 X∞–( )ln
2 kp⋅

--------------------------⎝ ⎠
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2 kd kt⋅
I[ ]0

-------------⋅=



2.1:  MMA peroxides

39

Figure 2.16: Batch blind polymerizations (without additional initiator) for Odian calculations of 
the PMMAP decomposition

Figure 2.17: Comparison of the Odian kinetics with DSC and literature [42] values

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000
Time [s]

X
 [-

]

130°C
150°C
170°C

0.01

0.1

1

10

100

1000
100 120 140 160 180 200

T [°C]

t 0.
5 [

m
in

]

DSC undiluted DSC diluted Odian Literatur



Chapter 2:  Self-Initiation at high temperatures

40

From figure 2.17 it becomes evident that there is a rather large discrepancy between the dif-

ferent kinetics for the decompositon of PMMAP. The kinetic constants determined by the Odian

method deliver, as expected, the slowest decomposition rate while the undiluted DSC sample

yields the fastest one. The true values can be found somewhere inbetween and comparison to

experimental data from batch polymerizations (conversion over time curves, see chapter 2.5) have

shown that the kinetics determined by DSC for the diluted sample lead to the best matching

results. Therefore, in all further modeling, the constants from table 4 were used for the PMMAP

decomposition rate.

2.2 Thermal initiation

By the term “thermal initiation”, polymer chemists understand the spontaneous initiation of

polymerization without interaction of any other compound than the monomer itself. For MMA,

this mechanism is, as explained in the following, bimolecular (unlike, for example, for styrene,

where it is unimolecular):

(EQ 2.25)

This definition needs to be underlined here, since the simple fact of observing an important

monomer conversion without addition of initiator does not necessarily reflect a thermal initiation.

As seen before, many different reactions can take place in the reaction system, which cause inita-

tion. Thus, for the correct determination of “true” thermal initiation rate coefficients, the mono-

mer must be carefully purified in order to exclude as much as possible impurities and foreign

substances.

Stickler and Meyerhoff [14] undertook a whole series of experiments in the late 70’s, where

they purified the monomer in a specially developped high-vacuum distillation device, from which

the monomer was immediately isolated in hermetic, silane treated glass ampoules. These

ampoules were closed by melting under high vacuum (10-4 Pa). Accordingly, the authors obtained

data for the thermal initiation that was significantly lower than what had been published before. In

fact, the rate of polymerization was so low that even the radical production by natural ionising

radiation (cosmic radiation) had to be taken into account. At 100 °C, the obtained polymer weight

M M+ 2P1∗→
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fraction after 5 days was less than 4%. At 0 °C, it took almost 2 months to obtain 1% polymer.

This is in clear contrast to the results obtained with monomer that has been purified with less

sophisticated distillation techniques: Lehrle and Shortland [22] measured conversions of more

than 20% within less than two days at 40 °C and Fenouillot et al. report values around 30% after

12 hours at 160-180 °C. In these cases, it may be that traces of MMA peroxides, chain transfer

agents or residual amounts of initiator used for prepolymerization are the reasons for this elevated

conversions.

As to the mechanism of the thermal initiation of MMA, Lingnau and Meyerhoff [17, 19]

propose an initiation mechanism via a dimeric biradical .M2
., which is formed by a tail-to-tail

monomer addition, in combination with a transfer reaction to monomer, solvent or chain transfer

agent. According to the authors, the biradical cannot grow into two directions to yield high poly-

mers and, therefore,  has to be terminated first on one side by a transfer reaction (see figure 2.18).

This assumption is supported in their publications by various experimental and theoretical data

(side products and energetic considerations).

Since, in this work, the initiation by MMA peroxides and other impurities is evaluated sep-

arately (i.e. no “global thermal initiation” rate, taking into account several mechanisms, is used),

it seems close-at-hand to use the rate coefficients of Stickler and Meyerhoff for the “true” thermal

initiation 1:

Figure 2.18: Mechanism for the thermal initiation of MMA via dimeric biradicals

1. The word “true” is set in quotation marks since, in spite of the advanced purification efforts made by
Stickler, there is no final proof or certainty that the observed initiation reaction follows only this and no
other mechanism. Therefore, it still remains a hypothesis - although the author of this work fiercely sup-
ports Stickler’s explanation.
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(EQ 2.26)

As mentioned above (equation 2.25), it is a second order reaction in monomer concentra-

tion, thus it is

(EQ 2.27)

2.3 Initiation by the Chain Transfer Agent

Apart from the thermal initiation reactions by peroxide and the monomer itself, also chain

transfer agents can have a strong initiating potential. Common chain transfer agents in radical

polymerization are thiols, substances with a more or less long carbon backbone and an -SH reac-

tive end group. Most widely used are n-butanethiol, n-dodecanethiol and the aromatic species

phenylthiol.

Concerning the initiation of radical polymerization, Xia et al. [45] have investigated this

phenomenon for the MMA polymerization with different thiols at low temperatures and propose a

hydrogen transfer from thiol to MMA as mechanism of initiation:

(EQ 2.28)

For the high temperature polymerization, the initiating behavior is even more pronounced

than for low temperatures, as found by Fenouillot et al. [42], who determined the kinetic parame-

ters for n-butanethiol and MMA in the temperature range 130 °C - 168 °C. Although in this work

n-dodecanethiol (DDT) is used, these parameters were used for the modeling, assuming that they

Table 6: “True” thermal initiation rate coefficients from [14]

k0 [l mol-1s-1] EA [kJ mol-1]

kth 5.3703 108.5

Rthlog 0.73 5670
T

------------–=

d M[ ]
dt

------------- kth M[ ]2⋅–=

RSH + MMA MMA+RS
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are valid in good approximation also for longer chain thiols. In fact, as presented in the last part of

this chapter, they lead to excellent results in batch polymerization experiments with DDT.

2.4 Formation of the Dimer

At elevated polymerization temperatures, an interesting phenomenon can be observed: val-

ues for the conversion measured by gas chromatography of the residual monomer differ signifi-

cantly from gravimetric methods or methods determining the polymer (i.e. GPC). This means that

monomer is consumed to important extents by a reaction other than the polymerization, which

yields a product that is neither precipitating nor part of the polymer peak in the GPC.

Albisetti et al. [46] described in 1956 the preparation of dimers from unsaturated meth-

acrylic compounds. For methyl methacrylate, the following mechanism based on a Diels-Alder-

type reaction is proposed, leading to the unsaturated dimer, 2-methyl-5-methylene-hexanedio-

icacid-dimethylester, also referred to as H-1:

It should be pointed out that the dimerization does not belong to the group of initiation reac-

tions, but represents an additional effect influencing the conversion evolution at high tempera-

tures.

Stickler and Meyerhoff [15] discuss the formation mechanism presented in figure 2.19 in

comparison to a mechanism based on the formation of a biradical .M-M. due to tail-to-tail addi-

Table 7: Initiation by Chain Transfer Agent, rate coefficients from [42]

k0 [l mol-1s-1] EA [kJ mol-1]

kdt 6.78.107 128.7

Figure 2.19: Pseudo Diels-Alder-Mechanism for the formation of MMA dimer [15]
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tion of two monomer molecules analog to the one of the thermal MMA polymerization (see

page 41), but in the end it appears that they favour the above presented enophilic mechanism.

In their publication, they also determine the formation rate for the MMA dimer over a wide

temperature range (100 °C - 275 °C). In agreement with the mechanism in figure 2.19, they find

second order reaction kinetics:

(EQ 2.29)

The formed dimer can be incorporated in the growing PMMA chains by copolymerization

as pointed out by Brand, Stickler and Meyerhoff [16], but this reaction as well as the homopoly-

merization of the dimer, itself, can be neglected in initiator-started polymerizations. The copoly-

merization might influence the thermal reaction of MMA, though.

2.5 Verification of the Kinetics in Batch Experiments

A series of batch experiments were carried out to verify the kinetics of the different thermal

initiation mechanisms as discussed above. The reactor setup is presented in figure 2.20. It consists

of a 1-l stainless steel reactor that is fixed into a double jacket and closed with a cover containing

a mechanical stirrer. It is heated by a flow of heat transfer fluid (synthetic oil, Shell Aseol Trans

SH) through the double jacket and an internal heating coil. For pressurization and sampling there

is an immersion tube with a three-way valve. One end of the three-way valve is connected to a

nitrogen gas cylinder, the other ends in a sampling vial. Samples are taken through the three-way

valve directly into pre-cooled glass vials with screw caps (Schott Duran) and immediately frozen

to -20°C. They are consecutively analyzed for conversion and molecular weight.

Table 8: Formation rate coefficients for the dimerisation of MMA [15]

k0 [l mol-1 s-1] EA [kJ mol-1]

kH-1 4.9386 105 107.2

d H 1–[ ]
dt

------------------- kH 1– M[ ]2⋅=
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The addition of initiator or other additives under pressure is realized by a pressurized steel

cylinder on top of the cover. The reactor content is mixed by a propeller and an anchor stirrer at

the bottom, both fixed on the same axis. 

The monomer / solvent mixture is filled into the open reactor, which is then closed tightly

and pressurized with N2 at 10 bar. With the help of an oil thermostat, the whole device is brought

as quickly as possible to reaction temperature (ΔT/Δt ~ 3 °C/min). Depending on the experiment,

an initiator solution can be added at an arbitrary time t through the cylinder fixed on top of the

reactor without opening or depressurizing the reactor.

In the beginning, blind experiments without any radical initiator were carried out to exam-

ine the auto-initiation of non-purified MMA (i.e. from the barrel) and to verify the model parame-

ters determined in the preceding paragraphs. Figure 2.21 contains the results of these experiments

Figure 2.20: Schematic drawing and photograph of the 1-L batch reactor used in this work
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compared to the predicted data from the kinetic model established in PREDICI® (see appendix 3

for for a complete description of the model).

Graph (a) shows the conversion evolution for an assumed oxygen concentration of

[O2]0 = 60 ppm. This value is considered throughout this work as the saturation concentration for

physically dissolved oxygen in MMA at T = 20 °C and p = 1 bar (pO2~0.2bar). However, this

concentration is very susceptible to changes of the environment (T, p), which might be the expla-

nation for the 170 °C curve to differ slightly from the experimental data points. The molecular

weight distributions in graph (b) are well matched by the model predicition with the same discrep-

ancy at 170 °C as for the conversion evolution. The fact that the molecular weights are quite low

is due to the high amount of chain transfer agent, which was added in order to keep the viscosity

low and not to risk entering the gel effect region.

How big the influence of the oxygen concentration on the conversion evolution can be is

demonstrated in figure 2.22 (a). It shows three times the same experiment, carried out under - pre-

sumedly - the same experimental conditions: monomer from the barrel, T = 140 °C, p = 10 bar.

Yet, completely different conversions were measured, i.e. the reproducibility was very poor. This

effect can be vividly explained: by changing the initial oxygen concentration of the system in the

(a) (b)
Figure 2.21: Batch blind experiment at different temperatures with model prediction
 (a) conversion evolution (b) molecular weight distribution [ws = 30% butyl acetate, 

[CTA]0 = 4000 ppm] (for kinetic constants used see appendix 3)
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model, the predicted curves perfectly match the different experimental ones. A loss of oxygen in

the system easily occurs, for example when the reactor is accidentally opened after it had already

been pressurized (in one particular case the operator had forgotten to add chain transfer agent and

continued the experiment after having opened - and depressurized! - the reactor). Thus, the dis-

solved oxygen is so to speak driven out of the monomer together with the nitrogen. The same

effect may be caused by a leak of the mechanical sealing of the stirrer’s axis. Since the reactor is

pressurized through an immersion tube, a small constant flow of nitrogen equals a degassing of

the monomer by bubbling inert gas through it, which quickly diminuishes the oxygen concentra-

tion. It is, therefore, not astonishing that different conversion evolutions are measured if one can-

not be sure to have at 100% the same conditions for each experiment. At least with the given

reactor setup, to achieve this absolute reproducibility was not possible.

Figure 2.22 (b) exhibits the influence of chain transfer agent on the initiation of the poly-

merization at T = 180 °C. The same experiment was carried out once with and once without the

addition of 4000 ppm n-dodecanethiol (DDT). The strong initiating behaviour of a thiol at this

temperature is clearly visible. For the experiment without CTA, on the other hand, the “true” ther-

mal initiation can be noticed as a linear increase in conversion with time. However, its importance

at this temperature is still much less pronounced than for the chain transfer agent.

(a) (b)
Figure 2.22: Influence of (a) the oxygen concentration and (b) the chain transfer agent on the 

conversion evolution [(a) 140 °C (b) 180 °C, both with ws = 30% butyl acetate, 
[CTA]0 = 4000 ppm]
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For a final comparison of each species initiating potential, simulations were carried out with

only one mechanism activated at a time, respectively all of them together, for a reaction tempera-

ture of T = 170 °C. The result is presented in figure 2.23. It is quite clear from this graph that

mostly the chain transfer agent is responsible for the linear conversion increase after the burn-out

of the MMA peroxide. The latter has with almost 20% monomer conversion the biggest share in

the initiation of the polymerization. The conversion increase by dimerization can almost be

neglected at this temperature, while the auto-initiation of MMA by intramolecular interactions,

itself, plays quite a role for longer reactions times. With regards to a continuous process, where

residence times of less than an hour are common, its influence is not too important, though.

In the same reactor setup, also experiments with initiator were carried out. For these experi-

ments, an initiator-containing solution was added at a given time t through the pressurized steel

funnel to the reaction mixture. This time t was ideally after the burn-out of PMMA peroxide in

order to see the effect of both initiating species separately.

The figures on the following pages contain the results of two exemplary experiments, one at

T = 127 °C with TBPEH (tert-Butyl-per-2-ethylhexanoat) as initiator and the other at T = 150 °C

with DTBP.

Figure 2.23: Comparison of all initiating species concerning their initiating potential (modeled 
conversion curves for T = 170 °C, [CTA] = 4000 ppm
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The conversion evolution cleary shows the different initiating processes, i.e. first the initia-

tion by MMA-peroxide and then by the added initiator. Each initiation process is responsible for a

(a) (b)
Figure 2.24: Results for the 127 °C  batch experiment (50% BuAc, [TBPEH] = 1000 ppm, 
[CTA] = 100 ppm) (a) Conversion evolution (b) Molecular weight distribution (t = 5000 s)

(a) (b)
Figure 2.25: Results for the 127 °C batch experiment (50% BuAc, [TBPEH] = 1000 ppm, 

[CTA] = 100 ppm) (a) Temperature and initiator concentrations (MMA-OO and TBPEH) over 
time (b) Molecular weight evolution (Mw, Mn)
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different molecular weight distribution leading to a bimodal distribution at this temperature,

which is shown in figure 2.24 (b). The attribution of each molecular weight distribution to one ini-

tiating species becomes especially clear in figure 2.26, where the evolution of the distribution

with time is presented by means of a 3D-graph. Clearly visible is the “birth” of the lower molecu-

lar weight part at the moment of initiator addition.

The predicted extremely high molecular weight polymer in the beginning of the reaction

(figure 2.25 (b)) has its origin in a misinterpretation of the model for very low radical concentra-

tions. Its concentration can be neglected, though, as proven by the absence of very high molecular

weights in the distribution graph (figure 2.24 (b)). In reality, inhibition reactions would prevent

the formation of such high molecular weight chains. However, in the simulation these are not

taken into account. For the rest of the results, the model shows excellent agreement with the mea-

sured data.

For T = 150 °C, the results look very similar. The only difference is that DTBP decomposes

much slower than TBPEH. Therefore, the bimodality of the observed molecular weight distribu-

Figure 2.26: 3D-plot of the molecular weight distribution evolution with time at 127 °C
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tion (figure 2.27 (b)) is less pronounced. At 120 °C, TBPEH decomposes rapidly producing a

large radical flow, which leads to little polymer with significantly lower molecular weight than

previously produced by the decomposing MMA-OO. Therefore, the distribution gets bimodal

with two almost equally important peaks. For DTBP, the initiator concentration rises much higher

(compare figure 2.25 (a) and figure 2.28 (a)) and rests much longer. The radical flow is, thus,

much less intense, which leads to a larger amount of produced polymer with, at the same time, a

higher molecular weight than during the earlier period. The polymer produced beforehand by the

decomposing MMA-OO plays, therefore, only a minor role and appears in the final distribution

only as shoulder (figure 2.27 (b)). This becomes evident once again in the molecular weight dis-

tribution evolution with time, as demonstrated illustratively by the 3D-graphic in figure 2.29.

Furthermore, it is important to remark that for this temperature range, the MMA peroxide is

formed and decomposed already during the heating period. This leads to more than 20 % mono-

mer conversion before the reactor has even reached its final temperature, which, once again,

underlines the importance of MMA peroxide and oxygen in the polymerization of MMA.

From both experiments, kd and the initiator efficiency at zero conversion f0 could be deter-

mined following the Odian method (see “Odian method” on page 37). The values for kd are in the

same order of magnitude than the values determined by DSC in this work, although for TBPEH

the decomposition is a little slower and for DTBP a little faster. Considering the rather low preci-

sion of the Odian method (double-logarithm, i.e. measurement errors are strongly amplified), this

seems reasonable. The value for the efficiency of TBPEH and DTBP seem quite realistic, too.

Unfortunately, there is no literature value available yet for the TBPEH efficiency.

Table 9: Kinetic parameters for the decomposition of thermal initiators TBPEH and DTBP 
determined from batch experiments according to the Odian method

kd [s-1] kd [s-1]
(DSC)a

a. determined by DSC, compare appendix 4 for more details

f0 [-] f0 [-] 
[47]

TBPEH (127 °C) 6.40.10-3 1.22.10-2 0.51  -

DTBP (150 °C) 9.35.10-4 5.07.10-4 0.72 0.7
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(a) (b)
Figure 2.27: Results for the 150°C batch experiment (50% BuAc, [DTBP] = 1000 ppm, 

[CTA] = 100 ppm) (a) Conversion evolution (b) Molecular weight distribution (t = 15’000 s)

(a) (b)
Figure 2.28: Results for the 150°C batch experiment (50% BuAc, [DTBP] = 1000 ppm, 

[CTA] = 100 ppm) (a) Temperature and initiator concentrations (MMA-OO and BTBP) over time 
(b) Molecular weight evolution (Mw, Mn)
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2.6 Discussion

The self-initiation of MMA and the behaviour of PMMA peroxides is one key topic of this

work. For a long time underestimated in high-temperature MMA polymerizations, their full

potential as thermal initiators and their influence on conversion and molecular weight evolution

has been investigated in detail within this chapter. The results could mostly confirm the literature

data on the formation and decomposition, as well as on the structure.

In particular, it was proven that physically dissolved oxygen ([O2]MMA ~ 60 - 70 ppm satu-

ration concentration at 20 °C) reacts with MMA (and probably other acrylic monomers) to form

copolymeric peroxide chains with molecular weights between 2’000 and 10’000 g/mol, which

Figure 2.29: 3D-plot of the molecular weight distribution evolution with time at 150 °C
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accumulate in the system until the monomer is heated. The presence of these peroxides was

proven by several analytical techniques, among which NMR, GPC and TGA-MS.

At high temperatures (> 100 °C), these peroxides decompose exothermally and initiate the

radical polymerization. It is, therefore, legitimate to speak of a high-temperature decomposing

initiator. Depending on the reaction conditions, monomer conversions as high as 30 % can be

observed.

The formation and decomposition kinetics were determined experimentally and the results

included as reaction (formation-, decomposition- and initiation-) steps in a kinetic model (the

complete model is presented in appendix 3). With this model, it is now possible to describe batch

polymerizations with and without the addition of thermal initiator in a very precise way. A miss-

ing point is the possibility to determine reliably the oxygen content of MMA samples. The satura-

tion concentration had to be estimated to 60-80 ppm, a value which corresponds to literature data

for other acrylics and organic solvents [35, 48]. Especially in the batch reactor the reproducibility

of experiments was sometimes rather poor, which is assumed to be due to changing oxygen con-

centrations. These are produced by the pressurization and depressurization of the reactor with

nitrogen during the preparation phase. A determination of the O2 amount in the organic phase

could help improve the understanding of these effects.

Aside from the initiation by MMA peroxides, the initiation by chain transfer agent, the ther-

mal initiation of MMA due to intramolecular interactions in the pure monomer, as well as the for-

mation of dimers were also investigated. While the chain transfer agent has a significant influence

on the initiation at 170 °C and above, the “true” thermal initiation of MMA plays no major role

below 180 °C and is, therefore, negligible for most experiments carried out in this work. The

same applies for the formation of dimers and higher oligomers, which only start having a measur-

able effect on the conversion even above 180 °C.

The observed phenomena will be included in the model for the description of the continu-

ous pilot plant process and evaluated once again in this context.
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Short Summary:

• The spontaneous polymerization of MMA is an important aspect in high tempera-

ture processes and cannot be neglected in the kinetic modeling

• Different mechanisms for the initiation and dimerization of MMA have been 

evaluated concerning their importance in terms of monomer conversion

• It was found that the major role in the thermal initiation of MMA play polymeric 

peroxides that form from physically dissolved oxygen

• The formation and decomposition kinetics of these peroxides were successfully 

determined in this work and the peroxides, themselves, were characterized by 

various analytical methods

• Finally, the determined kinetics for the various reaction mechanisms discussed in 

this chapter were discussed with respect to experimental data obtained from high 

temperature polymerization reactions carried out in this work.
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CHAPTER 3

High Temperature Gel Effect

The term “gel effect” or “Trommsdorff effect” generally describes the phenomenon that,

in homogeneous bulk polymerizations at higher polymer contents and in particular at low tem-

peratures, the reaction rate and degree of polymerization increase significantly. This effect is

especially intense in the methyl methacrylate polymerization, but occurs also for monomers

like styrene, vinyl acetate and others. Trommsdorff [49] was among the first to explain his

observations by the fact that, with increasing viscosity of the reaction medium, the diffusion of

the macro radicals and, thus, the termination of the reactive chains is impeded whereas the dif-

fusion of the smaller monomer molecules to the reactive centers at the chain ends continues

undisturbed [50]. The reason of this apparent increase in reaction rate and degree of polymer-

ization is, therefore, a strong drop of the termination rate with growing polymer fraction in the

reaction medium.

In the modeling of MMA polymerizations, the gel effect is one of the most important

factors to consider. It has a strong influence on both, the rate of monomer conversion and its

final value (and, therefore, on the heat production that is to expect), as well as on the molecular

weight distribution. Thus, it becomes inevitable for any kinetic model to correctly describe the

changing of the termination rate kt with increasing viscosity. The term conversion is avoided

on purpose in this context, since the intensity of the gel effect does not only depend on the

monomer conversion, but also on factors like solvent content, molecular weight and tempera-

ture. For example, as will be shown further on in this chapter, in a polymerization above 120°C

with 30% solvent, the gel effect becomes almost negligible. The same applies to bulk polymer-
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izations at temperatures above 170°C, where in the conversion-time curve no clear acceleration is

visible anymore.

Since the beginnings of polymerization modeling, the gel effect has been extensively inves-

tigated and kinetically described by innumerable authors. In particular during the 80’s, several

important advances in its description were made. According to Tefera, Weickert and Westerterp

[51], there exist 5 different model concepts, each of them describing the termination rate constant

by another phenomenon: 

• Viscosity based models

• Conversion or polymer weight fraction based models

• Reptation theory based models

• Entanglement concept based models

• Free volume theory based models, 

Apart from the theory that lies behind each model, one major difference is the use of a break

point in some of them, i.e. an artificial switch at a certain conversion, for example, from where on

the calculation of kt changes suddenly. This is, however, in contradiction to reality, since the gel

effect does not start at a sudden time t, but is slowly increasing with the polymer fraction. There-

fore, there is no sense in considering these models for this work. In the following, only models

that offer a continuous correlation of kt with other reaction parameters will be discussed, namely

models based on the free volume theory.

Although these models are based on the same theory, i.e. the free volume theory of Vrentas

and Duda [52-55], they differ fundamentally in their general concept. However, one thing they all

have in common is the fact that they were derived for temperature ranges far below the glass tran-

sition temperature Tg, except for two models developed at EPFL in the 90’s, one by Fleury and

the other by Hoppe [5, 56]. The glass transition is the temperature, where the polymer changes

from an amorphous glass state to a viscous melt, which comes along with drastic consequences on

its physical properties, in particular the diffusion characteristics. The Tg for homogeneous PMMA

is approximately 115°C [57], but varies depending on the method of determination and on the

polymer characteristics (mostly the tacticity, which changes with polymerization temperature).

In this chapter, it will be tried to comprehensively explain the gel effect, the different gel

effect models and their applicability to different types of processes. Finally, a refined model for

the high temperature gel effect in batch and continuous processes is developed and presented.
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3.1 Theory

Following a simplified model, the rate of polymerization for homogeneous radical polymer-

izations is defined as:

(EQ 3.1)

and the kinetic chain length as:

(EQ 3.2)

This “classical” kinetic description of the polymerization is only valid in first approxima-

tion and for small monomer conversions, since it does not take into account any diffusion limita-

tions. It assumes ideal homogeneous conditions, in which the rate determining steps are the

reactions themselves. However, with increasing monomer conversion, the viscosity of the system

can - depending on the reaction conditions - increase drastically, thus severely limiting the free-

dom to move first only for the larger chain molecules, then also for the small monomer molecules.

The first consequence of this limited mobility is that the active polymer chains are hindered from

terminating each other by disproportionation or combination. According to the theory established

by Chiu, Carratt and Soong [58] in 1983, the termination takes place in three steps:

1. The polymer radicals, initially separated by more than one 
molecular diameter, approach by translational diffusion

2. Once in direct proximity, the radical chain ends move 
toward each other (segmental diffusion)

3. After proper orientation of the chains to each other is 
reached, the termination reaction can take place

In figure 3.1 is illustrated schematically the surrounding of an active chain radical on the

molecular level. Within the termination radius rt around the active radical center, the termination

rate is the intrinsic one kt,0. This “true” termination rate reflects the speed of termination of two

polymer radicals under ideal, i.e. not diffusion controlled, conditions. However, as soon as the dif-

fusion of large chain molecules from r >> rt to r < rt is limited, the apparent termination rate con-
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stant kt decreases, which according to equation 3.1 results in an increase of the rate of

polymerization. This can be the case quite quickly, i.e. already at monomer conversions of less

than 20% for MMA bulk polymerizations.

The propagation rate kp is not influenced so far, since the smaller monomer molecules

(depicted schematically as =<) can still diffuse freely between the polymer chains. Only at very

high conversions and below the glass transition temperature Tg, when, due to the growing amount

of polymer chains the solution enters the so-called “glassy” state, also the monomer diffusion

becomes limited. Consequently, with decreasing kp, the rate of polymerization diminishes until

the reaction “freezes”. This phenomenon is called the “glass effect” and causes a significant con-

version limitation for below-Tg polymerizations. However, since this work only deals with above-

Tg polymerizations, the influence of viscosity on kp is not taken into account.

An important point to keep in mind for further considerations is the significance of kp and kt

for the rate of polymerization and the average degree of polymerization. In kinetic studies it is

crucial to always have a look at the quotient shown in equation 3.3, since one constant alone is not

meaningful for the kinetics. This is in particular the case for literature values, where generally the

pair of kinetic constants must be adapted, never only one of them. Especially combining values

for kp and kt from different sources is likely to result in wrong model characteristics.

Figure 3.1: Schematic diagram for describing the radical termination process
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(EQ 3.3)

3.1.1 Model basics

So far, the theory behind the gel effect and the reasons leading to it have been discussed. As

to its kinetic description in simulations, there are various possibilities to tackle this problem.

The classical “engineering” approach is to find an empirical equation and to fit it to experi-

mental data. In the case of the gel effect, this can be achieved by exponential functions as pre-

sented in equation 3.4 [59]. This equation, which was fitted for a temperature range of 40 - 90 °C,

expresses the dependence of the apparent termination rate constant kt on the conversion without

any physical background.

(EQ 3.4)

However, although easy to obtain and to apply, these kinds of equation are usually very lim-

ited to specific conditions and applications and cannot claim any scientific legitimation.

The following steps for the development of a general kinetic model for the gel effect based

on physical considerations were established by Chiu, Carratt and Soong [58] and represent the

basis for models from many other authors.

The first assumption is the equilibrium within a sphere of the diameter rt (see figure 3.1)

between the radical transport from the bulk into the sphere and the consumption of radicals by the

termination reaction (let us recall the fact that within the sphere, the termination is not diffusion

limited, therefore has its true rate kt,0). This equilibrium can be expressed by equation 3.5:

(EQ 3.5)

from where follows for the concentration within the sphere, Cm, which represents the prob-

ability for a center radical to find another radical within the distance rt:

Rp P,
kp

kt
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------------ e B X C X2⋅+⋅( )⋅
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4π rt Deff Cb Cm–( )⋅ ⋅ ⋅ 4
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(EQ 3.6)

The apparent reaction rate, which can be written as ktCb
2, is equal to kt,0 Cb Cm (the intrinsic

termination rate constant times the probability for two radicals to encounter each other), which

gives:

(EQ 3.7)

 Therefore, from equation 3.6 and equation 3.7 follows the basic equation for the apparent

termination rate, including reaction and mass-transfer limitation:

(EQ 3.8)

kt,0 is independent of conversion and molecular weight, yet strongly temperature dependent.

The diffusion coefficient Deff, on the other hand, is a function of temperature, conversion and

molecular weight. The termination radius rm can, for reasons of simplification, be considered con-

stant.

Since rm, Cb and Deff are unknowns, the transformation of equation 3.8 into something more

tangible is the basic work of the different authors that have developed their models on this basis.

In the following, the most important ones will be presented.

3.2 Existing Model Evaluation

The following evaluation of existing models only represents a small part of all the different

models that can be found in literature. Due to the limited time frame and the variety of different

subjects dealt with in this work, only the most representative modeling approaches could be cho-

sen for comparison. This should not imply that models not mentioned here are less suitable for the

description of the gel effect under the conditions they were derived for. Namely the viscosity

related model of Buback [60] and the free-volume gel effect model of Hamielec [61], which are

well known in the polymer reaction engineering field, were not considered in the following evalu-
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ation due to known issues at high temperatures [62]. A more exhaustive description of a large

number of existing models can be found in [51].

3.2.1 Chiu, Carratt and Soong (CCS) [58]

Chiu, Carrat and Soong continued the development of their model by separating the diffu-

sion coefficient Deff into a temperature- and molecular-weight-dependent part D(T, Mw) and a

conversion dependent part D(X):

(EQ 3.9)

The term  is expressed by a function ; Cb is replaced by the zeroth

moment of the polymer distribution. The temperature- and molecular-weight-dependence of θt

can, according to the authors, not take any simple mathematical form and is, therefore, fitted to

experimental data. Since the molecular weight, at least for non-chain-transfer-regulated batch

polymerizations, is mainly governed by the initial initiator concentration [I]0, it can also be writ-

ten θt(T, [I]0). The conversion dependence of D can be described by the free volume theory. The

authors make use of the so-called Fujita-Doolittle equation:

 with  (monomer volume fraction) (EQ 3.10)

A and B are functions of temperature that have to be fitted to experimental data, too. D0 is

the diffusion coefficient at zero conversion. As result of the combination of above equations, the

authors present the following:

(EQ 3.11)

D0 was taken into the function θt(T, [I]0) and transformation of the log into the natural log-

arithm ln leaves a factor ln(10) = 2.3. The necessary information about the fitting of the parame-

ters θt(T, [I]0), A(T) and B(T) to experimental data can, unfortunately, only be found in a

consecutive article of the authors [63]: θt(T, [I]0) is expressed by an Arrhenius law,
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(EQ 3.12)

whereas A is a function of temperature (Tg is the glass transition temperature) and B was

found to be constant:

           (EQ 3.13)

These fittings, however, were carried out for a temperature range between 50°C and 90°C.

Furthermore, the expression of the molecular weight dependence by the initiator load (equation

3.12) does not hold true for continuous or semi-batch polymerizations, where initiator is con-

stantly added.

Figure 3.2 (a) and (b) show results obtained with the CSS model for 90°C and 150°C. While

for 90°C the conversion evolution is modeled correctly, the model strongly underestimates the gel

effect for higher temperatures, as can be seen also from the comparison of the termination rate

constant with increasing conversion. This confirms that the model is not suitable as it is but needs

to be refitted if used for high-temperature modeling.

(a) (b)
Figure 3.2: (a) Conversion over time curve according to the CSS model for 90°C and 150°C

(b) modeled termination rate evolution with conversion for 90°C and 150°C (CSS model)
(90°C conversion data taken from [58])
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3.2.2 Achilias and Kiparissides [64]

The model of Achilias and Kiparissides uses the same basic considerations. Yet, the authors

were motivated to derive a model that does not contain any adjustable parameters but only param-

eters that have a clear physical meaning and can be evaluated in terms of physical and transport

properties of the reactive species. Thus, in spite of using the Fujita-Doolittle equation (see equa-

tion 3.10), they propose to calculate the diffusion coefficients of each species by physical means:

 for the polymer (EQ 3.14)

 for the monomer (EQ 3.15)

with the following equations for the calculation of the specific volume of the solution:

(EQ 3.16)

    (EQ 3.17)

So, in order to calculate the effective diffusion coefficient Deff in equation 3.8, already 15

nonadjustable physical parameters need to be calculated that will not be specified here any fur-

ther: , , , , K11, K12, K21, K22, γ, ξ, N*, Dp0, Ep, Dm0, Em. And for these calcula-

tions, various further values are necessary, so that in the end more than 20 parameters are found

only in the model for the gel effect. This becomes especially problematic when the reaction sys-

tem becomes more complicated than the polymer-monomer binary system used in the work of

Achilias and Kiparissides. In addition, most of the literature values for the needed parameters are

only available for the classical temperature range 50-90°C. Considering the complexity of this

model together with the fact that the achieved precision as regards the modeling of conversion

and molecular weight is not significantly improved in comparison to semi-empirical approaches
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[51], its adaptation for a continuous, high-temperature polymerization as in this work seems to be

neither very promising nor justified.

3.2.3 Hoppe and Renken [56]

Nevertheless, this way was chosen by Hoppe and Renken in the 90’s, who extended the

Kiparissides model to a ternary mixture of monomer, polymer and solvent and added high-tem-

perature characteristics from the work of Fleury [5], thus increasing its complexity once again. In

the end, they manage to satisfactorily model the batch conversion evolution for different solvents

over a large temperature range (45 - 165°C). The molecular weight modelling, however, is com-

pletely missed.

The problem with these non-empirical models is that they do not offer enough flexibility for

industrial applications. The necessity to exactly know the physical and transport properties of

each species in the system makes it impossible to apply them to large-scale polymerizations, let

alone copolymerizations, where now and then quite exotic initiators and solvents are used. It is,

therefore, of advantage to have a model that allows to be adapted to changing reaction conditions

by fitting and that exhibits minimal calculation requirements. The approach of Chiu, Carrat and

Soong was taken up again in the PhD work of Fleury on the high temperature polymerization of

MMA.

3.2.4 Fleury [5]

In his model development, Fleury interprets the basic equation of the Chiu, Carrat and

Soong model (equation 3.8) in a different way. His aim is to linearize the equation for the appar-

ent termination rate constant:

(EQ 3.18)

In order to simplify this expression, he reasons that while for small conversions the diffu-

sion part of the equation is negligible
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 so it is kt = kt,0 (EQ 3.19)

for higher conversions, this is the case for the intrinsic termination rate:

(EQ 3.20)

With the Fujita-Doolittle theory, equation 3.20 can - for the diffusion regime - also be writ-

ten as (compare equation 3.11):

(EQ 3.21)

Now, for increasing polymer fractions , this means that the term θt(T, [I]0) λ0 gets domi-

nant:

 and as well (EQ 3.22)

(EQ 3.23)

Neglecting the two smaller terms in equation 3.22 and using equation 3.23 for the polymer

fraction allows to write equation 3.18 in a logarithmic form:

 with (EQ 3.24)

For a constant temperature, this equation represents a straight line, which can be parame-

trized as follows. First of all, the term  is added to both sides of the equation:

(EQ 3.25)
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where γ has the value 1 and the inverse unit of the termination rate constant, so that in the

end an adimensional expression is obtained within the logarithm. Further development of equa-

tion 3.25 leads to the following linear equation for the diffusional termination rate constant:

(EQ 3.26)

(EQ 3.27)

Combined with equation 3.18 this means that for the apparent termination rate constant can

be written:

(EQ 3.28)

The parameters α and β are fittable to experimental data and determine the starting point of

the gel effect (α and β) and its intensity (only β). Fleury fitted these parameters to his high-tem-

perature (135°-165°C) batch experiments and found the following dependencies on temperature,

solvent fraction and initiator concentration:

(EQ 3.29)

(EQ 3.30)

with

Tg = 114°C

Tref = 123.3°C

[I]0,min = 2 mol/m3

α0 = 14.14

β0 = 14.34

It is important not to forget that this fitting is only valid in the boundaries for which it was

done (135°C < T < 165°C, 2 mol/m3 < [I]0 < 200 mol/m3, 0 < ws < 0.2).
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The Fleury model is a good example for a semi-empirical model, where a basic theory was

simplified and the adaptation to different experimental conditions enabled by introduction of

adjustable parameters. However, its weak point is the use of the initiator concentration for molec-

ular weight dependence modeling, which becomes obsolete for continuous process simulation,

and the fact that the expressions for α and β lack any physico-chemical connection with regards to

the theory of the gel effect.

In this work, the Fleury model was successfully applied to batch and DSC experiments. Yet,

the parameters α0 and β0 needed to be refitted to experimental data. Taking a closer look at them

revealed that they are not constant but temperature-dependant, which means that Fleury appar-

ently did not correctly consider the changing of the gel effect with temperature in his model.

Equations 3.31 and 3.32 contain the results of this fitting, which are valid for the temperature

range 130 °C < T < 180 °C. The values are slightly different from those published earlier [65],

which is due to the fact that several rate constants of the basic kinetic model were changed in the

meanwhile in adaptation with the constants used by the industrial partner. 

(EQ 3.31)

(EQ 3.32)

Figure 3.3 (a)-(f) shows the results from the modeling with the Fleury model obtained with

the fitted values for α0 and β0. For conversion evolution (a) and heat flow signal (b) measured by

the DSC, the model yields an excellent agreement with measured data as regards starting point

and intensity of the gel effect. For the heat flow signal, the shape of the modeled curve is different

in the beginning and in the end. This can be explained by how the modeled curve is calculated in

the Predici® model, i.e. by determining the consumption rate of MMA (only) and multiplying it

with the heat of polymerization (ΔrH = 56 kJ/mol) and the sample weight. It does not consider

influences on the heat flow by other reactions (e.g. MMA peroxide, initiator decomposition etc.).

An explanation for the slow drop of the modeled curve is the depolymerization step in the model,

which continuously (i.e. also at almost full conversion) produces MMA from unterminated radi-

cal chains due to the absence of natural termination reactions (i.e. with the wall, intramolecular

reactions etc.) in the model.

α0 0.0574 0.000758±( ) T °C[ ] 12.926 0.120267±( )+⋅=

β0 0.0528 0.00128±( ) T °C[ ] 8.0716 0.203035±( )+⋅=
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The average molecular weight (by number (c) and by weight (d)) shows some discrepancies

at 130°C at the end of the reaction, i.e. for very high values of Mn resp. Mw. The shape of the

molecular weight distribution (e) at this temperature, as well, does not perfectly match, although

starting and ending point of the peak are the same for modeled and measured values. The differ-

ence in shape might be due to the fact that the columns of the GPC could not cope anymore with

such high molecular weights (Mw at the right end of the distribution is > 2’000’000 g/mol!). At

least, the uneven shape of the measured peak, in particular the steep drop-off on the right, reveals

a problem of this kind.

(a) (b)
Figure 3.3: (a) Modeled and experimental conversion evolution for different temperatures

 (b) Heat flow as modeled and measured by DSC for 130°C and 150°C
 (c)+(d) Molecular weight (Mn resp. Mw) evolution as modeled and measured by GPC

(e) Molecular weight distribution prediction
(f) Termination rate constant evolution with conversion as predicted by the model

all: DSC MMA polymerization, [I]0 = 1000 ppm DTBP, without CTA
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However, the weak point of the Fleury model is, as already mentioned above, that it does

not take into account any chain transfer agent and its influence on the gel effect. Since CTAs

(c) (d)

(e) (f)
Figure 3.3: (a) Modeled and experimental conversion evolution for different temperatures

 (b) Heat flow as modeled and measured by DSC for 130°C and 150°C
 (c)+(d) Molecular weight (Mn resp. Mw) evolution as modeled and measured by GPC

(e) Molecular weight distribution prediction
(f) Termination rate constant evolution with conversion as predicted by the model

all: DSC MMA polymerization, [I]0 = 1000 ppm DTBP, without CTA
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decrease the molecular weight without influencing the conversion, also the gel effect becomes

less pronounced. This deficit is depicted in figure 3.4 (a), where it can be clearly seen that, for a

CTA-containing polymerization, the model largely overestimates the gel effect. The influence of

solvent, on the other hand, is considered in the model (compare eqs. 3.29 and 3.30). Therefore,

the attenuation of the gel effect with increasing solvent content is more or less correctly mirrored

(see figure 3.4 (b)).

3.2.5 Fenouillot, Terrisse and Rimlinger [66]

The weakness of the Fleury model, i.e. the missing CTA influence, was improved by

Fenouillot et al., who modified the Fleury equation in order to include the CTA concentration in

the description of the gel effect. Unfortunately, they eliminated the solvent influence, which dis-

qualifies the model again for industrial application. Additionally, this model as well needs an ini-

tial concentration (of CTA instead of initiator) as fixed parameter, which makes its use for

continuous processes doubtful. The decisive equation for the gel effect is equation 3.33, which

(a) (b)
Figure 3.4: (a) Modeled and experimental conversion evolution for polymerization with CTA 

(data points taken from [66])
(b) Modeled and experimental heat flow curve for solvent containing polymerization

(140°C, [I]0 = 1000 ppm DTBP)
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was directly derived from the Fleury equation 3.28. Equation 3.33 also includes how the new

parameter Xc is connected to the Fleury parameters.

 with (EQ 3.33)

The Fenouillot parameters β and Xc were determined by fitting to be:

(EQ 3.34)

(EQ 3.35)

In figure 3.5 are depicted the conversion evolutions for three cases: one without chain trans-

fer agent and solvent, one with chain transfer agent and one with solvent. As can be seen, the

model correctly describes the attenuation of the gel effect in the presence of chain transfer agent.

However, due to the above-mentioned lack of solvent consideration in the model, both modeled

curves, with and without solvent, are equal.

Figure 3.5: Modeled and experimental conversion evolution at 150°C for the Fenouillot model
 [DTBP]0 =  180 ppm, [CTA]0 = 4400 ppm (data taken from [66]) 
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3.2.6 Tefera, Weickert and Westerterp [51, 67]

Tefera, Weickert and Westerterp follow the same approach of a three-stage diffusion model

for their description of the gel effect. Yet, they tackle the problem in a different way. For them, the

apparent termination rate constant is governed by three mechanisms: the segmental diffusion at

early polymerization stages, the translational diffusion at intermediate conversions and the reac-

tion diffusion taking place throughout the whole reaction. In mathematical terms they express this

by equation 3.36:

(EQ 3.36)

where ktR is the intrinsic termination rate constant, k*
TD the molecular weight dependent

translational-diffusion termination rate coefficient and kRD the reaction diffusion termination rate

coefficient.

At very low conversions, the apparent termination rate constant kt equals kt,0, therefore it

can be written for equation 3.36:

(EQ 3.37)

So it follows for ktR

(EQ 3.38)

The molecular weight dependence of k*
TD is expressed by the term

 (EQ 3.39)

where

(EQ 3.40)

D is the diffusion coefficient, Vf the free volume and g1 an adjustable parameter. Merging

these equations into equation 3.36 gives for the apparent termination rate coefficient:
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-----------+
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(EQ 3.41)

The free volume Vf is obtained assuming additivity of the free volume of the reaction com-

ponents:

 with (EQ 3.42)

with Vf,i,0 = 0.025 and αm = 0.001 K-1, respectively, αp = 0.00048 K-1. kRD is determined by

the frequency of monomer addition to the radical end and, therefore, it is 

(EQ 3.43)

kTD,0 is unknown and needs to be fitted together with the parameter g1 to experimental data.

By introducing a third adjustable parameter, g2, also the initiator efficiency becomes conversion

dependent as a function of the free volume in this model:

(EQ 3.44)

The authors determined the four adjustable parameters for their experimental data in the

temperature range of 50°C - 90°C to be

g1 = 1.8254

g2 = 3.792 x exp(-746/T[K])

kTD,0 = 5.101 x 109 exp(3211/T[K])

n = 1

The advantage of this model is its inclusion of the molecular weight dependence. In their

article, the authors also claim that the model works for polymerizations with chain transfer agents.

Unfortunately, it does not use a ternary monomer-polymer-solvent system. In any case, the three

parameters need to be refitted to experimental data from high-temperature polymerizations in

order to be valid for this temperature range.
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Considering that the molecular weight dependence is, as proposed by Weickert et al., given

by n = 1, there are still three parameters that have to be adjusted. Assuming further more that the

initiator efficiency, given by equation 3.44 together with the value for g2, is correct, the number of

parameters is reduced to two: g1 and kTD,0. Suitable values at T = 130°C were found to be:

g1 = 32 (EQ 3.45)

kTD,0 = 1.15.1015 (EQ 3.46)

However, this refitting turns out to be tricky since the gel effect for high temperatures is

much less pronounced than for temperatures below 100°C. Yet, the term  in equation

3.41 and equation 3.44 causes a rather steep drop of the termination rate constant for high conver-

sions, which is demonstrated in figure 3.6. Compared to the corresponding part of the Fleury

equation 3.28, which is plotted in figure 3.6 (a) against the conversion as a straight line, the

change in the region 0.5 < X < 1 is much more important. Therefore, the decrease in kt is also

much more pronounced than for the Fleury model (see figure 3.6 (b)).

(a) (b)
Figure 3.6: (a) Conversion dependent terms of the Weickert and the Fleury model

(b) Evolution of kt with conversion for both models
T = 130°C, [DTBP]0 = 1000ppm
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The consequence for the modeling at high temperature is that it becomes extremely diffi-

cult, not to say impossible to find suitable parameters, with which the model correctly describes

all different cases of reaction conditions, i.e. with or without CTA or solvent and at different tem-

peratures. Already for one single experiment, the found values (see eqs. 3.45 and 3.46) do not

lead to really satisfying results, as shown in figure 3.7 (a), where the conversion evolution is plot-

ted for the model with the Weickert and with the newly fitted parameters. With the values from

the original work, kt already differs from kt,0 since the very beginning of the reaction, leading to

an overestimated raise of conversion. Afterwards, the gel effect, itself, is underestimated and

occurs far too late. With the values determined in this work, the conversion evolution fits much

better to experimental data.

Nevertheless, the steepness of the modeled conversion curve is too high compared to the

measured one. This issue becomes even worse when chain transfer agent is added and the gel

effect strongly attenuated. For this case, no suitable (and physically meaningful) combination of

parameters could be found to correctly describe the polymerization. It appears that molecular

weight dependence as well as the initiator efficiency are no longer valid either and would have to

be refitted, too. The latter is represented in figure 3.7 (b) in comparison to the function used in this

work (see appendix 3, “Modeling with Predici®”).

Due to the poor perspectives to correctly model the high temperature gel effect (because of

the shape of ), no more efforts were made in the further development of this model.1
Vf
----- 1

Vf 0,
---------–⎝ ⎠

⎛ ⎞
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3.3 A new approach for a gel effect model

All models presented so far in this chapter correctly describe the gel effect for their corre-

sponding experimental conditions. It was even possible to refit some of them to other reaction

conditions (in particular temperature). However, each of them has - somehow - a weak point, i.e.

a dependency on the initiator-load, respectively a structure that is either too complicated for com-

plex reaction systems or too simple in the sense that it does not include chain transfer or solvent

effects. To put it in a nutshell: a new approach was needed to simulate the gel effect in the contin-

uous high-temperature polymerization.

The ideal model should be built-up easily and comprise only few parameters, should corre-

late the gel effect to the molecular weight rather than to an initiator load and should be indepen-

dent of any solvent content, i.e. of the fact that the system is binary or ternary.

The CCS model (subchapter 3.2.1) basically fulfils these demands, except for the molecular

weight dependence. Hence, it was tried to modify its basic equation (see equation 3.9) in a way so

that the diffusion limitation term is a function of Mw. The concept of the modification is presented

in the following.

(a) (b)
Figure 3.7: (a) Conversion evolution at T = 130°C, [DTBP]0 = 1000ppm for the Weickert model 

with original and newly fitted parameters g1 and kTD,0
(b) Initiator efficiency as a function of conversion, Weickert model and model used in this work
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(EQ 3.47)

Combining  in the function  and separating D again into a molecular-weight and a

conversion-dependent part with the help of the Fujita-Doolittle equation leads to

(EQ 3.48)

The diffusion is inversely proportional to the molecular weight . Hence, it will be

introduced into equation 3.48 with a proportionality constant .

(EQ 3.49)

Another consideration concerns the radical concentration λ0, which substituted the bulk

radical concentration Cb in equation 3.9 and which is mainly a function of the initiator load (see

the simplified equation 3.50 for the example of a batch reaction) but, with increasing conversion,

subject to an important increase due to the volume shrink:

(EQ 3.50)

λ0 has a strong influence on the obtained molecular weight (increasing the initiator load

and, thus, the radical concentration, drastically decreases the molecular weight in an unregulated

polymerization) and has, therefore, also an influence on the shape of the gel effect. Yet, since the

molecular weight dependence is already accounted for in equation 3.49, the presence of λ0 would

constitute a repetition, i.e. an overestimation of the molecular weight influence and lead to a gel

effect that is too steep with respect to reality. It shall be assumed in the course of this model devel-

opment that λ0 is included in the introduced term . Thus, equation 3.49 becomes:

(EQ 3.51)
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The parameters for A and B are taken from the CSS model (equation 3.13), whereas the

parameters α,  and  need to be refitted to experimental data in this work. For further sim-

plification, the constant  can be included in the temperature function , and therefore only

one parameter is left for fitting.

 and   (EQ 3.52)

Concerning the parameter α, different approaches are possible. Following the entanglement

theory [68, 69], α would take the value of 3.4 above a certain critical molecular weight, whereas

Panke found in his model [70] a value of 0.5 for the exponent of the molecular weight depen-

dence. Finally, Marten and Hamielec give a value of α = 1.75 for entangled solutions in their

model of the styrene polymerization [71].

Comparison of the models with both, experimental and literature data, supported the latter

assumption, since for α = 3.4 the influence is by far too big and for α = 0.5, respectively α = 0.7,

too small. Figure 3.8 shows a comparison between the three cases to illustrate the difference of

their impact on the model.

However, the choice of the correct exponent is not unique. It is a matter of experimental

conditions but also of interpretation to judge a chosen value as “best fit”. Values of 1.3 < α < 1.8

lead to satisfying results and, because of the value found in literature, in the end α = 1.75 was

chosen as exponent for Mw. The difficulty in the determination of parameters of this kind is that

there are always a variety of other influences on the result of the modeling. In this particular case,

the chain transfer constant for the chain transfer to monomer and to chain transfer agent is the

most important issue, since they directly influence the molecular weight, and thus also the gel

effect, which in turn lets the molecular weight increase. There is a rather complex connection

between these parameters and it is not astonishing that hardly any of them can be considered as

generally valid for whatsoever model or experimental conditions.

D̃ τ T( )

D̃ τ T( )
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The fitting of α and  was done with data from literature [66] and DSC data obtained in

this work. As mentioned above, the value for α was found to be α = 1.75 in accordance with the

Marten-Hamielec literature value [71]. For the temperature-dependent parameter , an expo-

nential dependence was found, which corresponds to θt(T) in the CSS model (see page 63). The

Arrhenius diagram for the determination of  is depicted in figure 3.9, leading to the follow-

ing equation:

 [-] (EQ 3.53)

It should be kept in mind that this equation is only valid for the model parameters used in

this work and for the given set of kinetic constants (see appendix 3). Changing a rate constant, e.g.

for the depolymerization or the chain transfer, can lead to significant changes in the values for

.

Figure 3.8: Comparison of different values for α
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The results of the modeling with this equation for the gel effect are presented in the follow-

ing. Figure 3.10 (a) and (b) shows the modeled and experimental conversion evolution for two

cases: (a) for polymerizations at different temperatures without chain transfer agent, carried out as

batch polymerizations in the DSC, and (b) for polymerizations with different chain transfer agent

loads at constant temperature, carried out by Fenouillot et al. [66] as batch polymerizations in a

dilatometric reactor setup. Note that for the second series of reactions, the initiator load is one

order of magnitude smaller than for the DSC runs, leading to much longer reaction times.

For the DSC experiment without chain transfer agent, the model is in very good agreement

with experimental data as regards conversion evolution (figure 3.10 (a)) and heat flow (figure

3.11 (a)), except that for T = 130 °C, the onset of the gel effect is a little too early. The source of

this difference is the overestimation of the molecular weight in the beginning of the reaction, vis-

ible in figure 3.12 (a) + (b). The model predicts here a much higher molecular weight than mea-

sured, leading at the same time to an earlier onset of the gel effect. The reason for the

overestimation of the molecular weight by the model might be that under experimental conditions

inhibition reactions caused by impurities keep the molecular weight in the beginning of the reac-

tion rather low, which the model does not account for. The difference in the beginning and the end

of the heat flow curve has already been discussed earlier (see page 69).

Figure 3.9: Arrhenius diagram for the calculation of the parameter  in the gel effect model
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For the variation of the chain transfer agent, which equals a variation of the molecular

weight for the same conversion, the agreement between model and experiment for both, conver-

sion and molecular weight, is rather good, too. Only for very small and very high CTA loads the

modeled conversion evolution differs from the experimental points and seems to overestimate the

influence on the gel effect (too low for small molecular weights, too big for high molecular

weights). Yet, the question is how high the reliability of the experimental data taken from litera-

ture is. Unfortunately, it was not possible to use own experimental data obtained with chain trans-

fer agent due to a problem with the molecular weight evolution for the DSC experiments. As will

be explained later (“Influence of the chain transfer agent on the gel effect” on page 86), the

molecular weight did not decrease as expected with increasing chain transfer agent concentration,

which is explained by its consumption early during the reaction by another, not further explain-

able process. The model verification had, therefore, to be done by means of experimental data

taken from literature.

With regards to this data, especially the similarity of the conversion points in the beginning

of all experiments (up to 45% conversion) as well as for the two curves on the right hand side of

the graph ([CTA] = 4400 ppm and [CTA] = 8500 ppm) is not comprehensible considering the

large difference in CTA load. At the same time, considering a measured molecular weight of

Mn = 260’000 g/mol (Mw = 642’000 g/mol, according to the polydispersity given in the article), a

stronger gel effect than the one observed by the Fenouillot et al. should be expected for the curve

with [CTA] = 214 ppm.
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(a) (b)
Figure 3.10: Description of the gel effect by the newly derived model for

(a) different temperatures (experimental data taken from DSC experiments)
(b) different initial chain transfer agent loads (experimental data taken from [66])

(a) (b)
Figure 3.11: Modeling results for DSC batch polymerizations

(a) molecular weight distributions at different temperatures (without CTA)
(b) heat flow curves at different temperatures
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To conclude with the evaluation of this model, figure 3.13 shows the influence of conver-

sion on the normalized termination rate constant. In comparison with the same graph for the

Fleury model (figure 3.3 (f)), it should be remarked that the curves are not straight lines but

becoming steeper with increasing conversion. This is due to the increasing molecular weight of

the polymer, which intensifies the gel effect.

Altogether, the model that has been derived in this chapter, proved to satisfyingly describe

the high temperature gel effect under various conditions. It relies, furthermore, only on the molec-

ular weight of the polymer and does not need any initial concentration of CTA or initiator. In

chapter 4, its suitability for the modeling of the continuous copolymerization will be tested and

the results will be discussed with special regard to the influence of the gel effect on the reactor

stability.

(a) (b)
Figure 3.12: Molecular weight evolution for the DSC polymerizations at different temperature

(a) Number-average molecular weight
(b) Weight-average molecular weight
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3.4 Influence of various parameters on the gel effect

In the following paragraphs, different influences on the shape and the intensity of the gel

effect will be discussed, i.e. chain transfer agent, comonomer, temperature and solvent. The batch

polymerizations in this subchapter have all been carried out by DSC.

3.4.1 Influence of the chain transfer agent on the gel effect

As already seen before, the gel effect is strongly attenuated in presence of chain transfer

agents. This is due to the reduction of the molecular weight and, thus, of the viscosity of the reac-

tion mixture. The following graphs (figure 3.14 (a) and (b)) show the heat flow curves of DSC

polymerization at T = 140 °C for different initial CTA loads compared to model data. It can be

seen that the modeled gel effect is attenuated stronger than the measured one. This becomes com-

prehensible when the molecular weight is compared for both cases. In figure 3.14 (b) are shown

Figure 3.13: Logarithmic graph of the normalized termination rate constant over the whole range 
of conversion for the newly derived gel effect model
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the measured and expected Mw for each CTA concentration (assuming a transfer constant of

CCTA = 0.68 in the model). The molecular weight drops much less than predicted by the model,

which indicates that either the chain transfer constant is wrong or that the CTA is less effective in

the DSC experiment.

It could be imagined that, due to the large surface to volume ratio in the DSC crucibles or to

the lack of mixing, the chain transfer agent is not as efficient as one would expect in a larger scale

bulk polymerization. But even a less important transfer constant CCTA is not an explanation why

the molecular weight would stagnate above Mw = 300’000 g/mol even with further increasing

CTA concentration, which is in contradiction to the Mayo-equation:

(EQ 3.54)

Therefore, the only plausible explanation for the measured molecular weight evolution is a

side-reaction of the chain transfer agent. In fact, there is an effect that is clearly visible from the

heat flow signal in figure 3.14 (a). Increasing with the chain transfer agent concentration, there is

a heat flow peak in the beginning of the spectrum, which could indicate a consumption of CTA.

(a) (b)
Figure 3.14: Attenuation of the gel effect with increasing CTA load and influence on the molecu-

lar weight (comparison model and DSC experiment carried out in bulk with 
[DTBP]0 = 1000 ppm at T = 140 °C)
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This could explain the high molecular weight, since the effective CTA concentration would be

much lower than initially adjusted. The nature of this side-reaction is unknown but, in general,

thioles can be easily oxidized, which - in this case - would be possible by the initiator or by oxy-

gen from air.

3.4.2 Influence of temperature on the gel effect

Also the temperature has a rather strong effect on the gel effect, as seen already in the prece-

dent subchapter. Up to approximately 150 °C, the gel effect intensifies as the reaction rate

increases. Above 150 °C, the amplitude of the gel effect diminishes and both, depolymerization

and low viscosity, reduce the acceleration of the reaction until it is hardly present, which is the

case above 180 °C. In figure 3.15 (a) + (b) is presented this influence of the reaction temperature

on gel effect and molecular weight for DSC batch polymerizations with [DTBP]0 = 1000 ppm,

compared to the model predictions for each case. For T = 170 °C, the model underestimates the

heat flow curve a little and the precision is not as high as for the other cases. However, for the

same experimental conditions, the conversion evolution, presented in figure 3.10 (a), is in perfect

agreement with the model. It might, therefore, be that the measured heat flow curve for

T = 170 °C presented in figure 3.15 (a) varies to a small extent from the other experiments carried

out at this temperature.
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3.4.3 Influence of solvent on the gel effect

Since the gel effect is a viscosity related phenomenon, naturally also the presence of solvent

has an important influence on its shape. Adding for example 30% solvent means reducing the

polymer content wp by 30%, too. As shown in figure 4.8 in chapter 4, a reduction of the polymer

content of 30% reduces the viscosity of the solution by several orders of magnitude (for

T = 120°C and Mw = 100’000 g/mol the viscosity decreases by approximately a factor 104!).

This is reflected also by the results from DSC experiments and the modeling. Figure 3.16 (a) + (b)

contains the measured and simulated curves for three different solvent contents (0%, 20% and

30% of n-butyl acetate) as well as the molecular weights for each experiment. It is apparent that

for 30% solvent, the gel effect is hardly remarkable anymore. The modeled molecular weight

matches the GPC values very well, too. This is a confirmation that the transfer constant for the

solvent, which had been assumed to be CS = 0.0001, is more or less correct. 

Figure 3.15: Changing of the gel effect with increasing reaction temperature and influence on the 
molecular weight (comparison model and DSC experiment carried out in bulk with 

[DTBP]0 = 1000 ppm at T = 140 °C)
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3.4.4 Influence of the comonomer

Although not having any direct influence on the viscosity of the reaction mixture like a sol-

vent, also the presence of a comonomer can significantly alter the gel effect. This is the case when

the reactivity ratios of the copolymerized monomers are rather different. For the system methyl

methacrylate / methyl acrylate, which is investigated in this work, these values differ considerably

as can be seen from table 1. A value of r1 > 1 respectively r2 < 1 means that the comonomer MA

is incorporated slower into the growing polymer chain than the monomer MMA. For the overall

polymerization rate this has the effect of slowing it down, therefore the gel effect is attenuated and

much lower molecular weights are obtained (considering that with increasing comonomer con-

centration, the concentration of the monomer, itself, diminishes). The r-parameters also define

how the polymer composition looks like and to which amount the different monomers are con-

sumed instantaneously. The Lewis-Mayo equation (equation 3.55) gives access to the instanta-

neous, relative change of monomer concentrations and, thus, to the instantaneous polymer

composition. It is valid only for small conversion ranges, otherwise it has to be integrated. More

detailed explanations concerning the copolymerization are provided in chapter 4, “R-parameters”

on page 138.

Figure 3.16: Attenuation of the gel effect with increasing solvent fraction and influence on the 
molecular weight (comparison model and DSC experiment carried out with 

[DTBP]0 = 1000 ppm at T = 140 °C)
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(EQ 3.55)

The attenuation of the gel effect with increasing comonomer fraction is demonstrated in fig-

ure 3.17 (a). The model correctly describes this weakening of the reaction acceleration compared

to the homopolymerization of MMA. Yet, the measured curve for 15% MA differs from the mod-

eled one as regards the peak position of the gel effect. This effect has already been observed for

the chain transfer agent earlier in this chapter. And as for the chain transfer agent, also for the

comonomer the beginning of the heat flow curve changes with increasing MA concentration. So

there might be a secondary reaction during the start of the polymerization that influences the reac-

tion path in the observed manner from the expected one. On the other hand, also the r-parameters

might not be precise enough for this temperature range, since they were taken from literature for

T = 80°C. They will, therefore, be re-evaluated later in this work. Nevertheless, the predicted

molecular weights are in good agreement, as proven in figure 3.17 (b).

Table 1: Reactivity ratios for the copolymerization system MMA/MA taken from literature

Lit. values [72]
(at T = 80 °C)

d MMA[ ]
d MA[ ]

----------------------
1 r1 MMA[ ] MA[ ]⁄⋅+
1 r2 MA[ ] MMA[ ]⁄⋅+
-------------------------------------------------------=

r1
kp 1,

kp 12,
-----------= 2.36 0.32±

r2
kp 2,

kp 21,
-----------= 0.42 0.08±
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3.5 Discussion

The present chapter discusses the problematic of the gel effect modeling at high tempera-

ture. Probably the most important conclusion to be drawn from the comparison of the different

models available in literature is that there is no generally valid model. Each of the presented mod-

els describes sufficiently well the gel effect under the investigated conditions of each study. How-

ever, as soon as one leaves the “boundaries of validity”, which are usually located not too far

away from the conditions the authors of each study fitted their model to, the results differ in most

cases unacceptably from reality. This is in particular the case for temperature. Most models avail-

able in literature describe a gel effect for below-Tg polymerizations, where it is much more pro-

nounced than above Tg. The few that have been adapted to or developed for high temperature

polymerizations, as the Hoppe & Renken, the Fleury or the Rimlinger one, are all ruled out as

soon as it comes to continuous, CTA-regulated polymerizations as it has been demonstrated

beforehand.

The newly developed gel effect model of the present work is surely not entitled to solve all

of these problems. As much as the other models, it definitely has its boundaries of validity. Yet,

(a) (b)
Figure 3.17: Influence of the comonomer on (a) the shape of the gel effect and (b) the molecular 

weight for DSC experiments (T = 140 °C, [DTBP]0 = 1000 ppm)
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the innovation of this high-temperature model is that, based on the classic diffusion approach, it

directly correlates the gel effect with molecular weight and polymer volume fraction, both decid-

ing factors for solution viscosity. Thus, it takes into account the influence of chain transfer agent

and changing initiator concentration without needing their concentrations. It does not matter,

either, if the polymerization takes place in batch or in a continuous process.

At the same time, the rather simple model structure with few fitting parameters and practi-

cally no required material-related data, allows the comfortable adaptation of the model to differ-

ent reaction conditions, if necessary. The two parameters fitted in this work, α and , might

also leave room for some further optimization. They were determined with the help of DSC batch

polymerizations, which surely exhibit some process-related limitations (no mixing, high surface-

to-volume ratio, difficult sampling for GC and GPC etc.). The comparison to literature data, in

this case the data of Rimlinger et al., illustrated the fact that the results of this fit should be care-

fully evaluated.

This will be done in the context of the pilot plant experiments, where the gel effect model

derived in this chapter will be validated with the help of data from the continuous process. The

results obtained for the batch polymerization and copolymerization of MMA are, however, very

satisfactory. Apart from some minor inaccuracies, the model correctly predicts the influence of

temperature, solvent, chain transfer agent and comonomer on monomer conversion and molecular

weight. This flexibility is, to the knowledge of the author, not featured by any other gel effect

model so far published in literature.

Short Summary:

• Different existing gel effect models for MMA have been examined towards their 

applicability to high temperature polymerizations

• By modifying a suitable existing gel effect model, a new one could be derived, 

which allows the correct description of the high temperature gel effect in batch 

and continuous polymerizations of MMA

• This new model was tested concerning the correct prediction of the gel effect 

under various conditions and validated by experimental data from this work and 

from literature.

τ T( )
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CHAPTER 4

Continuous High-Temperature
Polymerization

Chapter 2 and chapter 3 dealt with some characteristic kinetic aspects of the high-tem-

perature polymerization of MMA. More precisely, the thermal initiation reactions, caused

among other by MMA peroxides, as well as the high-temperature gel effect were investigated

by means of batch experiments. These points are extremely important, since they influence sig-

nificantly the thermal behavior of the reaction.

The following chapter will now combine the results of the preceding ones with the con-

cept of continuous polymerization at pilot-scale. For industrial considerations these pilot trials

are inevitable for the evaluation of a high-temperature process as to its feasibility and final

product qualities. It is important to conduct these experiments under conditions as similar as

possible to those of a “real” production process to allow a direct comparison. The problem

with most scientific research is that it is done under conditions that are far from the “produc-

tion reality” and routines, for example the use of highly purified material, while in industrial-

scale reactions rather technical grades are present, or of miniaturized reactors without mixing

and heat transfer issues as they are present in large-scale industrial reactors. This part of the

present work was, therefore, carried out using commercial grade raw materials as provided by

the producers (see appendix 6), and a reactor setup similar to that of an industrial reactor.

In industry, a widely used setup for bulk polymerization processes is the combination of

CSTR and plug flow tubular reactor (see figure 4.1). In the CSTR, the polymerization is usu-

ally conducted to medium polymer fractions below 50% (for high temperatures sometimes up
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to 70% [73]), with or without solvent. At polymer fractions, respectively conversions, the viscos-

ity would get too high for sufficient mixing and heat transfer out of the reactor and the discharge

of the product from the vessel becomes impossible. The reaction is taken to higher conversions in

a consecutive plug flow reactor, where conversions of 80 - 90% can be handled safely, depending

on the design of the tube.

The polymerization of MMA is a very fast and exothermal reaction (-ΔrH = 56 kJ/mol),

which comes along with a strong increase in viscosity that can easily be of several orders of mag-

nitude (10-3 to 200 Pa.s). The reaction kinetics is therefore strongly influenced by a gel effect,

which means that, depending on the residence time and above a critical conversion, a reaction

runaway by auto acceleration occurs. For the stability of a continuous process, these aspects have

the following consequences:

• the process must be kinetically stable, i.e. with enough distance to runaway condi-

tions, in order to obtain desired conversions / molecular weights

• the viscosity must not exceed a critical value in order to avoid a too high pressure 

drop over the length of the reactor and possible plugging

• mixing and heat removal capacity must be sufficient to avoid thermal runaway of 

the reaction and local hot spots in the reactor

Figure 4.1: Commonly used setup for industrial bulk polymerization processes
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As to the danger of a thermal runaway, an advantage of the MMA polymerization is that it

exhibits a rather strong depolymerization at high temperatures. With a ceiling temperature of

Tc = 220°C [11], above which no propagation takes place anymore, a possible runaway of the

reaction, at least in terms of the polymerization heat, would come automatically to halt. Neverthe-

less, a sufficient heat removal capacity is indispensible for safe control of the reaction conditions.

Finally, the presence of local hot spots can lead to thermal degradation of the polymer and to a

widening of the molecular weight distribution, both leading to a reduced product quality.

The runaway of the medium viscosity is a rather delicate matter concerning the reactor sta-

bility, as already small changes in reaction conditions (T, τ) may have drastic effects. These

changes might be due to technical problems, i.e. failure of the feed pump or feed flow variations,

temperature drop of the heating circuit, or may be caused by long-term phenomena as, for exam-

ple, the obstruction of heat removal due to the formation of polymer residues on the reactor walls.

An unforeseen increase in viscosity usually has severe consequences for the process: the reactor

pressure increases until either sealings break or the reactor plugs completely, and the heat removal

becomes more difficult leading to an increase in temperature and a consecutive reaction accelera-

tion. It must, therefore, be taken care of the right choice of residence time with eventual security

margins in case of feed flow variations.

One of the goals of the present work is to design a pilot plant for the continuous production

of PMMA molding compound that takes into account the above-mentioned issues. The reactor

concept chosen to achieve this goal is a combination of a tubular, high-recycle-ratio loop, replac-

ing the common CSTR, followed by a plug flow tube reactor. These concepts have already been

successfully applied in other research projects at EPFL (Recycle loop: [1, 5, 74], combination

loop / tube: [6, 75]). The operating conditions are predetermined by constraints from the industrial

partner of this project.

4.1 The Sulzer Pilot Plant

4.1.1 Viscous tubular flows

Since the environment of polymerization reactions is usually rather viscous, the flow profile

in a tubular reactor exhibits laminar behavior. This means that the flow rate in the middle of the

tube is high, whereas in close proximity to the reactor wall the flow stagnates. The consequence is
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that the residence time at outer diametric zones are much higher than in the inner tube, for bulk

polymerizations first leading to highly viscous films and finally to solid, high molecular weight

polymer deposits on the tube wall. This effect is even enhanced when the heat transfer is limited

by the viscosity of the medium and the temperature drops at the outer tube zones (let’s recall that

the reaction is highly exothermal and heat needs to be removed from the reactor). A heated tube

wall can, therefore, increase significantly the heat transfer and lead to a more uniform flow pro-

file. In figure 4.2 are shown schematically the flow profiles for laminar flows in an empty tube. It

is easily understandable that an empty tube, even with wall heating, is not the ideal configuration

for a polymerization reactor.

4.1.2 The concept of static mixing

The concept of static mixing elements - in contrast to active mixing in an extruder - is the

use of the mechanical energy of the flow to ensure intense radial mixing and to achieve a homog-

enous flowrate and temperature profile over the entire tubes’ section. Additionally, metallic static

Newtonian fluid in an empty adiabatic tube

Non-newtonian fluid in an empty adiabatic tube

Newtonian fluid in an empty, heated tube

Newtonian fluid in an empty, cooled tube

Figure 4.2: Different laminar flow profiles in an empty tube depending on fluid-type and 
conditions at the tube walls [5]
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mixers can help distribute the produced reaction enthalpy by heat conduction within the medium

or to the reactor walls. The mixing principle is the division of the laminar flow into several

dynamic layers and to recombine them in the following by choice of a suitable mixer geometry.

As a result, the flowrate and temperature profile can be compared to the one of an ideal plug flow,

as shown in figure 4.3. The radial flow velocity and concentration profile can, thus, be neglected

(for the bulk polymerization of polystyrene this was already demonstrated by Tien [76]).

The axial dispersion, on the other side, is characterized by the dimensionless Bodenstein

number , which correlates the axial stuff transport by convection with the transport by

(molecular) diffusion respectively (hydrodynamic) dispersion. For the ideal plug flow, it diverges

to infinity (no dispersion, Dax  0), whereas it tends zero for an ideally mixed CSTR (very high

back mixing, Dax  ) - compare to figure 4.4.

Juvet [78] and Zeilmann [6] determined the axial dispersion coefficient for Sulzer SMXL

mixing elements to be Dax = 6.10-4 [m2 s-1]. Considering a high recycle ratio (40:1) in the loop

reactor and a throughput of 2 kg/h of a 50% polymer solution at T = 140°C ( ) in a

DN20 SMXL tube, the Bodenstein number per meter of reactor can be calculated to be

, which - according to the relation  for small dispersion coefficients [5] - corre-

Figure 4.3: Normalized temperature profile for an empty and an SMXL-equipped tube over the 
tube diameter D (T medium temperature, Tw wall temperature) [77]
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sponds to a cascade of 67 CSTR’s per meter SMXL tube. This illustrates that the axial dispersion

can be neglected as well for the recycle loop. 

4.1.3 Choice of mixing elements

Sulzer offers three different types of static mixers, depending on the geometry of the reac-

tor:

The SMX and SMXL type are employed for tube diameters up to 10 cm. The L in SMXL

stands for “large”, which means that the geometry is more open than the one of the SMX (see fig-

ure 4.5). It is characterized by a higher porosity (less volume taken by the mixing elements) and

lower shear of the product. On the other hand, the SMX mixer exhibits better mixing (higher

Bodenstein number).

For larger tubes, the specific surface for the heat exchange, which decreases by the factor 

with the contact diameter of the heat exchanger, becomes too small to cope with the strong heat

dissipation of exothermal reactions and local hot spots can occur [79]. Therefore, the SMR mixer

type was designed with “active” mixing elements, i.e. contrary to the other two types where the

mixing elements are metal shapes welded to the tube wall and therefore only heat conductors, the

mixing elements of the SMR type are hollow and actively heated / cooled by flowing heat transfer

medium. Thus, they exhibit a quasi constant volume specific heat exchange surface. Table 1 con-

tains the main design parameters for the three different mixer types. The data was taken from a

Sulzer sales brochure for given tube diameters [80].

Figure 4.4: Normalized residence time distribution at different Bodenstein numbers [77]

4
dt
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Figure 4.5: Picture of SMX (left, DN 20) and SMXL (right, DN 10) mixing elements

Table 1: Different static mixing element types offered by Sulzer Chemtech (CH) with the most 
important design parameters [80]

Parameter Unit SMXL DN20 SMX DN40 SMR87

contact diameter dt [mm] 20 40 8

specific heat exchange surface [m-1] 200 100 104.17

λstainless steel [W m-1 K-1] 16 16 16

porosity ε [-] 0.91 0.88 0.792

hydrodynamic diameter dh [mm] 8.96 12.32 21.07

shear constant Kγ [-] 27.79 54.5 5

NeRe [-] 354 1310.5 10



Chapter 4:  Continuous High-Temperature Polymerization

102

The advantage of the different mixing elements is that their heat transfer coefficient com-

pare to each other, which is an important factor in the scale-up of polymerization processes. A

pilot-scale reactor can, therefore, directly be scaled-up to production-scale since the heat transfer

is more or less the same. This is illustrated in figure 4.6, where the pilot-scale SMXL tube is com-

pared to an industrial-scale SMR reactor.

The relatively constant heat exchange coefficient of the SMR type is once again illustrated

in figure 4.7, where it is compared to other types of reactors used for the production of polymers.

For high reactor volumes, the heat transfer coefficient drastically drops for the empty tube and the

CSTR. As discussed above, also the conventional static mixers reach quite soon a certain limit

due to the fact that they only conduct the heat to the reactor wall. 

Pilot: SMXL DN 20
U = 220 W m-2 K-1

A = 130 m2 m-3

Industrial: SMR DN 100-1500
U = 310 W m-2 K-1

A = 85 m2 m-3

Volume specific heat transfer coefficient:
K = 28 kW m-3 K-1 K = 26 kW m-3 K-1

Comparison CSTR:   A = 1-4 m2 m-3

Figure 4.6: Comparison of SMXL and SMR mixer type as regards the scale-up of the process
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4.1.4 Considerations concerning the viscosity

One crucial point in bulk polymerization reactions is the viscosity, as it influences kinetics,

heat transfer and pressure drop in the reactor. The calculation or prediction of viscosities for poly-

meric systems is far from trivial. Mostly empirical equations based on measured data are used to

estimate polymer viscosities. One model describing the dynamic viscosity of polymers is the one

of Stuber [81, 82]:

According to the theory of Stuber, the dynamic viscosity is a function of the “zero-shear”

viscosity and the shear rate itself:

(EQ 4.1)

Figure 4.7: Comparison of the volume specific heat transfer coefficient for different reactor types 
[77]
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The viscosity at zero shear, itself, can be expressed as a function of molecular weight (in kg/

mol) and polymer fraction of the solution by the following equations:

(EQ 4.2)

(EQ 4.3)

(EQ 4.4)

(EQ 4.5)

(EQ 4.6)

The parameters of this model were correlated to experimental data for the PMMA/MMA

system by Fleury [5], who determined the values listed in table 2 based on the values found by

Stuber, by viscosity measurement at different temperatures respectively with polymer of different

molecular weights.

Table 2: Parameter for the viscosity model of Stuber (refitted by Fleury)

Parameter Unit Value

n0 mol0.5 kg-0.5 K -34.806

m0 s mol0.5 kg-0.5 K3 0.0014

k Pa s 3.10-4

a1 mol0.5 kg-0.5 0.125

a2 mol0.75 kg-0.75 3.75.10-11

b0 K 600

b1 K 80

b2 K 1

b3 - 1.2.10-5

Tref K 465.15

η0 η
γ· 0→
lim F D⋅= =

F k 1 a1 100 wp Mw⋅ ⋅( )
0.5 a2 100 wp Mw⋅ ⋅( )

3.4
⋅+⋅+[ ]=

D b0 b1 100 wp⋅( ) b2 100 wp⋅( )2⋅+⋅+[ ] 1
T
--- 1

Tref
---------– b3 100 wp⋅( )3⋅+⋅⎝ ⎠

⎛ ⎞exp=

n
n0 wp

4 Mw⋅ ⋅
T 273.15–

---------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

m m0
1
n
--- 1–⎝ ⎠

⎛ ⎞ 100 wp⋅( )4

T 273.15–( )3
--------------------------------- Mw⋅ ⋅ ⋅=
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With these values, statements can be made on how the viscosity develops during the course

of the polymerization reaction. Figure 4.8 a shows the viscosity evolution from a polymer weight

fraction of wp = 0 to wp = 1 for a polymer of the molecular weight Mw = 100 kg/mol. Between

120°C and 150°C, the zero-shear viscosity increases by one order of magnitude. When handling

undiluted polymer melts, e.g. in the devolatilization, rather high temperatures are needed to be

able to pump the melt through the installation. At 250°C for example, which is the devolatiliza-

tion temperature in this work, the viscosity is sufficiently low so that the polymer still flows

through the preheater and into the discharge gear pump. Figure 4.8 b shows the dependence of the

viscosity on the molecular weight of the polymer. Here, too, the influence is quite significant as

can be seen for an increase of Mw from 100 to 150 kg/mol, which causes a viscosity raise by fac-

tor 4. These two points are important to consider, since both parameters, temperature and molecu-

lar weight, can easily be subject to minor changes (e.g. due to failure of heating, false

concentrations of CTA, etc.), which can have drastic effects on viscosity and, thus, on the pressure

drop in the reactor.

With the data from table 1 and eqs. 4.7 and 4.8, shear rate, viscosity and pressure drop per

meter can be calculated for Sulzer SMXL tubes used in this work (values for Kγ and dt can be

found in table 1). 

(EQ 4.7)

(a) (b)
Figure 4.8: Zero shear viscosity for (a) Mw=100 kg/mol at different temperatures and (b) at 

150°C for different molecular weights
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(EQ 4.8)

Assuming a monomer conversion of X = 50% in the loop reactor (uz = 0.07 m/s at a recycle

ratio of 45:1) with a molecular weight of Mw = 100 kg/mol at 150°C results, according to this cal-

culation, in a pressure drop of Δp = 0.58 bar/m, which is easy to handle. However, in the case of a

feed pump failure, the reaction mixture would go straight into gel effect conditions and lead to

conversions around 80 to 90%, which would result in a pressure drop of uncontrollable

Δp = 190 bar/m, i.e. the sure plugging of the reactor.

A detailed discussion of the pressure drop in different zones of the pilot plant will follow

together with the results from pilot plant experiments at a later point in this chapter.

4.1.5 The Pilot Plant in Detail

After discussing the possibilities concerning the choice of pilot plant setup and mixing ele-

ments, the pilot plant setup used in this work will now be presented in detail. As mentioned

before, the reactor consists of two zones:

• A tubular recycle loop reactor with high recycle ratio (recycle : feed = 45:1)

• A conventional tube reactor

At the end of the reaction zone, there is a nitrogen-pressurized membrane flash valve from

where the polymer solution is flashed into a two-phase heat exchanger, which leads into devolatil-

ization chamber. From the devolatilization chamber, the devolatilized polymer melt is discharged

by a rotary gear pump and sent in two strands to the granulator.

There are four independent heating zones in the pilot plant, which can be identified in figure

4.9. The loop reactor, the first and the second part including the flash valve are each heated by a

4kW Karl Juchheim laboratory oil thermostat. The preheater and the devolatilization chamber

including the gear pump are heated by a 10kW HTT industrial oil thermostat. The heat transfer

medium in all thermostats is a synthetic oil on dibenzyltoluene basis (Shell Aseol Trans-SH) with

a temperature resistance up to 350°C.

The whole reactor is constructed with double-jacketed, stainless steel (316 / 1.4401) tubes

with diameter DN 20 and equipped with Sulzer SMXL respectively SMX static mixing elements.

Δp
L

-------
NeRe η uz⋅ ⋅

dt
2

-------------------------------= Pa
m
-------
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The latter are employed in places where advanced mixing is required (e.g. feed inlet, solvent inlet

in beginning of tube).

The pilot laboratory facilities are classified as explosion protected zone (Ex II T2) and,

therefore, especially equipped as regards electrical outlets, lights and electronic / reactor parts.

Feed preparation

The feed solution is prepared on the first floor of the pilot lab. Raw materials are employed

as received, i.e. in the case of monomer and solvent directly from the barrel. The necessary

amounts of monomer and solvent are weighed separately on a high-precision balance (Witronic,

m = 1-100kg, Δm = 1g) before initiator and chain transfer agent are added. The feed solution is

then transferred into a 60-L stainless steel tank with EKATO stirrer, from where it is fed into the

reactor in the basement. The solvent / initiator solution is taken downstairs to a smaller stainless

steel reservoir, where it is degassed with Argon and later on dosed into the tube reactor.

The reaction zone

From the feed preparation tank on the first floor, the non-degassed monomer solution

already containing initiator and chain transfer agent is transferred by a two-piston pump

(Bran&Lübbe N-J32) via a Coriolis flowmeter (Promass 60E DN2, Endress&Hauser) into the

loop reactor at position 1. The inlet pressure is measured at the feed pump.

The physical volume of the loop was determined to be Vloop = 907 ml by measuring the

amount of solvent needed to fill it entirely in the cold state. 
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Within the recycle loop, the solution is pumped counterclockwise around by a high-speed

gear pump (Witte VAH-25,6 ED, position 2) at a recycle flow to feed flow ratio of approximately

Figure 4.9: Detailed scheme of the pilot plant setup used in this work
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45:1. The displaced volume per turn of the pump head corresponds to 25.6 ml, therefore an aver-

age rotation frequency of n > 50 min-1 is needed. The high recycle ratio is necessary in order to

have (near-)CSTR conditions in the loop. In fact, it was shown by Zacca and Ray [83] that, as a

rule of thumb, above recycle ratios of 30:1, loop reactors behave as a CSTR (with regards to con-

version and molecular weight distribution). The limiting point in this consideration is the life-time

of the initiator, which must be higher than the time the solution needs to go around the loop. At a

recycle pump rotation speed of ω = 50 min-1 the cycle time in the loop is approximately 0.7 min.

Ideally, the half-life time of the initiator at given reaction temperatures is higher than this value.

The temperature inside the reactor is measured by means of several thermocouples (type K)

and there are two pressure transducers (Dynisco PT 435A / TPT 432A) that measure the pressure

drop in the loop at the gear pumps entry and exit. A small sapphire window allows optical inspec-

tion of the flowing reaction mixture inside the reactor. Samples can be taken through a sampling

valve at the loops exit. In the same place (position 3), there is also the ultrasound probe for inline

conversion measurement, which will be referred to later (see “Ultrasound Polymerization Moni-

toring” on page 115). The results from the ultrasound measurement can, thus, be directly com-

pared to offline sampling.

Connected to the exit of the recycle loop is a partially vertical, partially horizontal tube

reactor of the same diameter and a total length of approximately l = 3.5 m. The volume of the tube

reactor was determined to be Vtube = 1147 ml. Within this tube, the conversion reaches its maxi-

mum. As seen in the preceding subchapter, the “zero-shear” viscosity increases by a factor 103 for

an increase in polymer fraction from wp = 0.5 to 0.8 (T = 150 °C, Mw = 100 kg/mol). It is, there-

fore, regarded as necessary to add a solvent to this part of the reactor, by which the viscosity can

be kept at acceptable values. This is done by continuously injecting the desired amount of solvent

punctually in the center of the reactor stream. For an exact and constant dosing of the necessary

amount of solvent, a membrane microdosing pump is used (LEWA MLM/M210/3mm). In order

to achieve sufficient mixing of the low-viscous solvent with the highly-viscous polymer solution

from the loop, only the first half a meter of tube is equipped with SMX mixing elements, the rest

of the tube reactor contains SMXL mixing elements. Together with the solvent a second initiator

can be added in order to obtain higher conversions in the tube if needed. A second sapphire win-

dow is installed after one meter of tube and after approximately 2/3 of the total tube length, a sec-
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ond sampling valve and, half a tube length further, a second ultrasound probe together with

temperature and pressure measurement were built into the reactor for conversion monitoring in

the tube (position 4a and 4b).

The Devolatilization Zone

Figure 4.10 shows the membrane flash valve at the end of the tube reactor (position 5 in fig-

ure 4.9), where the reaction mixture is flashed from the pressure in the reactor to the reduced pres-

sure in the devolatilization chamber. A sandwich membrane, the outer part made out of

chemically resistant steel and the inner one from spring steel, is pressed by nitrogen (p = 10 -

100 bars) against the opening from the reactor and the outlet opening. This steel-on-steel contact

is designed for viscous solutions only, which is the reason why for a solvent this valve does not

hold the pressure in the reactor. Therefore, it is activated in the moment when there is polymer in

the reactor. However, depending on the viscosity of the polymer, it can happen that the valve does

not close anymore but that the pressure in the reactor is held back by the polymer, which fills the

system. In this case, the flash point (i.e. the point were the pressure abruptly drops from

p > 20 bars to p < 1 bar) can move from the valve to a later position within the preheater.

As mentioned before, the polymer is transferred from the flash valve into a two-phase pre-

heater, where it is heated to devolatilization temperature. Basically, there are two different strate-

gies of preheating, which were examined before in this research group [6, 75]: One is to heat up

the polymer solution under pressure, while maintaining one phase only (“one-phase preheating”).

Figure 4.10: Schematic drawing of the flash valve between reactor and preheater

Δp (N2)Δp (N2)
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The other is to first flash the solution and then heat it up, thus creating two phases in the preheater

(“two-phase preheating”). In the first case both, polymer and volatiles, need to be heated to devol-

atilization temperature and, since at the moment of the flashing the temperature abruptly

decreases due to the occurring evaporation, this temperature needs to be higher than for the two-

phase preheating, where - ideally - the introduced energy is immediately used to evaporate the

volatile components. The thermal stress on the polymer can, thus, be lowered significantly.

Another advantage of the two-phase setup is that, since the preheater is equipped with SMXL

mixing elements, the polymer foam formed during flashing is not static but thoroughly mixed for

better removal of volatiles from the viscous melt. Figure 4.11 illustrates the principle of the two-

phase preheater. In reality, it contains two DN10 tubes equipped with SMXL mixing elements.

The presented flow pattern is, therefore, to be considered as schematic only.

Figure 4.11: Schematic depiction of two-phase preheater for devolatilization of the polymer melt
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The exit of the preheater reaches approximately 20-30cm into the devolatilization chamber,

as indicated in figure 4.9. From here, the polymer foam falls to the conical bottom of the chamber,

where it remains for a given residence time depending on the speed of the gear pump (MAAG

Vacorex 45/45). The exact residence time could not be determined but is estimated to be of sev-

eral minutes. To the devolatilization chamber is connected a vacuum pump (Leybold SOGEVAC

SV40) via a condenser, where the volatiles are condensed and recovered from the reactor. For

larger plant sizes, they could be separated from each other by distillation and recycled into the

process. Given the small size of the pilot installation in this work, the volatiles were disposed of

as waste.

Product Granulation

From the discharge gear pump, the polymer leaves the devolatilization in two strands

through a nozzle designed in this work (exit diameter ~ 1 cm, see figure 4.12). These strands are

pulled over a distance of ~ 3,5 m, supported by three rollers, into the granulator (Rieter

Primo60E, with low speed gear for small throughputs), which - for reasons of security - had to be

placed outside the lab. This distance is enough for the polymer melt to cool down to a temperature

at which the viscosity is high enough for cutting (from T = 250 °C at the gear pump exit to ~ 50°C

at the granulator entry). In the granulator, the strands are cut by a rotating knife into cylindric

pieces with the approximate dimensions 1 x 3 mm, depending on the speed of granulator and gear

pump. The placement of the granulator behind the devolatilization as well as the granulator, itself,

are depicted in figure 4.13 (a) and (b).
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Figure 4.12: Gear pump exit nozzle designed to create two polymer strands for granulation
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The final product

The final product from the pilot plant polymerization process is a polymer with a molecular

weight in the range of Mw = 70’000 - 180’000 g/mol, depending on the reaction conditions, and a

residual volatiles’ concentration of below 80 ppm for butyl acetate and below 10’000 ppm for

monomer, which is quite satisfying considering the simplicity of the devolatilization facility (one-

step flash, no moving parts, relatively low vacuum). Compared to commercial product (see figure

4.14), the polymer has a bit of a brownish discoloration, which has two reasons: one is that the

vacuum chamber is not entirely gas-tight. Therefore, oxygen gets into the devolatilization, which

causes oxidative degradation of the polymer at these temperatures (> 200 °C). The second reason

is the relatively short duration of production and the rather small production rate. It was observed

that for the long-term experiments over 20 hours and for experiments with higher flowrates, the

coloration of the polymer became much less. This is confirmed by the fact that even in industrial

polymerizations, the commercial grade polymer sometimes is achieved only after one day of pro-

duction when a plant shut-down and restart was performed. A detailed discussion of the product

quality obtained from the different pilot plant experiments is provided later on in this chapter.

(a) (b)
Figure 4.13: (a) Rieter granulator Primo60E with special gear for small throughputs

(polymer strand path from devolatilization to granulation
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4.2 Ultrasound Polymerization Monitoring

One of the key points in process development is the process monitoring. Every process

plant, no matter how small or simple it is, needs to be surveyed continuously with regards to pro-

cess safety and product quality. Even marginal changes in the running process must be detected in

the shortest possible delays, so that countermeasures or preventive actions can be taken. The clas-

sical way to monitor a reaction is to take samples in regular intervals and to analyze them by

offline methods. And even though no production plant will ever work without product samples

being taken every now and then, the clear disadvantages of this technique are that

• sampling takes time and - in most cases - human interaction

Figure 4.14: Commercial and pilot plant pellets in comparison



Chapter 4:  Continuous High-Temperature Polymerization

116

• in order to take a sample, the process often needs to be “disturbed”, e.g. by open-

ing a valve, thus changing the pressure and flow in the reactor

• especially for viscous products like polymers a uniform sample of the reactor 

contents are difficult to obtain

It must, therefore, be the aim of every process engineer to find and employ adequate meth-

ods for the inline monitoring of reactions and processes. Presently, there are a large number of

solutions available on the market. A good overview can be found in Ullmann’s Encyclopedia of

Industrial Chemistry [84]. Among the simplest are namely density and conductivity measure-

ments, whereas on the side of the more complicated ones there are, for example, inline GC or

FTIR measurements. Ultrasound can be located somewhere in the middle as regards expenditure

of equipment and, more important, investment. An important prerequisite for its application is a

sufficiently large difference in speed of sound values for raw material and product. Examples for

different applications are shown in table 3. The application of speed of sound measurement to

qualitative reaction monitoring of polymerizations has already been described by Cavin et al. [7,

8] for styrene, by Zeilmann [85] for the MMA polymerization and by Dinger [86] for Butadiene/

Styrene polymerization. The quantitative reaction monitoring, i.e. the direct “inline” determina-

tion of the monomer conversion from the speed of sound measurement, has, on the other hand,

not yet been described by any author.

Due to the complexity of polymerization reaction systems, the direct calculation of conver-

sion from the speed of sound measurement is not at all trivial. In the following, the efforts that

were undertaken in this work at establishing a working conversion monitoring for the high tem-

perature polymerization of MMA are presented.

Table 3: Ultrasound velocities of monomers and polymers at 20 °C [84]

Species Monomer Polymer

Butyl acrylate 1233 m/s 1375 m/s

Styrene 1354 m/s 2120 m/s

Vinyl acetate 1150 m/s 1853 m/s

Vinyl chloride 897 m/s 2260 m/s
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4.2.1 The Measurement Principle

Sound waves of frequencies above ν = 20’000 Hz are called ultrasound (for comparison:

the spectrum of audible sound waves for the healthy human ear ends at ν = 17’000 Hz). Under the

term speed of sound is understood the velocity, with which sound waves propagate through differ-

ent media, i.e. water or air.

The longitudinal speed of sound waves in liquids depends on the density and the adiabatic

(= isentropic) compressibility of the fluid1:

(EQ 4.9)

For mixtures, κs and ρ can be calculated as follows (additivity):

(EQ 4.10)

where φi is the volume fraction, ρi the density and κi the adiabatic compressibility of the

pure component i. The volume fraction φi is expressed as a function of the mass fraction as fol-

lows:

(EQ 4.11)

Additionally, the speed of sound is linearly depending on the pressure:

1. The propagation of sound waves is, thermodynamically speaking, a propagation of density changes in an
infinitesimally small volume of the medium. A density and, thus, a volume change inflicts an increase in
temperature and pressure and can be described by the following complete differential:

 

with the isothermal compressibility and the thermal expansion coefficient .
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 with (EQ 4.12)

From eqs. 4.9 to 4.12 follows for the speed of sound of a three-component system (mono-

mer, polymer, solvent):

(EQ 4.13)

This equation can, unfortunately, not be solved explicitly for the polymer content wp. How-

ever, by means of three-dimensional fitting of theoretical values of c0 for different solution com-

positions, an analytical expression of the form  can be determined, which allows

the calculation of monomer conversion from the ultrasound signal for a given temperature, sol-

vent content and pressure.

The density and compressibility data for MMA, PMMA and butyl acetate can be found in

literature respectively be determined by ultrasound measurement, itself. For the high temperature

process, literature data for the compressibility proved to be rather imprecise. Therefore, it was

redetermined by ultrasound measurements at elevated temperatures. The corresponding data can

be found in “Calibration of the measuring system” as well as in appendix 5 and a detailed presen-

tation of the results concerning the conversion measurement will be presented in the following

(“Results for the ultrasound reaction monitoring”).

4.2.2 The Measuring Equipment

The ultrasound equipment used in this work are two high-temperature, high-performance

Liquisonic® flange sensors (DN25, PN100, T<200°C, 1.4571/316Ti, see figure 4.15), manufac-

tured by Sensotech (Magdeburg, D). They are controlled by a Liquisonic® Controller 30, which

also serves as interface for the transfer of the measured signal to external data acquisition. With

regards to previous projects, the temperature resistance has been significantly improved. Ten

years ago, the application of ultrasonic technology was limited to temperatures below 100°C.

Therefore, it is namely due to Sensotech’s advances in technology that the implementation of

ultrasound measurement in this high-temperature project is possible.
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In order to reduce the dead volume inside the probe, plastic parts were introduced from both

sides occupying most of the volume around emitter and receptor (several issues arouse from this

feature, which will be discussed further down in this chapter).

The functioning of the flange sensor is depicted in figure 4.16. On one side of the probe, a

transducer emits pulsated sound waves of a given pressure amplitude (proportional to the applied

voltage U0) and frequency, orthogonal to the flow direction. The signal reaches the receptor,

where it creates a voltage again proportional to its amplitude. The speed of sound can be deter-

mined by the time necessary to travel from the emitter to the receiver, whereas the attenuation of

the signal δ is calculated from the change of amplitude (eqs. 4.14 and 4.15). However, for conver-

sion monitoring in polymerization systems, only the speed of sound measurement is of impor-

tance.

(EQ 4.14)

(EQ 4.15)

Figure 4.15: Liquisonic® flange sensor DN25
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A limiting factor in reaction monitoring by ultrasound measurement is the presence of gas

bubbles. Especially at elevated temperatures, when the medium is close to or above its boiling

point (i.e. in absence of sufficient pressurization), the measurement fails periodically. As men-

tioned above, the pressure in the reactor is built-up by a membrane valve at the end of the tube

reactor (see figure 4.10), which is designed for viscous solution. In the start-up of the pilot instal-

lation it may happen that, when the reactor is filled with solvent only and heated up, the pressure

in the reactor is not sufficient to avoid boiling. Only from the moment when the first polymer

reaches the valve and the solution becomes more viscous, pressure builds up and boiling is pre-

vented. Therefore, mostly in starting phases, the ultrasound signal might be disturbed. This phe-

nomenon is presented in figure 4.17, where the reactor is heated with a small solvent flow from

T = 125°C to T = 135°C. At a given point the measured speed of sound periodically falls off

abruptly and then rises back up to its initial value. From the moment when there is polymer in the

reactor (t > 17’000 s), the signal is stable even with increasing temperature as the pressure aug-

ments.

A second limiting factor is the ultrasound velocity, itself, which decreases drastically with

increasing temperature. For very high temperatures (T =170-180°C), the ultrasound velocity of

pure MMA is smaller than 600 m/s, a value below which the measurement becomes difficult from

Figure 4.16: Principle of speed of sound measurement (A0 and Ax are the signals emitter 
respectively receiver amplitudes)
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a physical point of view due to structure-born sound disturbances (elastic vibration of solid mate-

rial, i.e. probe material) and which was enforced electronically as lower measurement limit to

avoid inaccuracies. Therefore, at these temperatures, measuring is only possible in the presence of

polymer in the system, which causes an increase in ultrasound velocity big enough to be again

above the limit.

Another probe specific problem is fouling and dead volumes. Since the cylinder-like trans-

ducers penetrate the medium and the flow is slowed down due to the widening of the diameter in

the sensor, the formation of polymer layers is favoured. For this reason, special filling pieces have

been developed with the aim to fill this empty volume and to incorporate the transducer cylinders

except for their emitting / receiving surface.

Several problems were encountered as to the use of these pieces. First to mention is the

choice of a suitable material, which resists the process conditions. In contrast to recommendations

from industry, poly (vinylidene fluoride), PVDF, was found to be not a good candidate since it

dissolved already after a few heating cycles to large extents in the reaction medium (compare

parts before and after use shown in figure 4.18), leading to severe problems with reactor leaking.

The dissolved PVDF was later found in the produced PMMA as encapsulated droplets.

Figure 4.17: Loss of ultrasound signal due to bubble formation
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Poly (tetrafluor ethylene), PTFE, exhibits better chemical resistance and is mostly stable

under the given process conditions. It is the material used predominantly in this work. Its disad-

vantage is the rather strong swelling when exposed to hot MMA and other organic solvents. This

effect is depicted in figure 4.19. After various days of experiments, the inner wall of the PTFE

parts is completely swollen up, offering ideal conditions for fouling. In fact, MMA can penetrate

the pores of the swollen PTFE and polymerize, thus making the material burst. Although stable

for the duration of the set of experiments carried out in this work, in a continuous process these

parts would most probably have to be changed regularly causing increased maintenance expenses.

Nevertheless, at this moment it is the only solution found for this problematic. Finally, the best

way to avoid material problems at this location is to go without any plastic parts and to employ

either probes of the same diameter as the reactor tubing or to employ a different probe geometry

(immersion probe etc.).

Figure 4.18: PVDF filling parts before (left) and after use. The material has been completely dis-
solved by the reaction media.
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4.2.3 Calibration of the measuring system

The following parameters need calibration respectively careful examination before reliable

measures of the speed of sound can be realized:

• the pressure dependence factor α

• the compressibility at elevated temperatures

For these calibrations, the ultrasound signal was determined for different, calibrated solu-

tions of monomer, polymer and solvent in an independent, pressurizable and heatable measuring

cell (see figure 4.20 for schematic setup). This cell consists of an ultrasound probe that is fixed

between two double-jacketed flange pieces heated with an oil circuit and connected to a nitrogen

gas cylinder for pressurization. The calibration solution is filled into the cell, which is consecu-

tively closed hermetically, heated to the desired temperature and pressurized with N2. The speed

of sound is measured by an online acquisition system and stored by a special software (Sonic

Works, Sensotech). From the measured speed of sound and the composition of the calibration

solution, the parameter α as well as the compressibility for butyl acetate and MMA were adjusted.

The results of this fitting can be found on the following pages.

Figure 4.19: Swelling of PTFE filling parts observed after several days of experiments

 Enlargement of the interior
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For the parameter α, a linear dependence on temperature and polymer content was assumed:

(EQ 4.16)

The equation parameters α0, A1 and A2, which resulted from the fitting to experimental data

are presented in table 4. The corresponding graphic is depicted in figure 4.21. Note that the range

of the fitting is limited due to the high viscosity: it was simply not possible to produce a calibra-

tion solution with more than 30% polymer content and fill it into the cell at room temperature. As

concerns the temperature, the measurement is limited to 120°C, since despite the pressurization

the solutions started bubbling (probably due to dissolved N2), which made the measurement

impossible.

Figure 4.20: Schematic setup of the calibration cell for the ultrasound measurement

Table 4: Fitting parameters for the α curve fitting (values with complete digits as determined by 
Tablecurve can be found in Annex 8)

Parameter Value

α0 0.406

A1 0.004

A2 -0.395

V=904.12 
T=88.08 oC

Pressure from
Nitrogen system

p

Receiver Emitter Thermostat

T

Registration unit
Solution

V=904.12 
T=88.08 oC

Pressure from
Nitrogen system

p

Receiver Emitter Thermostat

T

Registration unit
Solution

α α0 A1 T A2 wp⋅+⋅+=
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The compressibility data for butyl acetate, MMA and PMMA found in literature is rather

scarce and only validated for low temperatures [87-89]. Zeilmann was the first to publish values

for temperatures of up to 130 °C [6]. However, his values seem to slightly mismatch the data

obtained in this work, which might be due to the different measurement equipment. Therefore, the

determination of butyl acetate and methyl methacrylate compressibilities was redone in this work.

The value for the polymer, on the other hand, was not readjusted as it lead to satisfying results.

The density data, which is needed for this calculation is taken from literature (see appendix 5).

For the pure compounds, the compressibility can be determined directly from the speed of

sound using equation 4.17 (which follows from eqs 4.9 and 4.12).

(EQ 4.17)

This calculation was done for several temperature points, leading to the following com-

pressibilities for butyl acetate and MMA:

Figure 4.21: Fitting of α for different temperatures and polymer fractions
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The compressibility for several temperatures of the polymer was taken from literature [47]

and fitted as done by Zeilmann with Tablecurve. The temperature dependence follows a more

complicated, exponential mathematical expression, since the compressibility undergoes a major

change when passing the glass transition temperature Tg.

(EQ 4.18)

MMA Butyl Acetate

(a) (b)
Figure 4.22: Determination of the compressibility for monomer and solvent from experimental 

data and comparison to literature data (a) [6] (b) [89]

Table 5: Fitting parameters for the κs,PMMA curve fitting (values with complete digits as 
determined by Tablecurve can be found in Annex 8)

A
[Pa-1]

B
[Pa-1°C-1]

C
[Pa-1°C-2]

D
[Pa-1°C-1]

E
[Pa-1°C-2]

F
[Pa-1°C-3]

-22.22 0.37 -1.57.10-3 -0.016 6.7.10-5 1.57.10-8
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With equation 4.13 and the compressibility and density data, it is now possible to calculate

the ultrasound propagation velocity for any combination of temperature, pressure and polymer

respectively solvent fraction. However, the calculation is quite complicated and it does not allow

the inverse calculation, i.e. from a given ultrasound propagation velocity and temperature / pres-

sure to a polymer content. This is due to the character of namely equation 4.13, which is not solv-

able unambiguously for wp. In order to overcome this difficulty, a three-dimensional fit is needed,

which yields an analytically unambiguous equation. The fitting can be done with Tablecurve 3D

on the basis of theoretical values calculated according to above formulas, with the limitation of a

fixed solvent fraction and neglecting the difference of speed of sound between MMA and the

comonomer MA. The calculation of conversion from the speed of sound is, therefore, only pre-

cise when the solvent content is constant or zero (in steady state) and the corresponding fitting

parameters are used. In the startup phase of the pilot plant, when the solvent initially present in the

reactor is displaced by the feed solution, the measurement is not correct. In the following graphics

(figure 4.24 (a) and (b)), the fitting is shown for the example of a reaction without solvent (ws = 0)

and at p = 25 bar.

Figure 4.23: Compressibility fit for PMMA based on literature data [47]
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(a)

(b)
Figure 4.24: 3D-fitting for ws = 0, p = 25 bar with fitting equation

(a) wp, T to speed of sound (b) speed of sound, T to conversion
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The parameters for the fitting of these two cases are the following:

It should be pointed out again at this point that these values are only valid for the mentioned

cases. For different solvent contents, the fitting needs to be redone. In both cases, the values are

related to the pressure-corrected speed of sound value, so the correction function (equation 4.12)

still needs to be considered when using the fit (for example: before applying the fit to a speed of

sound value in order to calculate the conversion at this point, it needs to be corrected with the ade-

quate pressure value).

Table 6: Fitting parameters for the fittings presented in figure 4.24 (values with complete digits as 
determined by Tablecurve can be found in Annex 8)

Parameter wp to speed of sound speed of sound to X

a 1808.1 [-] 1.96

b -18.5 -0.016 

c 0.093 8.11.10-5 

d -0.00018 -1.61.10-7 

e -159.6 [-] -0.001 

f -151.66 [-] -0.0014 

g -0.002 -2.56.10-6 

h -0.29 [-] -0.0012 

i -0.26 [-] 1.062.10-7 
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4.2.4 Results for the ultrasound reaction monitoring

Apart from a quantitative determination of the conversion in the reactor (inline conversion

measurement), which will be presented later on, the ultrasound technique gives access to other

important (qualitative) information. It is, for example, possible to observe the stability of a contin-

uous process or its dynamic behavior during condition changes (i.e. start-up, shut-down, tempera-

ture change etc.).

The process monitoring by ultrasound is illustrated in figure 4.25 for the example of a poly-

merization at T = 140 °C (curve shown for the loop probe). During the initial heating phase with a

very low solvent flowrate, the speed of sound decreases continuously until the final reaction tem-

perature is reached. This decrease is only due to the change in density and compressibility of

butyl acetate with increasing temperature. As soon as the feed stream is switched from solvent to

monomer solution, the polymerizations starts and the polymer volume fraction increases. The

consequence is an increasing speed of sound signal. Once the solvent is displaced and the reactor

is in hydrodynamic and kinetic steady-state, the signal becomes constant. In the presented case,

the time necessary to reach steady state is t = 150 min, i.e. 5 residence times at the flowrate of

F = 1.8 kg/h.

Figure 4.25: Ultrasound process monitoring example for the loop probe in experiment no. 2 (see 
appendix 7)
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At the end of the experiment, the feed stream is again switched back to solvent and the

flowrate is increased. This is reflected in a drop of the speed of sound signal at first instance, fol-

lowed by an increase once the temperature drops significantly due to cooling down of the reactor.

The qualitative information obtained by ultrasound is, therefore, very valuable for the

observation of the process and the early detection of slight changes, i.e. in temperature, pressure

or feed flow.

With the calibration and fitting from subchapter 4.2.3, the evaluation of the ultrasound sig-

nal can be taken one step further to the direct determination of monomer conversion in the reactor.

The limitation, as mentioned above, is the composition of the reaction mixture apart from mono-

mer and polymer. This is due to the fact that, in the presence of a solvent for example, equation

4.13 contains 5 unknown variables: wp, wm, ws, T and p. These five can be reduced to four by the

fact that wp = 1 - wm - ws. Temperature and pressure are known, too, which leaves two unknowns

for only one equation: wm respectively wp and ws. In the case of the copolymerization, even a

third one, wm2, has to be taken into account.

The conversion determination from ultrasound is, therefore, only possible if either another

measurement technique gives access to, for example, the solvent content, or if the solvent and

comonomer content are constant, respectively, can be neglected. As to the comonomer content, it

can be neglected for the present consideration, since it’s weight fraction in the feed is rather low

(< 5%) and it’s speed of sound very similar to the one of MMA. The solvent, however, has a

strong influence on the measurement in the beginning of the reaction, as long as it has not been

displaced yet by the monomer feed solution (compare figure 4.26). Until the solvent content in the

loop reactor has reached negligible levels (which is the case only shortly before reaching steady-

state), the measurement of the conversion is, thus, not reliable.
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The following images present the results obtained for the direct, i.e. “inline” conversion

measurement at the exit of the loop reactor. The data was taken from several experiments with

different process conditions (for the experiment numbers see appendix 7). For the temperature

value the value measured by a thermocouple integrated in the US-probe was taken, which was

lower than the actual reactor temperature by ~5°C. This temperature difference can be attributed

to the fact that the US-probes are not actively heated and that the isolation might not be sufficient

to prevent a cooling down of the polymer solution.

The problem with the unknown solvent content in the beginning of the reaction is clearly

visible in these graphs. Until the moment when the major part of the solvent has been displaced

out of the loop reactor, the conversion calculation delivers negative results. This is, as explained

beforehand, due to the lower speed of sound of butyl acetate, which pushes the calculated values

for the conversion below zero in figure 4.24 (b). 

Figure 4.26: Modeled solvent content and monomer conversion in the loop reactor over reaction 
time for a typical pilot plant experiment
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Once the loop reactor contains only monomer and polymer in significant amounts, the pic-

ture changes and the calculated conversion evolution is in very good agreement with offline mea-

sured conversion points.While graphs (a) to (c) in figure 4.27 show experiments that reach steady

state more or less after the expected 5 residence times (~ 2.5h), graph (d) contains the results from

(a) Exp. 10a: 150 °C, 1.5% MA, 250ppm TBPIN (b) Exp. 11: 150°C, 3.5% MA, 250ppm TBPIN

(c) Exp. 17: 170 °C, 5.5% MA, 400ppm TBPIN (d) Exp. 7: 120 °C, 1.5% MA, 400ppm TBPEH
Figure 4.27: (a)-(d) Conversion monitoring with Ultrasound (US) for different experiments

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000

Time [s]

X
 [-

]

Conversion from US
Offline GC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000

Time [s]
X

 [-
]

Conversion from US

Offline GC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000

Time [s]

X
 [-

]

Conversion from US

Offline GC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000

Time [s]

X
 [-

]

Conversion from US

Offline GC



Chapter 4:  Continuous High-Temperature Polymerization

134

a somewhat particular experiment. It was carried out at 120 °C, i.e. at the lower end of the temper-

ature scale used in this work, and with an elevated initiator concentration (400 ppm). The combi-

nation of higher viscosity at this temperature and the slightly higher conversion lead during the

course of experiment to the triggering of the gel effect. Both, ultrasound conversion measurement

and offline GC clearly show the runaway of the reaction, which - after 5 hours - had to be aborted

due to an excessive increase in pressure drop.

Since the conversion measurement by offline GC is not available right away during the

experiment but needs at least several hours for the analysis to be done, the reason for this pressure

increase inside the reactor could not be figured out immediately. Only the ultrasound measure-

ment enabled the controller to realize the reactor instability with the tendency of a reaction run-

away and to react by aborting before the situation got out of control (e.g. plugging of the reactor,

bursting of sealings etc.).

It can, therefore, without doubt be stated that the inline conversion measurement by ultra-

sound is an important and useful tool for the monitoring of polymerization reactions.

Some improvements will need to be done concerning the reliability of the measurement, as

for some experiments, the signal was seriously disturbed by inexplicable fluctuations of the speed

of sound (figure 4.28), leading to a misinterpretation of the conversion by almost 20%.

Figure 4.28: Fluctuations of the speed of sound signal during an experiment (140 °C, 3.5% MA, 
250ppm TBPEH)
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These fluctuations, which were characterized by a sudden increase of the measured speed of

sound signal by 30 to 50 m/s, followed by a drop of the same size after a certain period of time, do

not have their origin in pressure nor temperature changes, as proven in figure 4.29. The reason

must, therefore, lie in the measurement, itself. It may, for example, be conceivable that a film

layer of polymer forms on the sensors surfaces, which is flushed away irregularly. In this way, the

ultrasound signal would correspond to a higher polymer weight fraction in the volume element

between both sensors. However, the ultrasound signal is very sensitive to various external influ-

ences and in the end, it might also be a problem of the sensors’ electronics at these temperatures.

Concerning the interpretation of the curves presented in figure 4.28 it should be pointed out that

without the fluctuations the signal would have continued on the dotted line and not on an average

value inbetween the peaks.

Figure 4.29: Speed of sound, pressure and temperature for the same experiment as in figure 4.28
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4.3 Verification of the High-Temperature Kinetics

4.3.1 Results from the Pilot Plant

A complete list of all pilot plant experiments carried out in this work, together with the cor-

responding process conditions and a result overview can be found in appendix 7. Altogether, 23

experiments were accomplished under different conditions (i.e. 5 different temperatures, 3 differ-

ent comonomer and chain transfer agent contents) and evaluated concerning monomer conver-

sion, molecular weight and final product quality. The latter was characterized in collaboration

with the analytical department of the industrial partner by determining:

• the molecular weight

• the residual volatiles (monomer and solvent)

• the comonomer weight fraction in the polymer

• the tacticity

• and the thermostability of each sample.

The aim for all experiments was to obtain monomer conversions of XLoop = 50% in the loop

and an additional Xtube = 30% in the tube reactor while maintaining the molecular weight of the

final polymer in the region of Mw = 100’000 g/mol, which is an average value for commercial

molding compound PMMA.

This goal was practically achieved for most experiments. The effective conversion range in

the loop reactor lies around XLoop = 40 - 50%, except for some experiments where the conversion

stayed particularly low (around 30%). For the tube, the conversion was determined at two points:

the first at the sampling valve after two-thirds of the tube length, the second from the condensate

samples, which corresponds to the total conversion over the whole process. The aim of achieving

30% conversion in the tube was only partly achieved, namely for the experiments with DTBP as

initiator in the tube. For those with TBPIN (No. 1-5), the conversion was rather 20 than 30%,

which is connected to its faster decomposition kinetics. At the injection point, the initiator is

dosed into the tube as dilute solution in butyl acetate. This low-viscous liquid needs to be mixed

thoroughly with the polymer melt from the loop reactor, which - at 40 - 50% conversion - is sig-

nificantly more viscous (approximately by a factor 1000). If the decomposition of the initiator is -
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relatively speaking - faster than the mixing, the produced radicals cannot be used efficiently for

monomer initiation, which equals a very low efficiency factor. Therefore, the obtained conversion

is significantly lower than it would be expected for a homogenous solution with the same amount

of initiator. DTBP as a very slowly decomposing initiator does not exhibit this problem.

The molecular weight could be successfully adjusted to a region of Mw = 100’000 g/mol ±

20’000 g/mol. It was considerably higher only for experiments at 120 °C (No. 6-8), where it

increased to Mw = 120’000 g/mol, and for those where the chain transfer agent was reduced on

purpose (No. 4-5, Mw = 140’000-150’000 g/mol). With increasing temperature, the molecular

weight slightly decreased as expected from theoretical considerations.

The tacticity of the final polymer was rather uniform for all experiments carried out in this

work. The average distribution was 5 : 43 : 52 with respect to iso- : hetero- : syndiotactic polymer.

Concerning the residual volatiles concentration (VOC), the values were quite constant as

well for the different experiments. This is not astonishing considering that the devolatilization

conditions were always the same (p = 150mbar). With the one-step static flash devolatilization,

the values presented in table 7 were obtained for the final polymer, which are very satisfying con-

sidering the simplicity of the devolatilization process, although they do not meet the requirements

for commercial polymer yet (< 1000 ppm).

Table 7: Residual volatiles in the final polymer (one-step flash, p = 150mbar)

Content in the final 
polymer

average maximum

MMA < 4500 ppm < 8000 ppm

BuAc < 100 ppm < 1200 ppm

Dimer < 33 ppm < 100 ppm
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4.3.2 R-parameters

For the kinetic description of copolymerizations according to the ultimate model (i.e. only

the final monomer unit of an active chain is considered as influencing the propagation mecha-

nism), there are four propagation reactions to take into account:

 
Propagation P1,n

. + MMA  P1,n+1
.  kp11

P1,n
. + MA  P2,n+1

.  kp12

P2,n
. + MA  P2,n+1

.  kp22

P2,n
. + MMA  P1,n+1

.  kp21

where P1,n
. and P2,n

. represent the MMA, respectively MA terminated chain radicals.

As to the rate coefficients, it is either necessary to know all four of them separately, or to

express the cross-propagation (e.g. propagation of an MMA-terminated chain with an MA mono-

mer) by so-called reactivity ratios or “r-parameters”:

 and (EQ 4.19)

These r-parameters express the probability for an active polymer chain to react with either

the one or the other monomer for a binary copolymerization. They are determined experimentally

by the Tüdös-Kelen-approach [90], which is a further-development of the equations derived by

Lewis-Mayo and Fineman-Ross [91].

For the relative change of monomer consumption as a function of the instantaneous mono-

mer ratio [MMA]/[MA], it can be written

(EQ 4.20)

This equation also describes the instantaneous polymer composition for small conversion

changes.

For the determination of the r-parameters from experimental data, equation 4.20 needs to be

linearized by setting y = d[MMA]/d[MA] and x = [MMA]/[MA]:

r12
k11
k12
-------= r21

k22
k21
-------=

d MMA[ ]
d MA[ ]

----------------------
1 r12 MMA[ ] MA[ ]⁄⋅+
1 r21 MA[ ] MMA[ ]⁄⋅+
---------------------------------------------------------- MMA[ ]

MA[ ]
-------------------

r12 MMA[ ] MA[ ]+⋅
r21 MA[ ] MMA[ ]+⋅
---------------------------------------------------⋅= =
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 and further to (EQ 4.21)

This equation can be further simplified by introducing  and :

     respectively     (EQ 4.22)

Equation 4.22 is also called the Fineman-Ross equation. Tracing G against F or G/F against

1/F gives r12 as the slope and r21 as the intercept or vice-versa, respectively.

However, this method is not very well balanced since the slope of a straight line fitted

through experimental data is overly influenced by points at the far end of the scale. The result

might, therefore, change for experiments with different concentration values [MMA] or [MA], or

when, for example, the monomer indices are inverted and the calculation is repeated. Kelen and

Tüdös propose an equilibration algorithm in order to equally weigh the experimental points from

the whole range of concentration values in form of equation 4.23:

(EQ 4.23)

where α denotes a constant (α > 0), which is arbitrarily defined by the authors to be

. By introducing

 and (EQ 4.24)

equation 4.23 can be written

(EQ 4.25)

The variable ξ can only take values in the interval (0, 1), therefore tracing the variable η

against ξ delivers the parameters r12 and r21 as intercepts.

y x
1 r12x+
r21 x+

-------------------⋅= y 1–( )
x

---------------- r12 r21
y
x2
-----⋅–=

G x y 1–( )
y

-------------------= F x2

y
-----=

G r12F r21–= G
F
---- r12

r21
F

-------–=

G
α F+
------------- r12

r21
α

-------+⎝ ⎠
⎛ ⎞ F

α F+
-------------

r21
α

-------–⋅=

α min F( ) max F( )⋅=

η G
α F+
-------------= ξ F

α F+
-------------=

η r12
r21
α

-------+⎝ ⎠
⎛ ⎞ ξ

r21
α

-------–⋅=
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The described method is only valid in approximation for very small conversions, because

otherwise equation 4.20 would have to be integrated. 

In case of the continuous recycle loop reactor at steady state, where the conversion does not

increase over time, the concentration difference between the feed and the reactor solution can be

employed instead. Thus, the expression for y in equation 4.21 becomes:

(EQ 4.26)

The feed concentration must be corrected by the volume contraction ε, which occurs during

the polymerization reaction, so that it can be compared to the concentration in the reactor.

In literature, the following r-parameters can be found for the monomer pair MMA / MA

measured at low temperatures (< 80 °C) except for one value at 130 °C:

However, it was observed in this work that the amount of comonomer (MA) incorporated in

the final polymer increases with temperature. As a matter of fact, the amount of methyl acrylate in

the polymer approaches the feed concentration with increasing temperature as depicted in figure

4.31, which means that the r-parameters have to change, too. The literature values are, therefore,

not correct for the temperature range of interest as they lead to too low MA contents in the poly-

mer (compare figure 4.30).

Table 8: r-parameters for MMA / MA from literature

r12 r21 Texp. Source

1.8 ± 0.4 0.35 ± 0.1 65 °C [92]

2.3 ± 0.5 0.47 ± 0.1 130 °C [92]

2.36 ± 0.32 0.42 ± 0.08 50°C [93]

2.15 0.4 80°C [94]

y d MMA[ ]
d MA[ ]

----------------------

MMA[ ]feed
1 ε X⋅+

--------------------------- MMA[ ]–

MA[ ]feed
1 ε X⋅+
---------------------- MA[ ]–

-----------------------------------------------------= =
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In order to refine, respectively, redetermine the r-parameters for temperatures in the region

of 140 - 170 °C, pilot plant experiments with varying MA feed concentration (1.5, 3.5 and 5.5

weight-%) were carried out and the results analyzed according to the above described method.

The MA content could not be increased further due to two reasons: Firstly, the reaction rate and

heat of the MA polymerization is much more intense and an experiment with more than the men-

tioned amounts could be difficult to handle in the available installations. Secondly, the propaga-

tion rate for MA is not necessarily constant for high MA concentrations as has been shown by

Nagy and Tüdös [95], which would open a completely new problematic of determining the

dependence of kp22 on the acrylate concentration. For these reasons the use of higher concentra-

tions was renounced in this work.

However, the problem with low MA concentrations is the precision in the determination of

r21. Since for the investigated cases, MMA is the dominant monomer, the influence of the reactiv-

ity ratio for MA-terminated polymer chains does not play a major role for the consumption of MA

monomer. While for r12 more or less reproducible values could be found, the ones for r21 varied

considerably inbetween different experiments and, accordingly, their reliability is uncertain.

(b)
Figure 4.30: Testing of literature r-parameters (r12 = 2.3 and r21 = 0.47)

(a) Experimental and modeled copolymer composition for loop experiment
(b) Modeled and Experimental MMA/MA Conversion for batch experiment (150°C)
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A complicating factor was the correct determination of the MA conversion for the loop

samples from the pilot plant. Due to the considerably lower boiling point of methyl acrylate

(bp. = 80 °C), it evaporates more easily from the sample solution while being transferred from the

sampling tube into screw cap vials (unfortunately, with the sampling technique used in this work,

the samples cannot be shock-frozen directly). As a result of this sampling error, many samples

exhibited a slightly higher conversion for MA than for MMA, which is unrealistic with regards to

literature data and the fact that the acrylate weight fraction in the final polymer was always below

the feed weight fraction of MA, which proves that the acrylate is consumed more slowly than the

methacrylate. However, with XMA ~ XMMA or even XMA > XMMA, the results obtained for the r-

parameters following the described method are misleading.

In the end, only for two data series (at 160 °C and 150 °C) the obtained experimental data

could be used for the determination of r-parameters. The analysis results are presented in table 9

and table 10.

Figure 4.31: MA content in the final polymer depending on temperature and feed composition
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With the results from this tables, the r-parameters could be estimated graphically according

to the Kelen-Tüdös method by calculating and tracing η and ξ. For comparison, the y in equation

4.21 was calculated from both, the final polymer composition and the loop sample composition,

even if the use of the polymer composition is not fully correct as the polymer sample was taken at

the end of the pilot reactor and the polymer composition still changes during the course of poly-

merization in the tube reactor. 

The graph containing the tracing of η over ξ is depicted in figure 4.32 for the example of the

experiment at 160 °C. The resulting r-parameters for T = 160 °C are r12 = 1.55 and r21 = 3.59 for

the calculation based on the loop sample data and r12 = 1.89 and r21 = 3.07 for the polymer com-

position data. For 150 °C, on the other hand, the values were determined from the loop sample

concentration to be r12 = 1.47 and r21 = 0.79. 

Table 9: Results from three copolymerization experiments at T = 160 °C

1.5% MA Feed 3.0% MA Feed 5.5% MA Feed

Final polymer composition 1.2 wt% MA 2.3 wt% MA 4.7 wt% MA

MMA loop conversion 44.8 % 30.3 % 35.2 %

MA loop conversion 38.2 % 25.7 % 31.9 %

Table 10: Results from two copolymerization experiments at T = 150 °C

1.5% MA Feed 5.5% MA Feed

Final polymer composition 1.1 wt% MA 4.3 wt% MA

MMA loop conversion 45.3 % 36.7 %

MA loop conversion 48.1 % 39.5 %



Chapter 4:  Continuous High-Temperature Polymerization

144

It is obvious that the value for r21 at 160 °C is far off the expected scale in comparison to lit-

erature data (table 8) and it is also in contradiction to the fact that MMA is preferably incorpo-

rated in the growing chains (i.e. r21 < 1 !). This is due to the problem that with the experimental

conditions in this work, i.e. the extremely low MA content, it is not possible to unambiguously

solve the copolymerization balance equation with the employed graphical method, as it will be

demonstrated in the following:

From the r-parameters determined by the above method and those from literature, it is pos-

sible to draw a phase diagram of the monomer and polymer composition in terms of MMA con-

tent (see figure 4.33). It can be seen that for the pair of parameters determined beforehand by the

Kelen-Tüdös method (r12 = 1.55 and r21 = 3.59), an azeotropic course of the curve is obtained,

whereas for the literature values from Grassie [92] determined at 130 °C, the curve does not cross

the 45° line corresponding to equal feed and polymer composition. Regarding the measured data

points in the upper right corner, it becomes evident that there exist several combinations of r12

and r21 that lead to a satisfying description of the found polymer compositions. For the experi-

ments carried out at 150 °C, the found pair of r-parameters happens to fulfill the requirement r21 <

1. However, the solution r12 = 1.55 and r21 = 3.59 for 160 °C would lead to completely unrealistic

Figure 4.32: Kelen-Tüdös plot for the determination of r-parameters (160 °C and 150 °C data 
from table 9)
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results at higher MA concentrations. It must, therefore, be found a way to force the Kelen-Tüdös

fit to stay in the upper region of the diagram, i.e. to limit the allowed values for r21 to values

smaller than one.

One way to do so is the introduction of a “dummy point” at the other end of the scale. Add-

ing a fictitious feed composition of xMMA = 0.05 / xMA = 0.95 and a corresponding copolymer

composition of yMMA = 0.07 / yMA = 0.93 for the fitting, i.e. a value far away from the region of

interest in this work, leads to the desired result that the curve will have to pass on top of the 45°

line without falsifying the measured data.

Re-evaluating the experimental data by means of the Kelen-Tüdös approach with this added

dummy point yields, in fact, a value < 1 for r21, while the measured data points for high MMA

concentrations are still well matched by the curve. Figure 4.34 shows the Kelen-Tüdös graph

from figure 4.32 for the loop sample composition at 150 °C and 160 °C with the added dummy

points for a low MMA concentration. The slope of the 160 °C data fit has changed significantly

with regards to figure 4.32 and the line is now almost parallel to the one for the 150 °C data. From

Figure 4.33: Phase diagram of the feed and polymer composition for different pairs of r-parame-
ters (i.e. different solutions of the copolymer balance)
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the way how the 160 °C line now crosses the three measured points it is now obvious why without

the dummy point unrealistic values are obtained.

  

The r-parameters obtained from the curves in figure 4.34 are listed in table 11. Due to the

missing experimental values for higher MA concentrations, these r-parameters can only serve as

an indication of their order of magnitude. In order to determine them with higher certainty, exper-

iments over the whole range of MA concentrations would need to be carried out. The problem in

doing so is that for high acrylate concentrations, the propagation rate constant kp2 is no longer

constant but a function of the acrylate content [95], which complicates significantly the determi-

nation of the reactivity ratios.

Figure 4.34: Kelen-Tüdös plot for the determination of r-parameters using a dummy point 
(x=0.053/y=0.111)

Table 11: r-parameters for the MMA/MA-system at 150 °C and 160 °C determined from 
experimental data by using a dummy point for correction of the r21-value

150 °C 160 °C

r12 1.899 ± 0.02 1.825 ± 0.1

r21 0.457 ± 0.02 0.698 ± 0.1
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To verify the estimated parameters, they were put in the kinetic model for the MMA/MA

copolymerization in PREDICI and the thus calculated copolymer composition as well as MMA

and MA conversion compared to experimental data. The results are presented in the following.

Table 12: Modeled and experimental copolymer compositions for different conditions

Copolymer composition

Experiment T MA feed content modeled Exp.

No. [°C] wt-% mol-% wt-% wt-%

10 150 1.5 1.1 1.0 1.1

12 150 5.5 4.1 3.6 4.3

13 160 1.5 1.3 1.1 1.2

14 160 3 2.6 2.3 2.3

15 160 5.5 4.8 4.2 4.7

16 170 1.5 1.3a

a. Calculated with the r-parameters for 160 °C

1.2a 1.3

17 170 5.5 4.9a 4.3a 5.1
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Table 12 contains the feed and polymer composition data from several copolymerization

experiments at different temperatures and comonomer feed ratios. The agreement between mod-

eled and analyzed copolymer composition is rather good, although for 150 °C and 170 °C the

model underestimates the MA content of the polymer. For the first case, this might be a hint that

the r21 value determined at 150 °C (r21 = 0.457) is too low. At 170 °C, on the other hand, the

incorporation of MA in the chain is stronger than at 160 °C as seen above (figure 4.31). There-

fore, with the 160 °C parameters used in the modeling, the MA polymer content is underesti-

mated. Another explanation for the discrepancies is that the polymer composition was determined

for the final polymer, i.e. from reactor exit, whereas the modeled values are for the loop exit. Dur-

ing the continuing polymerization in the tube reactor, the concentration of MA increases as it con-

sumed slowlier than MMA. Therefore, the MA fraction in the copolymer will be higher in the

final polymer than in the loop sample, which is correctly mirrored by the results in table 12.

Figure 4.35 contains the conversion evolution at 160 °C for the loop reactor (a) and for

150 °C in the batch reactor (b). In the left graphic, the agreement is very good for the obtained r-

parameters. For the 150 °C batch experiment, on the other hand, the model underestimates as

already for the polymer composition the reactivity of MA and predicts a lower MA conversion

(a) (b)
Figure 4.35: (a) MMA and MA conversion for loop experiment (No. 14, 160 °C, 3% MA)

(b) MMA and MA conversion for batch experiment (150 °C, 3% MA)
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than actually measured. This is a second indication that the r-parameters at 150 °C need to be

readjusted.

It should be kept in mind, though, that for the investigated cases, the copolymer composi-

tion is mainly governed by the r12-value, since MMA is the dominating monomer and that this

r12-value could be determined quite reliably in this work. For polymerizations with higher MA

concentration, the results might be less precise due to the uncertainty connected with the determi-

nation of r21. It is, therefore, necessary to consider further experiments with higher MA fractions

in order to improve the precision of r21.

Another important issue to take into account when further increasing the temperature

(>170 °C), is the depolymerization. Due to the depolymerization mechanism (unzipping, see

chapter 5 “Thermal stability”), which only works for methacrylates and is stopped by the occur-

rence of acrylates in the chain, the incorporation of acrylate becomes more pronounced at high

temperatures: while the effective propagation rate for MMA needs to be corrected by the depoly-

merization

(EQ 4.27)

the propagation of the acrylate is, in first approximation1, not influenced by this mecha-

nism. This is the reason why the acrylate fraction increases disproportionally much for very high

temperatures, an issue that is not taken into account by the r-parameters.

4.3.3 Chain Transfer Constants

In order to correctly predict the molecular weight distributions in the modeling, the chain

transfer constants for all transfer reactions are needed at the given temperature range. For the

transfer to monomer and solvent, these are taken from literature or assumed to be constant (see

appendix 3). However, in the presence of a strong chain transfer agent, like the n-dodecanethiol

used in this work, their influence on the molecular weight can be neglected without any remark-

1. This is valid for the “ultimate” model only. For the “penultimate” model, i.e. when the second-last ele-
ment of the active radical chain is taken into account, too, the depolymerization needs to be considered. 
However, this would lead too far concerning the frame of this work.

kp1 effective, kp 1,
kdp

MMA[ ]
-------------------–=
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able deterioration of the model precision. The transfer constants for thiols are, indeed, by almost a

factor 104 higher than the ones for monomer and solvent transfer [47].

The value of the transfer constant for n-dodecanethiol (DDT) can be found in literature

[96]:

(EQ 4.28)

However, as for so many rate constants found in literature for the MMA polymerization, the

temperature range of its determination is 20 °C < T < 80 °C and it cannot be said for sure if the

same value applies to higher temperatures. The aim was, therefore, to redetermine the chain trans-

fer constant for the system MMA/DDT from the results of high-temperature experiments.

Several experiments at various concentration ratios [CTA]/[MMA] were carried out and the

results treated by two different methods. A detailed description of these methods can be found in

an article by De la Fuente and Madruga [97].

The first one is the Mayo-method. It is generally known that, according to the Mayo equa-

tion, the degree of polymerization DPn in the presence of a transfer agent is related to the one of a

polymerization without transfer agent DPn,0 as follows:

(EQ 4.29)

where CCTA is the transfer constant, [CTA] the concentration of the transfer agent and [M]

the concentration of the monomer. The transfer constant is determined graphically rather than

from two points only, by tracing  against .

Usually, the number-average degree of polymerization is to be taken. However, the exact

determination of the number-average molecular weight Mn is usually flawed with a rather large

error due to a very pronounced baseline sensitivity as regards the peak integration in SEC mea-

surements. The determination of the weight average molecular weight Mw is much more robust

and less sensitive to the choice of the baseline. De la Fuente and Madruga propose, therefore, to

take the weight-average molecular weight divided by a factor 2 for the Mayo-plot, which holds

true for most CTA regulated polymerizations1. In this work, calculations with both values were

CDDT
kCTA

kp
----------- 0.678= =

1
DPn

---------- 1
DPn 0,

--------------- CCTA
CTA[ ]

M[ ]
----------------⋅+=

1
DPn

---------- CTA[ ]
MMA[ ]

-------------------
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compared to each other and no significant difference could be found, as will be shown later in this

subchapter.

An alternative method for the determination of CCTA is developed in the paper of De la

Fuente and Madruga, which is based on the shape of the number average molecular weight distri-

bution of the produced polymer. For a system where the chain transfer to initiator, monomer and

solvent can be neglected compared to that of the CTA, the molecular weight distribution at any

instant will follow an exponential decay as presented in equation 4.30 [97]. 

(EQ 4.30)

where P(M) is the number distribution of molecular weight M, M0 the monomer molecular

weight and B a proportionality constant. The number distribution P(M) can be obtained by SEC

measurement of the polymer from the calibrated SEC molecular weight distribution Wf (log M):

(EQ 4.31)

By plotting the number-average molecular weight distribution obtained in equation 4.31 as

ln P(M) against the molecular weight M, a straight line is obtained for the region of the distribu-

tion that is controlled by the CTA, whose slope Λ corresponds to

(EQ 4.32)

Analogous to the Mayo plot, the CCTA value is obtained graphically from the slope of the

plot Λ against  for experiments with different CTA content, in order to obtain a higher

precision than for only one experiment. Figure 4.36 contains the plotting of ln P(M) against M,

from which the slopes Λ presented in table 13 were determined.

1. The polydispersity  is usually in the region of 2 for radical polymerizations with chain transfer 

agent.

PD
Mw

Mn
--------=

P M( )
M ∞→
I[ ] 0→

lim B
kCTA CTA[ ] M⋅ ⋅
kp MMA[ ] M0⋅ ⋅
------------------------------------------–⎝ ⎠

⎛ ⎞exp⋅=

P M( ) Wf Mlog( ) elog
M2

----------⋅=

Λ CCTA
CTA[ ]
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-------------------------------⋅–=
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With the values from table 13, the following two graphs can be drawn, leading directly to

the chain transfer constant for n-dodecanethiol (slopes):

Table 13: Results from pilot plant experiments for the determination of the DDT chain transfer 
constant at T = 140 °C (Initiator [TBPEH] = 250ppm)

Exp. No.
(appendix 7)

103 Mn [g/mol] Mw [g/mol] Λ . 105

4 1.13066 84’187 162’070 1.93 -1.04

1 1.69599 51’264 106’303 2.07 -1.55

5 2.82665 35’328 73’022 2.07 -2.54

Figure 4.36: Plot ln P(M) against M according to equation 4.30
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The results for the chain transfer constant from both methods match very well. However,

compared to literature values, they are slightly higher. This means that the transfer reaction

becomes more important at higher temperatures than it is the case below 100 °C.

It should be pointed out that in order to achieve correct values for the chain transfer con-

stant, the MMA and CTA concentrations in the loop reactor at steady state have to be taken into

account in eqs. 4.29 and 4.30. Unfortunately, it was not possible during the course of this work to

determine the CTA concentration in the loop samples by analytical methods. Therefore, it was

estimated using the kinetic model developed in this work, for which the transfer constant from lit-

erature (CDDT = 0.678 at 80°C) was used. This is, of course, a simplification but due to the

expected relatively small increase of CDDT with temperature, it was reckoned that this does not

have a huge impact on the conversion / concentration and that, therefore, the determination of

CDDT is sufficiently exact.

(a) (b)
Figure 4.37: (a) Mayo plot for Mn resp. Mw values from table 13
(b) Plot of the slopes from the lnP(M) plot against [CTA]/[MMA]
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4.4 Modeling the pilot plant

With the kinetic model established in PREDICI®, which is described in detail with all

kinetic constants and reaction steps in appendix 3, it is possible to predict many process variables

for the continuous pilot plant, among which are the monomer conversion, the molecular weight

and the speed of sound to be expected for the corresponding reaction conditions. In this chapter,

first the validation of the model with experimental data is presented, before in a second part, a

parameter variation is carried out in order to demonstrate the utility of a working model for pro-

cess development.

The model for the continuous polymerization process had to be split into two parts: one

CSTR model, describing the recycle loop (for recycle ratios > 30 [83] this is admissible), and one

tube reactor model for the second part of the reactor. While for the CSTR model, dynamic simula-

tions of the startup and switch-off phase are possible, the tube model only allows the modeling of

steady state.

The connection between both models is realized by means of a so-called “initial data sheet”

containing all necessary parameters from the exit of the CSTR reactor at steady state. This data

sheet is loaded into the tube model and defines all concentrations and molecular weight profiles at

position 0 of the tube reactor. An additional feed is included for the injection of solvent and sec-

ond initiator into the tube.

Table 14: Values for the chain transfer from n-dodecanethiol to MMA at T = 140 °C

Mayo method MWD method

0.870 ± 0.018 0.884 ± 0.01CDDT
kCTA

kp
-----------=
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4.4.1 Model validation for the continuous polymerization

The validation of the model with experimental data is carried out in the following by means

of the results from several different pilot plant experiments. Due to the vast amount of data

acquired during the series of pilot plant trials and the repetition that would be connected to a pre-

sentation of all different pilot plant experiments, only few exemplary experiments are presented

here.

One major point concerning the modeling of the pilot plant process is the correct prediction

of the monomer conversion. The data presented in figure 4.38 proves the good agreement of the

model with the experimental results for three pilot plant experiments at 150 °C, 160 °C and

170 °C for the loop and the tube. It is clearly visible how with increasing temperature, the conver-

sion in the loop is slightly increased, too. In the tube reactor, the curve at 170 °C flattens quite

quickly due to initiator burn-out (τ1/2(DTBP) ~ 10 min). For 150 °C, on the other hand, the maxi-

mum conversion is not reached at the end of the tube, which means that initiator is still present

and the polymerization can continue in the preheater of the devolatilization (T = 250 °C). This is

not desirable due to the high radical flux created, which might influence the thermal stability of

the polymer.

Figure 4.38: Conversion evolution, modeled and experimental data, for pilot plant experiments 
no.10a, 15 and 17 (150°C, 160 °C, 170°C)
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Figure 4.39 shows the conversion evolution for a polymerization carried out at 140 °C with

250ppm TBPEH as initiator. As the graph reveals, the polymerization is entering the gel effect

region and does not arrive at steady state. In fact, the experiment was stopped after 6 hours before

the conversion increase was becoming too dramatic. However, the process simulation could have

revealed before carrying out the experiment that the chosen conditions would lead to an unstable

reactor behaviour with the risk of autoacceleration. In a larger scale production plant with a much

higher inertia than the pilot plant, these process conditions could have had severe consequences.

This demonstrates how important it is to have a working model, which makes it possible to pre-

dict the course of an experiment before actually running it.

The model was also validated concerning the molecular weight prediction. PREDICI® not

only allows the calculation of average molecular weights, but also the complete distribution mod-

eling. In figure 4.40, the evolution of the average molecular weight in number, respectively in

weight, in both reactors (loop and tube) is presented for experiment no. 15 (160 °C). Both molec-

ular weight values rise quickly to a steady value, which is in good agreement with the values

determined by GPC from several samples over time. Due to the addition of a second initiator to

the tube reactor, the values decrease slightly with increasing conversion in the tube. As last sam-

pling point the value from the polymer at the reactor exit is taken. 

Figure 4.39: Conversion evolution for experiment no. 4 at 140 °C with reduced chain transfer 
agent (0.2% DDT), exhibiting a commencing gel effect

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000

Time [s]

X
 [-

]

Model 140°C
Exp. no. 4 140°C



4.4:  Modeling the pilot plant

157

The same good agreement is found for the simulated and measured Mw distributions, as

shown in figure 4.41. The predicted ultrasound signal, which is based on the theoretical speed of

sound for the reaction mixture composition calculated by the model, follows the measured signal

rather closely, too. The difference in the beginning of the reaction (after the feed-switch) illus-

trates the difference between the ideal reactor behaviour of the model and the real reactor, which

“follows” the ideal curve with a little delay. When the reactor reaches steady state, the values

match very well again. However, a little later after the first sample has been taken, the measured

signal increases further by ~30m/s whereas the predicted signal does not change anymore. The

measured increase might be due to the formation of a polymer film on the probe heads as dis-

cussed in the section dealing with the ultrasound technique in this chapter.

Figure 4.40: Molecular weight evolution, modeled and experimental data, for pilot plant experi-
ment no.15 (160 °C, 3%MA, 250ppm TBPIN loop, 250ppm DTBP tube, 22% BuAc im tube)
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4.4.2 Variation of process parameters - Model predictions

With the working kinetic model for the continuous polymerization process, it is possible to

run through several scenarios of varying process parameters in order to say something about the

process stability or to predict possible courses of reactions. This is to be done in the following for

the example of the loop reactor. For the demonstration of the possibilities one has with a kinetic

model, the parameters residence time, temperature, amount of initiator and solvent content were

varied and the results evaluated with respect to the impact of each variation on conversion and

molecular weight with special attention focused on the triggering of the gel effect.

Varying the residence time

Depending on the initiator, which is employed, as well as on the temperature of the reactor,

changing the residence time can have severe consequences for the stability of a process. In the

presented example, a polymerization at 140 °C with 250ppm of TBPIN is modeled and the resi-

dence time varied from ~10 to ~80 minutes. A change of the residence time can, for example, be

caused by a technical problem or operators error with the feed pump(s) (result: higher residence

times) or by the formation of polymer films inside a tubular reactor due to fouling (result: lower

Figure 4.41: Ultrasound signal and molecular weight distribution (at loop exit), modeled and 
experimental data, for experiment no. 14 (150 °C, 3%MA, 250ppm TBPIN) resp. no.15 (160 °C, 

3%MA, 250ppm TBPIN)
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residence times). For this example, a relatively slowly decomposing initiator (TBPIN) is com-

pared to a faster decomposing one (TBPEH) in order to demonstrate the effect on conversion.

It can be seen from figure 4.42 that the polymerization is stable for residence times up to

~33 minutes. However, above this value, the reaction enters the autoacceleration zone and the

conversion is continuously driven to higher values. Further reducing the residence time leads to a

strong reaction acceleration followed by almost full conversion, which, in reality, would be

impossible to handle due to viscosity issues. For the faster decomposing initiator TBPEH, this

effect is slightly less pronounced, in particular for very high residence times.

 

The scenario of a decreasing feed stream, causing higher residence times can be taken one

step further to the case of a complete failure of the feed pump. In this case, the recycle loop will

behave like a batch reactor and follow a different reaction path. Again, depending on initiator and

temperature, a feed pump failure can have drastic consequences on the heat production and con-

version respectively viscosity evolution in the reactor.

The simulation results for this failure scenario are shown in figure 4.43, where a complete

cut of the feed flow occurs at t = 10’000 s. The same calculations have been carried out for three

initiators with different decomposition characteristics: TBPEH, TBPIN and DTBP. The latter

decomposes extremely slowly at T = 140 °C, which is the reason for the high monomer conver-

Figure 4.42: Conversion evolution in the loop reactor as a function of the residence time (140 °C, 
0.3% DDT, left: 250ppm TBPIN, right: 250ppm TBPEH)
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sion obtained after the failure of the feed pump. While for TBPEH and TBPIN the risk concerning

a reaction runaway is practically zero due to the quick consumption of initiator after cutting the

feed flow, this risk is extremely high for DTBP. Additionally, the time to react after a possible

pump failure and to take countermeasures is rather low (~10% conversion increase per 10 min-

utes).

It is, therefore, indispensable to carefully choose the right initiator for a given temperature

in order to reduce the risk that the polymerization is taken to high conversions in case of a major

residence time variation by, for example, a feed pump failure.

 

Varying the temperature

Varying the process temperature has a less important effect on the process. On the one hand,

this is due to the fact that lowering the temperature automatically reduces the decomposition rate

of the thermal initiator, which leads to a reduction of monomer conversion. On the other hand,

increasing the temperature leads, depending on the chosen initiator, either to a quick initiator

burn-out, or to a conversion limitation due to the depolymerization.

Figure 4.43: Conversion evolution in the loop reactor after an assumed feed pump failure for dif-
ferent initiators (140 °C, 0.3% DDT)
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Figure 4.44 contains two graphs showing the conversion evolution over time as a function

of temperature for TBPIN, respectively DTBP. In the case of TBPIN, the variation is not very

intense, which is due to the rather quick initiator burnout above 150 °C (t1/2, TBPIN = 1 min at

160 °C). For DTBP, the difference is much more visible. At 140 °C, the decomposition of DTBP

is very slow and the conversion, therefore, not very high. However, increasing the temperature to

160 °C pushes the conversion to a region where the reaction slowly enters the autoacceleration,

which is noticeable by the constant increase of conversion. Above this, what could be called

“turnover point”, the conversion drops again due to the starting depolymerization (not due to ini-

tiator burnout: for comparison, t1/2, DTBP = 1 min at 190 °C!).

Note that the above presented cases are valid for the variation of the reaction temperature

under isothermal conditions. They do not describe the variation of temperature due to the reaction

heat in case of a failure of the reactor’s heating, respectively cooling circuit.

Varying the initiator concentration

Increasing the initiator concentration has, as expected, a very strong impact on the conver-

sion evolution in the reactor. For the example shown in figure 4.45, the initiator concentration of

the feed flow was stepwisely increased from 150ppm TBPIN to 600ppm. The results illustrate

that above a concentration of 400ppm, the reactor behaviour becomes unstable and the reaction

Figure 4.44: Conversion evolution in the loop reactor as a function of the temperature 
(τ = 27 min, 0.3% DDT, left: 250ppm TBPIN, right: 250ppm DTBP)
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goes into the gel effect. The influence on the molecular weight distribution is that the amount of

polymer increases (in analogy to the conversion). The average molecular weight remains rather

unchanged due to the presence of chain transfer agent. Only a small drift to lower molecular

masses can be observed with increasing initiator concentration.

This example proves once again the importance of process modeling, making it possible to

estimate a tolerance interval for the initiator concentration to guarantee a safe and stable reactor

behavior, which is particulary important before changing the process conditions, e.g. the type of

initiator or temperature.

Varying the chain transfer agent concentration

The chain transfer agent influences the reaction mostly by changing the molecular weight of

the produced polymer and, thus, the viscosity of the reactor contents. Reducing the CTA feed con-

centration too much can lead to a strong increase in molecular weight, which can trigger the gel

effect. In this work, the CTA concentration was at all times adjusted in a way to obtain a polymer

of approximately 100 kg/mol in Mw.

How strong the impact of reducing the CTA feed concentration can be is illustrated in figure

4.46. A reduction from 0.3% to 0.1% causes an increase in molecular weight by 80% from

~100 kg/mol to ~180 kg/mol, by which the viscosity of the reaction mixture rises in a way that the

Figure 4.45: Conversion evolution and molecular weight distribution in the loop reactor as a 
function of the initiator concentration (T = 140 °C, τ = 27 min, 0.3% DDT)
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polymerization goes straight into the gel effect. The amount of chain transfer agent added to the

feed solution must, therefore, be carefully evaluated before carrying out a reaction if problems

arising from the strong viscosity increase are to be avoided.

Figure 4.46: Conversion and molecular weight evolution in the loop reactor as a function of the 
DDT concentration (250ppm TBPIN, T = 150 °C, τ = 27 min)

Figure 4.47: 3D-graphs of the molecular weight distribution evolution with 0.3% (left) resp. 0.1% 
(right) DDT (250ppm TBPIN, T = 150 °C, τ = 27 min)
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Influence of the solvent content

Finally, also adding a solvent can help in making a process more stable. As seen in chapter

3, the gel effect is attenuated considerably in the presence of solvent, which is caused by the

strong reduction of the viscosity due to the lower polymer fraction.

In figure 4.48, two different cases are compared, one without any solvent in the reactor feed,

the other one with 20% butyl acetate. Apart from lowering the polymer fraction, the solvent also

has an influence on the molecular weight, which is decreased by approximately 20% by the sol-

vent addition. The reason for this decrease is the transfer reaction between solvent and active

polymer chains (analog to the transfer to monomer and CTA) on the one hand, and the lower

monomer concentration on the other.

Despite its positive impact on the reaction stability in terms of avoiding a strong gel effect,

the use of solvent in early stages of polymerization is usually unwanted due to, inter alia, the

lower reaction rate and possible side reactions (e.g. the above-mentioned transfer reactions).

Generally speaking, minimizing the solvent content, respectively avoiding its addition com-

pletely, has the advantage of an easier devolatilization in the end of the process.

Figure 4.48: Conversion evolution in the loop reactor as a function of the solvent content 
(400ppm TBPIN, T = 150 °C, τ = 27 min)
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4.5 Discussion

The present chapter is the most extensive one in this report. This is due to the fact that it

contains a variety of topics and information related to the pilot plant process.

On the first pages, the pilot plant setup has been described in detail and the advantages of a

combination of recycle loop and tube reactor was pointed out with regards to a classic setup of

CSTR and tube reactor. At the same time, the static mixing elements and their characteristics were

presented. The concept of chosing mixing elements with the same specific heat transfer coeffi-

cient as found in industrial scale reactors simplifies the scale-up from pilot plant to industrial pro-

duction size.

Connected to every polymerization reaction is a more or less pronounced viscosity increase

with rising polymer fraction. In the case of PMMA, this increase can be of several orders of mag-

nitude. A model from literature was presented for the prediction of the viscosity and the pressure

drop in the tubular reactor. By means of this model, it is possible to estimate the viscosity evolu-

tion with increasing conversion and molecular weight.

One major aim of this work was the implementation of a method for the inline conversion

measurement based on ultrasound technology. The pilot plant had been equipped with two probes

for the speed of sound measurement of the polymer solution at high temperatures. A problem aris-

ing from the determination of the monomer conversion from the speed of sound has been a rather

large discrepancy between the measured values and speeds of sound calculated from theory. It

was found that by readjusting the compressibility data for solvent and monomer, which had been

found in literature only for low temperatures, this offset could be avoided. The equation for the

calculation of the speed of sound for a mixture of known composition can, unfortunately, not be

solved explicitly to yield the polymer weight fraction as a function of speed of sound and temper-

ature. This limitation could be overcome by fitting calculated speed of sound values as a function

of solution composition and temperature, leading to an analytical expression for the direct conver-

sion calculation from measured speed of sound and temperature. The correct functioning of this

measurement technique was demonstrated by comparison of conversion data from ultrasound to

offline measured values from GC measurements. A limitation that could not be resolved is the

restricted ability to measure in the presence of solvent. Since the above mentioned fitting is lim-

ited to three dimensions (speed of sound, temperature and polymer fraction / conversion), it is
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impossible to include the influence of the solvent on the measured speed of sound in the calcula-

tion. Therefore, the conversion measurement can only be precise if the solvent fraction is constant

or zero. If solvent is to be used in the process, the fitting presented in this work needs to be redone

considering the influence of a constant amount of solvent on the speed of sound. However, it was

shown in this chapter, that the ultrasound technology is a powerful tool for the monitoring of the

process stability in polymerization reactions.

In several pilot plant experiments, the feasibility of the high temperature polymerization of

MMA was demonstrated as well as the influence of various process parameters on the product

quality investigated. Generally, a polymer of approximately 100 kg/mol and a residual volatiles’

concentration of ~4000ppm was obtained with the process conditions applied in this work. The

total monomer conversion was X = 40-50% in the recycle loop and X = 20-30% in the tube reac-

tor (corresponds to 60-80% overall conversion).

From experiments with different comonomer, respectively chain transfer agent concentra-

tion, the reactivity ratios for the system MMA/MA and the transfer constant for n-dodecanethiol

could be determined at high temperature. For the calculation of these parameters certain simplifi-

cations and assumptions had to be made in order to overcome limitations related to the narrow

measuring range (r-parameters) or to missing CTA concentration values (transfer constant). After

all, for the reactivity ratios of the system methyl methacrylate / methyl acrylate, the values

r12 = 1.825 ± 0.1 and r21 = 0.698 ± 0.1 were found for T = 160 °C and MA fractions below 10%

by the Kelen-Tüdös method. For higher acrylate fractions, more experiments need to be carried

out to refine the r21-parameter, which, in this work, could only be determined by the addition of

an auxiliary “dummy” point positioned at an MA fraction close to one. The chain transfer con-

stant for n-dodecanethiol at T = 140 °C was determined by means of the Mayo-plot and by a

method found in literature (de la Fuente and Madruga) to be CCTA = 0.88 ± 0.01.

 Finally, the validity of the kinetic model established in this work for the continuous poly-

merization process was proven by comparison to experimental data. The agreement between

modeled and measured data in terms of conversion evolution and molecular weight distribution

modeling is very satisfying. Last but not least, the importance of process modeling in polymer

reaction engineering was pointed out by a parameter variation study. With the help of the pilot

plant model, several scenarios of changing process parameters were simulated and the influence

of each parameter on process stability and comportment was evaluated.
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Short Summary:

• The continuous polymerization of MMA at high reaction temperatures is dis-

cussed and results from several pilot plant experiments are presented

• With the reaction conditions applied in this work, a PMMA with a molecular 

weight of Mw = 100 kg/mol is obtained at high monomer conversion

• For inline conversion monitoring, a technique based on speed of sound measure-

ment was successfully implemented and tested

• From the experimental data it was possible to determine two important kinetic 

parameters: the reactivity ratios for the comonomer system MMA/MA and the 

chain transfer constant for n-dodecanethiol at high temperature

• The validity of the kinetic model established during this work in PREDICI® was 

proven by comparison to experimental data. With the help of this model, a param-

eter variation was carried out to predict the response of the process to several sce-

narios of changing process conditions.
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CHAPTER 5

Thermal stability and
Depolymerization

As practically all organic substances, also polymers have a rather limited thermal stabil-

ity. The thermal stability of a molecule is normally directly dependent on the bond energy of

the molecule’s constitutional bonds. Different from smaller molecules, polymers suffer basi-

cally from an especially low bond energy, which is due to the non-uniform movements of the

polymer chains above the glass transition [98] that weaken the chain bonds. In the case of

PMMA, the activation energy for random chain scission is with approximately 233 kJ/mol [99]

significantly lower than for C-C bonds in small organic molecules (326 kJ/mol [100]).

But the thermal degradation of PMMA is particular for yet another reason: the unzipping

mechanism. Unlike other polymers, the non-oxidative degradation of PMMA yields mostly

monomer and it is, thus, possible to recover as much as 98% methyl methacrylate from the

pyrolysis of PMMA, as presented in table 1 for a recycling study found in literature. The mech-

anism is called unzipping because the molecular structure of PMMA allows an intramolecular

radical transfer from the chain end to the penultimate chain link, setting free one monomer

molecule after the other, like in a zipper:

(EQ 5.1)
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This means that once a polymer chain has been activated by chain scission, the created

chain radicals “unzip” either completely or until they are terminated by combination or dispropor-

tionation with another radical.

It is the same mechanism that applies for the depropagation reaction in the MMA polymer-

ization, which has already been mentioned with regards to the conversion limitation at high tem-

perature in Chapter 3. It is, therefore, logical to discuss both issues together within this chapter.

5.1 Depropagation of poly (methyl methacrylate) chains

The radical polymerization of MMA, unlike for example polycondensation reactions, is a

reversible reaction and is determined by the equilibrium between the propagation and the deprop-

agation reaction, depicted in equation 5.2. 

(EQ 5.2)

Table 1: Degradation products for the pyrolysis of PMMA [101]

Analysis (wt%) 450 °C 490 °C 590 °C 
Gas 1.37 2.63 42.46 
Methane 11.8 10.3 9.2 
Ethene 4.7 4.4 5.87 
Ethane 3.4 2.6 1.6 
Propene 1.3 6.8 16.3 
Iso-butene 0.21 1.85 4.9 
CO2 75.8 55 20.4 
CO 0.78 14.3 31.9 
        
Liquid 98.48 97.08 57.27 
Methanol 0.03 0.07 0.06 
Methylisobutanol 0.11 0.13 0.54 
MA 0.28 0.34 2.18 
MMA 98.66 98.34 95.8 
MMA-dimere 0.14 0.26 0.51 
        
Char 0.15 0.29 0.27 
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p
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For low temperatures, the depropagation rate is very small and can be neglected in compar-

ison to the propagation rate: the equilibrium is pushed to the far right hand side of equation 5.2.

With increasing temperature, however, the depropagation becomes more important and, above

170 °C, it causes remarkable conversion limitations due to the decrease of the “effective” propa-

gation rate, as can be seen in figure 5.1, where the simple propagation rate kp is compared to the

propagation rate corrected by the term for the depropagation over a large temperature range1:

(EQ 5.3)

1. As monomer concentration [M] is taken its bulk concentration at the corresponding temperature and the 
following rate coefficients have been employed for this presentation:

 (IUPAC),  (this work)

Figure 5.1: Comparison of effective and theoretical propagation rate for MMA depending on the 
temperature of polymerization

kp 2.67 106 22.4kJ mol⁄
RT

------------------------------–⎝ ⎠
⎛ ⎞ l

mol s⋅
----------------exp⋅ ⋅= kdp 2.4 1012 73.3kJ mol⁄

RT
------------------------------–⎝ ⎠

⎛ ⎞ 1
s
---exp⋅ ⋅=

kp effective, kp
kdp
M[ ]

---------–=

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

1.4E+04

1.6E+04

1.8E+04

0 50 100 150 200 250 300

T [°C]

k 
[l,

 m
ol

, s
]

kp - kdp / [M]

kp



Chapter 5:  Thermal stability and Depolymerization

172

Once the system reaches the ceiling temperature, i.e. the temperature where propagation

and depropagation rate are the same, the apparent rate of polymerization is zero. This means that

the propagation still takes place but for each element that is added to the chain, one is taken away

at the same time. Thus, the net chain growth is zero.

Kinetically, an equilibrium between two reactions like propagation and depropagation is

expressed by equation 5.4:

(EQ 5.4)

from which the equilibrium constant can be isolated:

(EQ 5.5)

From a thermodynamic point of view, propagation and depropagation are in the equilibrium

state at ceiling temperature, which in terms of the standard Gibbs enthalpy of polymerization

ΔGp
0 can be written as

 (at constant pressure) (EQ 5.6)

where ΔHp
0 is the standard enthalpy and ΔSp

0 the standard entropy of polymerization (for

PMMA these values are -57.8 kJ/mol respectively -117 J/mol K [47]). From equations 5.5 and 5.6

follows for the calculation of the ceiling temperature:

(EQ 5.7)

Note that the concentration [M] is the equilibrium concentration of MMA at Tc. Usually,

[M] is taken as unit concentration ([M] = 1 mol/l) [102] and Tc is then the temperature above

which it is not possible to form polymer from unit or lower concentration. This means that if the

polymerization started at Tc, it would proceed until the monomer concentration reaches the equi-

librium concentration. Conversely, polymer chains that are made at a lower temperature and con-
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secutively heated to Tc will depolymerize until the equilibrium concentration of the monomer in

the system is reached.

With the help of equation 5.7, also the equilibrium monomer concentration for any given

temperature can be calculated, assuming that ΔHp
0 and ΔSp

0 do not exhibit any temperature

dependence:

(EQ 5.8)

Together with the relation  and equation 5.8, the equilibrium conver-

sion at a given temperature T can be calculated:

(EQ 5.9)

However, when tracing the equilibrium conversion against temperature, which has been

done in figure 5.2, it becomes evident that, above 170 °C, the calculated values are much too high

compared to experimental and literature data. In fact, for DSC batch polymerizations, the maxi-

Figure 5.2: Equilibrium conversion for MMA at different temperatures according to equation 5.9 
in comparison to experimental data from this work (DSC polymerizations with 1000ppm DTBP as 

initiator) and literature [103]
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mum attainable conversion drops quickly to zero between 170 °C and 210 °C while the calculated

values remain quite high until approximately 230 °C and reach zero conversion at ~260 °C. This

might be due to the simplifications made in the above considerations, e.g. that the chain radicals

[Pn+1
.] and [Pn

.] have the same reactivity (equation 5.6). If, for example, the reactivity of [Pn+1
.]

is lower than for [Pn
.], the equilibrium conversion will be lower, too. Also the fact that other, irre-

versible reactions (like chain termination) take place at the same time influences the thermody-

namic equilibrium and prevents the use of the purely theoretical development made up to here for

the estimation of the depropagation rate constant, which is the real aim of this.

In order to determine a depropagation rate constant for MMA radical chains, it is therefore

more appropriate to do this with respect to experimental data rather than based on the theoretical

curve in figure 5.2. Also literature provides values for kdp as shown in table 2, but unfortunately,

values from both sources did not deliver satisfying results in the modeling of this work. The value

of Chiu et al. underestimated the conversion limitation by depropagation, whereas the Fleury rela-

tions for the calculation of Xequ and kdp resulted in a too strict reduction of the final monomer

conversion.

With the technical possibilities to fit rate constants to experimental data in PREDICI® and

the data from several high temperature polymerizations at 170 °C and 180 °C, a new value for kdp

was determined, which leads to a correct description of the conversion limitation in the frame of

the modeling used in this work.

Table 2: Literature values for the depropagation rate of MMA radical chains

Source kdp

Chiu et al. [58]

Fleury [5]
 (fitted by Fleury)

kdp 6.48 1011 76.4 kJ mol⁄[ ]–
RT

--------------------------------------⎝ ⎠
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Figure 5.3 shows the results of the fitting for two DSC batch polymerizations at 170 °C and

180 °C in comparison to experimental data. The values for k0 and EA of the depropagation rate

obtained in this way are presented in table 3.

5.2 Thermal stability of the polymer

The previous part of this chapter has dealt with the depolymerization reaction of live poly-

mer chains. Yet, once a chain is terminated, the depolymerization is not an issue anymore since

the termination is an irreversible reaction. So, in order for the above mentioned unzipping mecha-

nism to take place, the “dead” polymer chain needs to be activated by chain scission. Once this

has happened, the activated chain undergoes the same depolymerization reaction as described in

Figure 5.3: Results for the conversion limitation by depolymerization using the kdp value esti-
mated in this work

Table 3: Values for the depropagation rate obtained in this work by fitting to experimental data 
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section 5.1., as postulated by Grassie and Melville [104]. The thermal degradation of PMMA is,

therefore, nothing else than a depolymerization initiated by chain scission, with the chain scission

being the rate determining step.

For radically polymerized PMMA, chain scission can occur at different places of the mole-

cule. Basically there are three main bond types, each exhibiting a different thermal stability.

Therefore, PMMA degrades in three steps with increasing temperature, as it was demonstrated by

previous research studies carried out in this laboratory [43] as well as by many other authors [99,

105-117].

The three most important bond types in order of increasing thermal stability are:

• head-to-head bonds that form by combination termination of two active 

polymer chains

• unsaturated end groups that form by disproportionation termination of two 

active polymer chains

• random C-C bonds of the main chain

Apart from these three types of bonds, other weak linkages can be introduced into the poly-

mer chains depending on, for example, the process conditions and impurities. However, their

occurrence is too random and non-reproducible in order to relate them to any thermal degradation

step as the above mentioned ones. In general, it can be said that the more regular a polymer chain

is, the more thermally stable it will be.

The following figure 5.4 shows a typical result from the thermogravimetry of PMMA,

which has been polymerized at 140 °C and not been stabilized or heat-treated after polymeriza-

tion. The three degradation steps are easily recognizable. Remarkable is the low starting point for

the head-to-head degradation at little above 150 °C. This temperature is far from the ceiling tem-

perature of MMA, which means that the monomer set free by the degradation can repolymerize

with the active chains [109], while for the two other steps, both taking place beyond 220°C, the

chain scission leads inevitably to a complete unzipping of the whole chain.
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Thermal stability of a polymer is an important characteristic for the product quality. Espe-

cially for molding compounds, as the PMMA produced in this work, that have to be molten in an

extruder at temperatures between 250 °C and 300 °C before they can be injected into a mold to

produce parts with the desired shape, the minimization of weight losses due to thermal degrada-

tion is a major concern. The example presented in figure 5.4 would be completely unsuitable for

this application, since the weight loss at 250 °C exceeds already 30% and at 300 °C only less than

50% are left. The volatiles created during the degradation pollute the final work piece and make

its use for most applications impossible.

The development of an efficient stabilization strategy has therefore been subject to intensive

research in the past, which is illustrated by more than 4000 patents1 on this topic. The most popu-

lar solution for improving the heat stability of methacrylates is the copolymerization with small

amounts of acrylates. The unzipping mechanism presented in equation 5.1 can only work with a

Figure 5.4: Typical TGA thermogram of the degradation of radically polymerized PMMA (poly-
merization temperature 140 °C)

1. Number of patents found in SciFinder 2006 by searching for the keywords “methacrylate”, “moldability” 
and “thermal stability”
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methyl group in the alpha position of the acrylate. As soon as this methyl group is replaced by a

hydrogen atom, the unzipping stops [118]. This is, for example, the case for methyl acrylate but

also works for any other acrylate comonomer:

(EQ 5.10)

The stabilization with a comonomer is simple and cheap and it does not significantly

change other product properties of the polymer, since already small amounts of comonomer are

sufficient for stabilization reasons. This is the reason why nowadays practically no homopolymer-

ized PMMA is sold but only copolymers with various comonomer contents.

Another possibility to make PMMA thermally more stable is the use of chain transfer

agents. This group of substances, which are mostly of the thiol type, has already been mentioned

at other occasions in this work, namely with regards to the thermal initiation and the gel effect.

Apart from their primary application in polymerization reactions, i.e. to control the molecular

weight, they also have an important stabilizing effect on the polymer. In fact, the principle of

chain transfer is the termination of active polymer chains by transferring the radical from the

chain to the transfer agent in exchange for a hydrogen atom, which terminates the active chain.

Thus, the probability that polymer chains contain weak bonds is considerably lower. Since the

chain transfer is in concurrence with the other termination reactions it is: the higher the amount of

chain transfer agent, the less termination by combination or disproportionation occurs and the

more stable the polymer. An additional side-effect is the presence of residual thiols in the final

polymer. As the degradation of PMMA is a process involving radicals, thiols being radical scav-

engers can capture active radicals and, thus, slow down the degradation by unzipping.

Finally, also the polymerization conditions can have a major impact on the thermal stability

of the polymer. As said before, the uniformity of the polymer chains is a key to good resistance

against thermal stress. Increasing the radical flow during a polymerization reaction, e.g. by over-
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dosing thermal initiators, or increasing polymerization rate and temperature can have a negative

effect on the structure of the polymer.

In the following, the efficiency of the above-mentioned stabilization strategies and their

impact on the polymer stability is discussed with the help of results obtained in this work for the

batch and the continuous polymerization of MMA under various conditions. During the next

paragraphs it should be kept in mind that there is a major difference between samples from the

batch experiments and those from the pilot plant. The samples from the DSC were all polymer-

ized to full conversion with rather high amounts of DTBP as initiator (1000ppm). Furthermore,

they were not exposed to higher temperatures than the reaction temperature, unlike the pilot plant

samples that have already passed the devolatilization at 250 °C. It is, thus, to be expected that the

DSC samples exhibit a generally lower thermal stability than the pilot plant samples. The latter

will, therefore, be discussed separately at the end of this chapter and in the next sections the influ-

ence of each reaction parameter will be evaluated only qualitatively based on DSC samples.

5.2.1 Effect of the polymerization temperature

PMMA starts to decompose by scission of head-to-head bonds at approximately 150 °C

(see figure 5.4). Increasing the polymerization temperature to above this value will, therefore,

have the effect of eliminating this type of bond in the polymer. Additionally, also the ratio

between termination by combination and disproportionation, γ, is more and more in favour of the

disproportionation with increasing temperature. This means that for polymerization temperatures

higher than 150°C, the degradation by head-to-head scission should be significantly reduced,

whereas the scission at unsaturated chain ends should become more important. In thermogravi-

metrical experiments, exactly this phenomena can be observed, as shown in figure 5.5 (a). Pre-

sented are the results from TGA experiments with three homogenous PMMA samples from DSC

batch polymerizations carried out at different temperatures. It is evident how increasing the tem-

perature improves the thermal stability for temperatures below 250 °C. The other side of the coin

is that, in particular for 190 °C polymerization temperature, the thermal lability between 250 °C

and 300 °C, i.e. the weight loss during the second degradation step, is drastically increased. This

is explainable by the fact that at this polymerization temperature, very short chains are polymer-

ized, which terminate almost exclusively by disproportionation at this temperature (γ = ktc/

ktd = 0.034). Therefore, the ratio of unsaturated end groups to random C-C bonds is rather high.
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The influence of temperature on thermal stability is, therefore, also a consequence of the

changing molecular weight: at low temperatures, rather long polymer chains are produced. This

means that the ratio between possibly instable bonds to C-C chain bonds is lower than for shorter

chains and, therefore, the probability that a chain molecule breaks at a weak bond decreases. In

figure 5.5 (b), this is illustrated by the comparison of three polymers that were polymerized at

lower temperatures and which exhibit a quite important difference in molecular weight. 

5.2.2 Effect of the comonomer

According to the theory discussed beforehand and as illustrated in equation 5.10, the addi-

tion of small amounts of acrylates as comonomer prevents the polymer chains from complete

unzipping after being activated by chain scission. Depending on the amount of acrylate added to

the reaction mixture, the fraction of acrylate molecules that are incorporated in the chains

increases and, at the same time, the thermal resistance of the polymer should become better. The

maximum amount of comonomer is limited, however, by the fact that too much comonomer can

seriously deteriorate the polymer properties (mechanical strength etc.).

Figure 5.6 illustrates the impact of increasing comonomer concentration in the reaction

mixture on the thermal stability of the resulting polymer for the example of methyl acrylate. The

(a) (b)
Figure 5.5: Influence of (a) the polymerization temperature and (b) the molecular weight on the 

thermal stability of PMMA (1000ppm DTBP, no CTA, no solvent)
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samples were all polymerized at 140 °C in DSC batch polymerizations. Already 2% of MA are

sufficient to improve the thermal stability by more than 10% with respect to the weight loss

between 250 °C and 350 °C. For 5% MA, the overall weight loss below 300 °C is less than 10%. 

Increasing the temperature of the copolymerization from 140 °C to 170 °C deteriorates the

thermal stability and the weight loss increases again, in particular in the region of the unsaturated

end group scission (figure 5.7). At first sight, this is in contradiction to the fact observed in Chap-

ter 4, “R-parameters” on page 138 that with increasing temperature more comonomer is incorpo-

rated in the polymer chains. This should make the polymer more resistant according to figure 5.6.

The only possible explanation is an augmenting occurrence of weak linkages (i.e. unsaturated end

groups) in the polymer chains at 170 °C analog to section 5.2.1. It will have to be seen later if the

same phenomenon can be observed for the samples from the continuous pilot plant process or in

the presence of a chain transfer agent.

Figure 5.6: Influence of comonomer (methyl acrylate) and its amount on the thermal stability of 
PMMA (DSC batch polymerization T = 140 °C, 1000ppm DTBP, no CTA, no solvent)
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Finally, in order to verify the assumption for the stabilization mechanism of acrylates, i.e.

that the mechanism is really depending on the alpha substituent as presented beforehand, several

different acrylates and alkyl-substituted acrylates were tested as comonomer in the polymeriza-

tion of MMA. An as a matter of fact, the comonomer acts only as stabilizer if the alpha-position

of the acrylate is not substituted. In figure 5.8 are presented the results from four polymerizations,

one without any comonomer, one with butyl methacrylate, one with methyl acrylate and one with

butyl acrylate. The curves for both acrylates and both methacrylates are overlapping each other.

The stabilizing effect is only achieved for the two acrylates. This result is an important piece of

evidence for the supposed stabilization mechanism of equation 5.10.

Figure 5.7: Influence of comonomer (methyl acrylate) and its amount on the thermal stability of 
PMMA (DSC batch polymerization T = 140 °C resp. 170 °C, no CTA, no solvent)
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5.2.3 Influence of the chain transfer agent

The stabilizing effect of the thiol added to the polymerization as chain transfer agent is less

pronounced than expected (see figure 5.9). Although the experiments with no, respectively, 500 -

3000ppm CTA added cannot be directly compared due to a large change of the molecular weight,

it can be said that with increasing CTA concentration, the thermal stability in the temperature

range of 150 °C to 250 °C gets worse while it improves for the region above 250 °C. The degra-

dation by unsaturated end group scission almost completely disappears and the thermogram flat-

tens between 220 °C and the beginning of the random chain scission at 330 °C. The increased

weight loss around 200 °C might be due to the fact that the chain transfer agent can also act as ini-

tiator, which, at high CTA concentrations, can lead to the formation of significant amounts of

polymeric chains with thioether end groups, which exhibit a low thermal stability.

Figure 5.8: Influence of the choice of comonomer on the stabilization of PMMA (DSC batch poly-
merization at T = 140 °C, 1000ppm DTBP)
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5.2.4 Results from the pilot plant polymerization

The polymer samples coming from the pilot plant were analyzed in the analytical facilities

of the industrial partner according to a method validated for commercial polymers. This allowed

the direct comparison between the product from the pilot scale reactor to industrial scale produced

PMMA. The specifications concerning the thermal stability of a product are given by characteris-

tic values, which quantify the weight loss at certain criteria and can be easily compared for differ-

ent samples. These criteria are:

• Td: the temperature where the total weight loss is of 2% of the sample

• Tv0.05, Tv0.1, Tv0.2: the temperature where the rate of weight loss is of 

0.05%/min, 0.1%/min, respectively 0.2%/min

• Tmax: the temperature of maximum rate of weight loss

Apart from the relative weight loss suffered at a given temperature, also the rate of weight

loss is important, since the exposure of the polymer to elevated temperatures is usually kept rather

short in extrusion.

Figure 5.9: Influence of the chain transfer agent (n-dodecanethiol) on the stability of the polymer 
(DSC batch polymerization at 140 °C, 1000ppm DTBP)
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Figure 5.10 shows the typical result from a thermogravimetrical analysis of a commercial

grade PMMA molding compound of excellent thermal stability: below 300°C, the polymer sam-

ple loses less than 0.2% of its weight per minute.

These values were not quite reached for the polymers produced in the pilot process during

this research study, as will be presented in the following. Especially the weight loss rates Tv0.05,

Tv0.1, Tv0.2 were reached at considerably lower temperatures (compare table 4), which might be

due to the fact that the pilot plant polymer contains rather large amounts of residual monomer, at

least in comparison to commercial polymer, which has to be much better degassed at the end of

the production process in order to meet environmental and toxicological requirements for con-

sumer products.

Another reason might be oxidative degradation caused by gas leaks in the devolatilization

chamber (this has been discussed in Chapter 4, “The final product” on page 114), which does not

Figure 5.10: Thermogravimetry of a commercial grade PMMA with characteristic values Td, 
Tv0.05-0.2 and Tmax
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only cause a brownish coloration of the polymer but can also lead to instable bonds in the polymer

chains (e.g. by formation of (hydro)-peroxides). 

For a clearer structure, only three values are compared for the following evaluation of the

thermal stability: Td2%, Tv0.1 and Tmax.

One important trend already observed for the DSC batch polymerizations could be con-

firmed: the thermal stability is considerably improved by the addition of acrylate comonomer.

Polymer samples containing no or little comonomer exhibit a lower Tmax and Tv0.1 values than

the samples with 5.5% MA. The Td2% value is difficult to compare for the different samples since

it is an integral value and depends, for example, on the amount of volatiles evaporated already at

lower temperatures.

A second important observation is that also increasing the polymerization temperature

improves the thermostability, even if the improvement is much less important than for the addi-

tion of comonomer. This is, at first sight, in contradiction to the results from batch polymerized

Figure 5.11: Thermogravimetry of a pilot plant sample (Exp. no 15) with characteristic values Td, 
Tv0.05-0.2 and Tmax
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polymer samples (see figure 5.7), where increasing the temperature deteriorated the thermal sta-

bility. The explanation for these different observations is the presence of chain transfer agent in

the pilot plant experiments, which reduces the number of weak linkages in the polymer chains, in

particular the unsaturated chain ends:

For polymerizations without CTA, the amount of unsaturated chain ends increases together

with the temperature. This means that, although at high temperatures the formation of head-to-

head-bonds is more unlikely and the polymer gets more stable in the corresponding temperature

region, the higher number of unsaturated chain ends deteriorates the overall thermal stability of

the polymer. Adding a chain transfer agent, however, solves this issue by reducing the number of

these unsaturated chain ends.

At the same time, as it was seen in Chapter 4, the chain transfer constant, too, increases with

temperature, which means that the effectiveness of the transfer reation becomes even better for

higher temperatures. This might be the explanation for the improvement of the thermal stability

observed with increasing temperature.

The chain transfer agent, itself, also seems to have a rather significant influence, at least for

high concentrations. At 140 °C, all T-values except the Tmax increase by ~10 °C from

[CTA] = 0.2 % to [CTA] = 0.5 %. This is in correspondence with figure 5.9, which shows that the

weight loss above 200 °C is much smaller for samples that had been polymerized with a high

CTA load.

Compared to the commercial standard, the thermostability of the analyzed polymer samples

is rather poor in terms of the rate of weight loss below 300 °C. As mentioned above, only Tmax

could be significantly improved for polymerization temperatures above 150 °C with regards to

the commercial polymer.

Table 4: Results for the thermal stability of different pilot plant samples

Exp. No. T
 [°C]

MA
[%]

CTA
[%]

Td2%
[°C]

Tv0.1%/min
[°C]

Tv0.2%/min
[°C]

Tmax
[°C]

6 120 0 0.3 290 266 275 364

7 120 1.5 0.33 269 238 257 371

4 140 0 0.2 282 257 263 363
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5.3 Discussion

This chapter deals with the thermal stability and the depolymerization that are investigated

for the case of PMMA. Since both phenomena depend on the unzipping of polymer chains, they

are discussed in the same context. It was shown that due to the depropagation reaction, which is in

thermodynamical equilibrium with the propagation of radical chains, the monomer conversion at

temperatures above 170 °C is limited significantly. For the kinetic description of the depropaga-

tion, the rate constants for the calculation of kdp were determined by means of fitting to experi-

mental data. Using this kdp it is possible to include the depropagation reaction in the model for

PMMA polymerization derived in this work and to correctly predict the conversion limitation at

different temperatures.

Also terminated polymer chains, i.e. the final polymer, can undergo thermal degradation by

unzipping. The prerequisite is the activation of chains by scission of constitutive bonds in the

polymer molecules. This can happen at different positions in the chains, i.e. for different bond

1 140 0 0.3 279 257 265 363

5 140 0 0.5 292 269 274 363

2 140 1.5 0.3 280 254 264 365

3 140 5.5 0.3 294 270 280 370

9 150 0 0.3 291 268 275 368

10 150 1.5 0.3 292 268 275 370

12 150 5.5 0.3 296 273 284 374

13 160 1.5 0.25 290 269 278 370

14 160 3 0.25 289 277 277 373

15 160 5.5 0.25 295 272 282 374

19 170 1.5 0.2 285 267 273 373

17 170 5.5 0.2 292 271 279 376

Commercial PMMA 314 282 296 366

Table 4: Results for the thermal stability of different pilot plant samples

Exp. No. T
 [°C]

MA
[%]

CTA
[%]

Td2%
[°C]

Tv0.1%/min
[°C]

Tv0.2%/min
[°C]

Tmax
[°C]
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types exhibiting different thermal stabilities, and each type breaks in a characteristic temperature

range. For homogeneous PMMA, the thermal degradation usually takes place in three steps, cor-

responding to three bond types that are particular for this kind of polymer: head-to-head bonds,

unsaturated chain ends and the random C-C bonds of the polymer backbone.

One aim of the present work is to improve the thermal stability of the final polymer and to

investigate different strategies of stabilization: the addition of an acrylic comonomer to prevent

the polymer chains from complete unzipping, the addition of chain transfer agent to reduce the

occurrence of weak bonds in the chains caused by non-uniform termination processes, and finally

to increase the polymerization temperature in order to avoid completely the formation of ther-

mally weak linkages in the molecules. The different influences on the thermostability were dis-

cussed at first instance by comparing TGA-curves for different polymer samples from batch

polymerizations. Secondly, the thermostability results for different pilot plant polymer samples

were evaluated.

The results showed that each of the three factors positively influences the thermal stability

of the polymer, most of all the addition of a comonomer. Furthermore, by adding different acrylic

and methacrylic comonomers to the reaction mixture, it could be proven that the alpha methyl

group of the methacrylate is responsible for the unzipping mechanism and that by introducing

small amounts of acrylic groups into the polymer chains, the thermal degradation can be signifi-

cantly reduced.

The quality of the pilot plant polymer in terms of thermostability does not reach the high

standards of commercial polymer. However, the slightly worse thermal resistance below 300 °C

can be explained by the rather high residual monomer content and by oxidative processes taking

place in the devolatilization, which, despite the efforts made during this research study, could not

be made entirely gas tight. Additionally, the duration of each pilot plant experiment was by far too

short to obtain a polymer that compares in terms of molecular uniformity to a commercial prod-

uct, where the production process runs for long periods in steady state. However, it is remarkable

that the value of Tmax, i.e. the temperature of maximum rate of weight loss, is shifted upward by

~5-10 °C compared to the commercial polymer when the polymerization temperature is higher

than 150 °C.

Short Summary:
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• The depolymerization reaction has to be taken into account for the correct predic-

tion of the monomer conversion at high temperature

• The value of the depolymerization rate constant was determined by fitting to 

experimental data

• PMMA thermally decomposes in three steps, which are due to the scission of (in 

the order of their thermal stability): the polymer chain at head-to-head bonds, 

unsaturated chain ends and random C-C bonds. 

• The thermal stability of PMMA is influenced by the following parameters: pres-

ence of acrylic comonomers, presence of chain transfer agent, polymerization 

temperature

• Each effect is discussed by means of experimental results from batch and continu-

ous polymerizations.
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CHAPTER 6

Conclusions and Perspectives

Anyone who has never made a mistake
has never tried anything new.

- Albert Einstein (1879-1955)

The present Ph.D. thesis focused on the continuous high temperature polymerization of

methyl (methacrylate) at pilot scale, its kinetic description and a study of the impacts of vari-

ous process parameters on the obtained polymer. Its major aims are listed in the introduction of

this report on page 7 and the summarized conclusions will be presented in the same order

together with the perspectives, i.e. issues that, according to the authors opinion, might need to

be refined or be interesting subject of further investigations in future.

Generally, it can be stated that the high temperature polymerization aiming for the pro-

duction of PMMA molding compounds is technically feasible and yields certain advantages in

comparison to a lower temperature process. The most important features are

• a better and safer handling of the process due to reduced viscosity

• less risk to enter the gel effect and, therefore, higher kinetic reactor stability

• higher reaction rates and, therefore, higher space time yields

• reduced need for chain transfer agent and initiators

• increased thermal stability of the polymer
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A major disadvantage of a high temperature process might be an increased energy demand

for heating and more expensive equipment to resist the more severe process conditions. Unfortu-

nately, the time frame of this work did not allow a study of the economical consequences of

increasing the temperature. It might be an important aspect of future investigations to weigh the

additional costs against the benefits concerning process and product quality.

In the following, the results from all different parts of this work will be summarized with

respect to the different chapters they were discussed in.

Self-Initiation at high temperature

Acrylic monomers are subject to a rather pronounced spontaneous initiation. In the case of

MMA it was demonstrated that, depending on the process conditions, monomer conversions as

high as 30% can be observed in absence of any intentionally added initiator. The source of this

self-initiation is mainly the formation and decomposition of a polymeric peroxide (the so-called

MMA-peroxide or PMMAP), which forms from physically dissolved oxygen in the monomer and

the monomer, itself. However, there are other mechanisms contributing to the initiation at high

temperature. These are the initiation by chain transfer agent as well as the “true” thermal initi-

ation of the monomer (i.e. no other species involved). At very high temperatures (> 170 °C), also

the dimerization and formation of higher MMA oligomers influences the monomer conversion,

but these reactions follow a different mechanism and do not directly take part in the initiation of

the radical polymerization. The importance of all different initiating mechanisms was compared

for the temperature range 140 °C - 180 °C and related to each other.

The formation and decomposition of MMA-peroxides have been extensively investigated

in this work, which resulted in the determination of reaction rate constants for both of them. As a

part of the peroxide formation investigations, a method for the determination of organic peroxides

by UV spectrophotometry was developed. The MMA-peroxide could be successfully synthesized

in sufficiently large quantities to allow its characterization by advanced analytical methods (GPC,

TGA, NMR). It was found that it consists of copolymeric chains of the alternating structure

~MMA-OO-MMA-OO~ with molecular weights of approximately Mw = 5’000-8’000 g/mol

(determined by GPC). They form quickly and in significant amounts at temperatures between

50 °C and 100 °C and start decomposing above ~110 °C. It is, therefore, legitimate to compare
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them to high-temperature decomposing thermal initiators. Although their efficiency as initiator is

rather low (f ~ 0.2), their presence even in small quantities is enough to cause considerable mono-

mer conversions.

The information obtained from studying the spontaneous initiation of MMA were imple-

mented in a kinetic model for the description of the high temperature kinetics and validated by

comparison to experimental data from batch polymerizations with and without initiator.

A point, which needs to be improved for future studies is the determination of oxygen in

monomer and solvent. In this work, it was tried to determine the concentration of oxygen in

MMA under different conditions. However, the analytical method is quite complicated due to the

strong disturbing effect of atmospheric oxygen, so that in the end only a concentration estimate

for the saturation concentration at one temperature could be realized. This estimate (~60-80 ppm

O2 at 18 °C) is, nevertheless, in agreement with literature values for other acrylic monomers.

Gel effect at high temperatures

Since the characteristic of the gel effect changes drastically at high temperatures with

respect to the gel effect observed at temperatures below 100 °C, it was necessary to find suitable

model equations to describe it in the kinetic model for the batch and the continuous process.

Unfortunately, most existing models that can be found in the specialized literature are rather lim-

ited concerning their interval of validity and their applicability to continuous polymerization. The

challenge was, therefore, to find a suitable basic gel effect model and to refine it in a way so that

it meets the requirements of this work. This could be realized by modifying the widely-known

Chiu, Carrat and Soong (CCS-) model. The modification consisted mainly in eliminating the

dependency on the initiator concentration and to relate the change of the termination rate con-

stant directly to the molecular weight, instead. The new model equation could then be fitted to

experimental data obtained in this work as well as to literature data.

The correct prediction of the high temperature gel effect with this adapted modeling

approach could be proven for batch and continuous polymerization experiments within the exper-

imental conditions used in this work and, at the same time, the results allowed investigating the

influence of changing different process conditions (CTA, T, solvent etc.) on the shape and

intensity of the gel effect and the correct consideration of this influence by the model.
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Continuous High Temperature Polymerization

The major challenge in this work was the design and construction of a complete pilot plant

installation for the continuous polymerization of MMA. The final setup used for the polymeriza-

tion experiments presented in this report consisted of a recycle loop combined with a single tube

reactor equipped with Sulzer SMXL/SMX static mixing elements. The pilot plant was operated

for 5 - 10 hours experiments, depending on the quantity of polymer needed. The mean residence

time in each reactor part was of ~ 30 min. The obtained polymer had a molecular weight of

approximately 100 kg/mol and was analyzed for its thermal stability and residual volatiles’ con-

centration.

Moreover, the pilot plant was equipped with two ultrasound probes for speed of sound

measurements of the polymer solution. This technique allowed the inline conversion measure-

ment based on a mathematical treatment of the obtained speed of sound values as a function of

temperature and pressure. The realization of a correct conversion measurement required the

reevaluation of compressibility data for MMA and butyl acetate taken from literature. Unfortu-

nately, there was no possibility to determine at the same time the solvent fraction in the reactor.

The equation for the calculation of the speed of sound had, therefore, to be reduced assuming an

either constant or zero solvent fraction. Since in the beginning of the reaction the solvent that is

present in the reactor during heating needs to be displaced, which takes approximately 5 residence

times, this assumption does not hold true and the conversion measurement is only correct at,

respectively, close to steady state. An improvement for the future would be the combination of

ultrasound measurement with other analytical methods in order to have access to the solvent con-

centration. Thus, the number of unknowns in the ultrasound equation could be reduced and mono-

mer conversion measurement would be possible independently of the solvent fraction present in

the reactor.

For the modeling of the continuous polymerization in loop and tube reactor, a kinetic model

was established in PREDICI®. This model allowed the correct prediction of conversion and

molecular weight distribution as well as a parameter study for various process parameters.

The data obtained from experiments in the loop reactor with varying amounts of CTA and

comonomer allowed the determination of the chain transfer constant for n-dodecanethiol as

well as the reactivity ratios for the system MMA / MA at the investigated temperature range. In
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order to obtain these values, some simplifications respectively assumptions had to be made. For

the chain transfer constant, the concentration of thiol in the reactor could not be determined ana-

lytically and had, therefore, to be estimated. The determination of the r-parameters for MMA and

MA by the Kelen-Tüdös method turned out to be difficult due to a too limited variation of the

comonomer fraction (1 - 5 wt-%), leading to unrealistic results for the reactivity of the comono-

mer. Only by the addition of a fictive point on the other end of the concentration scale it was pos-

sible to come to realistic values for the reactivity ratio of MA-terminated chains. The results

showed that future experiments should be carried out with higher MA weight fractions of at least

20% in order to obtain more precise values for the r-parameters.

Finally, the thermal stability and the depolymerization of PMMA were discussed. They

both base on the same degradation mechanism of active polymer chains, the so-called unzipping,

which can be stopped by the incorporation of acrylate monomers in the polymer chain. This is the

reason why the thermal stability of PMMA can be significantly improved by the addition of

methyl acrylate. The change of thermal stability with changing process parameters (temperature,

chain transfer agent, comonomer concentration) was discussed for samples from batch and con-

tinuous polymerizations. It was found that increasing the process temperature has only a slightly

improving impact on the thermal stability. On the other hand, it is strongly improved by the addi-

tion of methyl acrylate as comonomer or a n-dodecanethiol as chain transfer agent. This is due to

the stopping of the unzipping mechanism at comonomer units in the chain, respectively due to

more uniform chains with less instable bonds in the case of a chain transfer regulated polymeriza-

tion.

After all, the results of the present Ph.D. thesis are motivating for further studies concerning

the high temperature polymerization of MMA. It could be shown that in many regards, increasing

the reaction temperature yields interesting improvements of process and product properties. And

although the pilot plant setup used in this work as well as the process conditions will have to be

further optimized in order to obtain a final product with the degree of sophistication of a modern

commercial PMMA concerning its optical and thermal qualities, the results concerning the kinet-

ics and parameter studies will, hopefully, be valuable for future research and process optimization

in industry.



Chapter 6:  Conclusions and Perspectives

196



A-I

ANNEXE 1

Analytical Techniques
and Method Development

In this work, various techniques have been employed for all the different analytical tasks.

Since most of them are relevant for several chapters of this thesis, it was chosen to bundle their

description in one Annex and to refer hereto within each chapter. In the following are explained in

detail each analytical technique used in this work as well as the corresponding methods, many of

which had to be developed in the frame of this study.

1.1 Headspace Gas Chromatography

Gas chromatography (GC) is the method of choice for the analysis of volatile compounds.

The general concept is widely known and not presented again at this point. When it comes to

polymers or polymer containing mixtures, the use of standard gas chromatography is, however,

not possible. The simple reason for this is that polymers are not volatile and must, therefore, not

be injected into the evaporator of a GC, where they would simply get stuck and block the injector

port with time.

A technical solution for this problem is the so-called headspace gas chromatography (HS-

GC), the principle of which is rather simple: Before the injection into the GC, itself, the polymer

is separated from the volatiles to be analyzed. In the case of the dynamic headspace technique,
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this is done by evaporating the volatiles during a first phase at elevated temperature into a stream

of inert gas (in general the carrier gas of the GC), condensing them by means of a cold trap con-

taining an adsorbent, and in a second phase, evaporating them quickly (ideally as a peak function)

from the trap into a capillary leading to the GC column. Figure 1.1 shows the schematic cycles of

headspace GC analysis. Since the sample amount in the sample tube is naturally much larger than

in conventional GC, where usually 1-5µl of liquid sample are injected, there are two split valves

to reduce the quantity of sample transferred to the GC in order to avoid saturation.

The device employed in this work is a Perkin-Elmer ATD Thermal Absorber with sampling

robot in combination with a Perkin Elmer Autosystem GC with FID detector. The device settings

are summarized in table 1.

Figure 1.1: Principle of the head-space thermal desorption GC

Table 1: Device settings for the Headspace-GC

Evaporation temperature 120 °C

Time of evaporation from sample tube 30 min

Temperature of the cold trap - 30 °C

Inlet split factor 10:1

Outlet split factor 20:1

Desorption temperature of the trap 130°C

Desorption interval 2 min

Temperature of the transfer capillary 130°C

GC program 80-120°C, 2.5°C/min

GC capillary column SUPELCO SPB-1
30m, ∅0.53mm, 0.1µm film

first phase

second phase
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Sampling system

Samples need to be prepared in device-specific stainless steel tubes that are compatible with

the sampling robot and the evaporation furnace. The fixation of the sample in the tube is either

done with the help of an adsorbent in the case of liquid samples, or with a piece of glass wool in

the case of viscous samples. The absorbent, respectively, the glass wool is placed in a PTFE

inliner and held back by two glass wool stoppers. The whole inliner is fixed with two stainless

steel springs.

It must be taken care that the contents of the tube are loose enough so that the desorption

gas stream can still pass. Especially if the adsorbent or the glass wool stoppers are too com-

pressed, the free flow of the gas is disturbed and the measurement can be faulty.

Figure 1.2: Picture of the Perkin-Elmer ATD Thermal Desorber HS-GC system
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On the sample robot, the tubes are sealed with stick-on caps. These caps must close the

tubes tightly, otherwise volatiles may evaporate from the tube while waiting for analysis, hence

making the measurement incorrect.

Sample preparation

Liquid, no polymer containing samples (e.g. condensate, calibration) are injected with a

syringe directly onto the adsorbent in the sampling tube. The injected volume is in the range of

V = 1-20µl, depending on the type of sample.

For viscous samples, as those from the pilot plant, a weighted amount of sample is first dis-

solved in 400µl DMF for improved evaporation of the volatiles in the headspace device. The

evaporation directly from the polymer matrix would take by far more time than evaporation from

a dilute solution of polymer and volatiles. 10µl ethyl benzene are added as internal standard and

the sample is left on a stirring table for 30 minutes. Consecutively, 20µl of the sample solution are

transferred with a micropipette on a piece of glass wool in the sample tube. The glass wool fixes

Figure 1.3: Principle of sampling tube and fixation of the sample
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the sample and holds back the polymer matrix during the evaporation. After each injection, the

glass wool is renewed and the PTFE inliner cleaned.

HS-GC Calibration

The HS-GC was calibrated in the same range as the samples to be analyzed. Different,

known amounts of an analyte containing solution were injected as described above into an adsor-

bent containing sampling tube. From the GC peak response and the known sample amount, a cal-

ibration curve could be established for each analyte. Figure 1.4 shows the calibration curve for the

four analytes of interest.

Calculation

With the help of the calibration equation and the corresponding calibration parameter Kana-

lyte the amount of each analyte present in the sample tube (i.e. 20µl of the sample solution) can be

determined. 

(EQ 1.1)

In order to know its exact amount in the entire sample, it has to be correlated to the internal

standard (ethyl benzene). Therefore, it is multiplied with a correlation factor Ω, which is the quo-

tient of the amount of EB added as internal standard and the amount found for the sample tube.

(EQ 1.2)

The amount of analyte in the entire sample becomes, thus,

(EQ 1.3)

manalyte mg[ ] Kanalyte
mg
μVs
---------- Apeak μVs[ ]⋅=

Ω
mIS mg[ ]
mEB mg[ ]
-----------------------=

manalyte
sample mg[ ] Kanalyte

mg
μVs
---------- Apeak μVs[ ] Ω⋅⋅=
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In order to calculate the monomer conversion of a sample, the amount of monomer needs to

be correlated to an initial amount of monomer m0, i.e. at zero conversion.

(EQ 1.4)

There are basically two ways of determining m0. If there is solvent present in the process, it

can be considered as inert, i.e. its weight fraction does not change during the reaction (it must not

change during the sampling, neither, i.e. by evaporation!). The initial amount of monomer is then:

(EQ 1.5)

In the absence of solvent, the amount of sample dissolved in DMF must be weighted and

can be considered as m0, assuming there are no other monomers present. In the case of the copo-

lymerization, the amount must be multiplied by the monomer weight fraction of the initial mix-

ture.

Figure 1.4: GC calibration curves for MMA, MA and BuAc 
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The residual volatiles’ concentration is determined in the same way: a known amount of

polymer is dissolved in 400µl DMF and analyzed as described in the HS-GC. The found amount

of volatiles is divided by the sample weight and the residual volatiles’ concentration is obtained.

1.2 Size Exclusion Chromatography

Another very important kind of analysis in polymer reaction engineering is the determina-

tion of the molecular weight. The technique of choice is the Gel Permeation Chromatography. In

the Wikipedia online encyclopedia [119], it is defined as follows:

“Gel permeation chromatography (GPC), also known as size exclusion chromatography

(SEC), is a chromatographic method in which molecules are separated based on their size. This

method is most widely used in the analysis of polymer molecular weights (or molar mass). The

term GPC was used in the beginning of polymer analysis when people used glass columns filled

with gels to perform GPC. Nowadays more and more automated and high pressure liquid chro-

matographic columns are used. Therefore GPC is an old terminology and size exclusion chroma-

tography (SEC) is the correct expression for the determination of molecular weights.

In SEC, a column (steel cylinder typically 10 mm in diameter and 500 to 1000 mm in

length) is packed with a porous material (typically silica or crosslinked polystyrene) and solvent

is forced through the column (at rates typically 1 ml/min and pressures of 50 to 200 bar). A sam-

ple is dissolved in the same solvent that is running through the column and is then introduced into

the solvent stream going through the column. A detector monitors the concentration of sample

exiting the end of the column. Inside the column, molecules are separated based on their hydrody-

namic volume (the volume the molecule occupies in a dilute solution). For polymers this can vary

greatly with the particular solvent and the temperature. By studying the properties of polymers in

particular solvents and by calibrating each column setup with samples of known molecular

weight, it is possible to get a relative distribution of molecular weights for a given polymer sam-

ple. Using this data, it is possible to calculate number average molecular weight, weight average

molecular weight, polydispersity, as well as higher order molecular weights within a useful level

of accuracy.

Inside the column, molecules are separated by whether or not they can fit within the pore

size of the packing material. When columns are created they are packed with porous beads with a
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specific pore size so that they are most accurate at separating molecules with sizes similar to the

pore size. As a molecule flows through the column it passes by a number of these porous beads. If

the molecule can fit inside the pore then it is drawn in by the force of diffusion. There it stays a

short while and then moves on. If a molecule can not fit into a pore then it continues following the

solvent flow. For this reason, in a GPC column, molecules with larger size will reach the end of

the column before molecules with smaller size. The effective range of the column is determined

by the pore size of the packing. Any molecules larger than all the pores in a column will be eluted

together regardless of their size. Likewise, any molecules that can fit into all the pores in the pack-

ing material will elute at the same time.

It is important to remember that the only absolute measure in SEC is volume of the mole-

cule (hydrodynamic volume), and even that measurement has certain error built into it. Interac-

tions between the solvent, packing, and or the sample will affect the measurement as will

concentration due to sample-sample interactions. Calculating the molecular weight from this

molecular size introduces even more error into the system. SEC is a useful tool for determining

molecular weight in polymers, but it is essential that the column and instrumentation be carefully

equilibrated and properly calibrated for the results to be trusted.”

The device used in this work is a Viscotek Triple Detection SEC TDA300 with refractive

index, viscosity and light scattering detector. Measurement parameters are provided in table 2.

Table 2: Measurement parameters for the SEC molecular weight analysis

Solvent / Eluent: THF (GPC grade, Fisher Scientific T/0709/PB17) 

Flowrate: 1 ml/min

Sample concentration approx. 1 - 20 mg/ml

Sampling volume: 100 µl

Column set: 2 x PSS (Germany) linear M SDV 8x300 5µm
1 guard column

Column temperature: 35°C

Polymer standards: For conventional calibration:
PSS ReadyCal PMMA standards (series) (800 - 1’180’000 g/mol)

For triple detection:
PSS Polystyrene standards (one at a time) (60’000 - 470’000 g/mol)
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Sample preparation

The polymer sample (viscous or solid) is weighted and, depending on the sample size, 1 - 5

ml THF (GPC grade) are added so that a final concentration in the range of 1 - 20 mg/ml is

obtained. In the following, the solution is left on a stirring table overnight until complete dissolu-

tion of the polymer (optical inspection). For very high molecular weight or branched polymers it

might be necessary to leave them on a heated stirring table (T ~ 40 °C) in order to shorten the

time necessary for dissolution.

The knowledge of the exact sample concentration is necessary for the determination of the

polymer content by RI. Since the RI determines a concentration corresponding to the polymer

peak (it does not “see” the low-molecular volatiles), the polymer content respectively the conver-

sion can be determined by the equation:

       and        (EQ 1.6)

Triple Detection (SEC3)

The fractionated polymer molecules undergo three different analyses: 

First of all the refractive index detector (RI). By means of the refractive index, the concen-

tration of each polymer fraction can be determined, as the refractive index increases linearly with

concentration:

 (for linear PMMA) (EQ 1.7)

Figure 1.5: Viscotek SEC-System with (1) HPLC pump, (2) Degasser, (3) Autosampler, (4) Eluent 
storage, (5) Detector unit, (6) Computer for data acquisition
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It is measured against a reference cell filled with eluent in order to eliminate the refractive

index of the solvent.

Secondly, the intrinsic viscosity of the polymer fraction is determined by a relative visco-

simeter. It is based on a differential Wheatstone bridge and measures the pressure drop over a cap-

illary. The eluent flow coming from the refractometer containing the polymer is separated into

two equivalent flows. One is delayed in the following by a retention column, the other flows

unhindered to the capillary. The pressure drop in the capillary depends on the viscosity of the

fluid. Since on one side, the polymer has already reached the capillary, whereas on the other side

it is held back in the retention volume, a pressure difference is measurable between both arms of

the Wheatstone bridge. This pressure difference (DP) is proportional to the viscosity of the poly-

mer fraction passing the capillary at the very moment.

Thirdly, a right-angle laser light scattering detector (RALS) is installed in the detector unit,

which measures the  absolute molecular weight, molecular size, density and conformation, and

can furthermore provide structural information on branching and aggregation. 

From the information of all three detectors, the molecular weight distribution of the poly-

mer sample can be determined from one single injection. The major advantage is that only one

standard (usually polystyrene) is needed in order to once in a while calibrate the detectors instead

of a series of standards of the same polymer as the sample, as for the conventional calibration.

Figure 1.6: Measuring principle of the relative viscosimeter (Wheatstone bridge)

Retention column

CapillaryCapillary

Eluent flow

ΔP
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Furthermore, the precision of the measurement is supposed to be higher than that of the conven-

tional calibration since information of three independent measurements is taken into account for

the calculation of the molecular weight [120]. In figure 1.7 is shown a typical SEC triple detection

spectrum with the responses from refractometer (RI), viscosimeter (DP) and light scattering (LS).

Conventional Calibration

For the conventional calibration, only the RI detector is used. By comparing the peak to a

series of standards (calibration curve), the molecular weight distribution can be calculated. This

method is illustrated in figure 1.8. It is the simplest way of analyzing the molecular weight and

does not need complicated calculations like the triple detection method. However, the disadvan-

tage is that, due to different interactions of each polymer with columns etc., standards of the

exactly same polymer as the analyzed one are needed, which - in the case of more exotic poly-

Figure 1.7: SEC Triple Detection spectrum of a PMMA sample
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mers than PMMA - can be difficult to find. Furthermore, the molecular weight changes with dif-

ferent standard origins. It can occur that by changing the producer of the standards, the measured

molecular weight increases by as much as 10%. On this account, the triple detection provides a

more independant measure of the molecular weight.

Figure 1.8: Conventional GPC analysis
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1.3 Differential Scanning Calorimetry

Calorimetry is the science of measuring the heat of chemical reactions or physical changes.

Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference

in the amount of heat required to increase the temperature of a sample and reference are measured

as a function of temperature. Both the sample and reference are maintained at very nearly the

same temperature throughout the experiment. The basic principle underlying this technique is

that, when the sample undergoes a physical transformation such as phase transitions, more (or

less) heat will need to flow to it than the reference to maintain both at the same temperature.

Whether more or less heat must flow to the sample depends on whether the process is exothermic

or endothermic. There are two main types of differential scanning calorimeters: heat flux DSC and

power compensation DSC.

In a heat flux calorimeter, the heat transported to the sample and reference in a furnace is

controlled while the instrument monitors the temperature difference between the two.

In power compensated calorimeters, separate heaters are used for the sample and reference.

Both the sample and reference are maintained at the same temperature while monitoring the elec-

trical power used by their heaters (see figure 1.9).

Figure 1.9: Principle of the Power-compensated DSC
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The calorimeter employed in this work is a power-compensated Perkin Elmer Pyris1 DSC

(figure 1.10 b) with cryostat (IP Intracooler unit) for sub-ambient measurements. Sample solu-

tions of usually 20µl are filled into 60µl stainless steel medium pressure crucibles (figure 1.10 a),

which resist pressures of up to 40 bars.

The DSC was mainly used to polymerize samples at different temperatures, but also to

determine peroxide decomposition kinetics and glass transition temperatures Tg. For the polymer-

izations, an isothermal temperature programm was used with an initial heating rate of 40 °C/min

until reaction temperature. The conversion at time t can be determined by two methods: one is to

stop the reaction by throwing the crucible into liquid nitrogen and measuring the conversion by

GC analysis. In order to obtain also the molecular weight at time t, the experiment needs to be

repeated under the exact same conditions and this time GPC analysis is done with the sample.

Another way to obtain the conversion is integration of the heat flow curve. Assuming that

the reaction reaches full (= 100 %) conversion at the end, the conversion at time t can be calcu-

lated from the heat flow curve by equation 2.21 on page 28. This method has the advantage that

the experiment only needs to be done once and that the reaction does not need to be stopped each

time, which causes a certain error of the measurement. On the other hand, by assuming full con-

version, this method is not fully correct, neither, which is in particular the case for high tempera-

tures, where the calculation needs to be corrected by the “real” final conversion that is reached for

the given temperature.

(a) (b)
Figure 1.10: (a) Medium-pressure stainless steel crucibles consisting of bottom, cover and O-

Ring, (b) Perkin-Elmer Pyris1 DSC with Intracooler
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For the peroxide decomposition, a temperature scan was employed with constant heating

rates between 1 and 10 °C/min. From these scans, the decomposition kinetics can be determined

as explained in chapter 2.

1.4 Thermogravimetry-Mass spectroscopy

Thermogravimetry is a method for the determination of the thermostability of substances. A

sample is continuously weighted on a high-precision microbalance in an oven while the oven tem-

perature is constantly increased. The sample weight - temperature curve characterizes the sub-

stance’s behaviour at elevated temperatures, i.e. sample degradation  (“thermostability”) or

weight-loss by evaporation of water or other volatile compounds.

In order to get a more detailed picture of weight-loss mechanisms, this method can be com-

bined with gas-phase analytical techniques for the analysis of volatile (decomposition) com-

pounds that might evaporate from the sample, such as Fourier Transform Infrared Spectroscopy

(FTIR) or Mass Spectrometry (MS).

The device used in this work is a Mettler-Toledo TGA/SDTA851e SF, connected over a

heated transfer capillary to a Pfeiffer Vacuum Thermostar Mass Spectrometer (see figure 1.11).

Figure 1.11: Mettler TGA/SDTA851e system coupled with a Pfeiffer Vacuum Thermostar Mass 
Spectrometer

MS

Transfer Capillary

TGA
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With the TGA, measurements up to 1100 °C are possible. The polymer samples (5-30mg)

are filled into 70µl alumina crucibles (sapphire crucibles for peroxide decomposition measure-

ments). Heating rates typically vary between 1 and 10 °C/min. For better comparability of differ-

ent polymer samples, it is common to define specific criteria for the weight loss (i.e. 2%), the rate

of weight loss (i.e. 0.2 %/min) or the maximum weight loss rate and compare the temperatures

where each sample reaches these values (illustrated in figure 1.12). In industry, these criteria rep-

resent important indicators of the product quality.

The mass spectrometer used in this work is a gas phase quadrupol mass spectrometer with

electron ionization (EI) and a detection range of 1-200 amu (C-SEM/Faraday detector). By means

of mass spectrometry, it is possible to analyze the molecular weight of compounds evolved from

the decomposing sample, i.e. MMA in the case of PMMA homopolymer or methyl pyruvate for

PMMAP. It is possible to measure an entire spectrum of masses with time (spectrum mode) or to

follow user-defined masses with time (tracking mode). Figure 1.13 shows the example of the

TGA-MS analysis of PMMA in tracking mode with two typical masses corresponding to MMA

ionization fragments (41 and 69 g/mol). It is visible that during the three degradations steps

mainly MMA is set free from the sample. This is in agreement with the known fact that PMMA

thermally decomposes to more than 90% back into MMA [121].

(a) (b)
Figure 1.12: Examples of  TGA-measurements of PMMA

(a) untreated polymer from DSC experiment
 (b) heat-treated polymer from pilot process
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1.5 Organic Peroxide Determination by UV

The method of choice for the determination of peroxides is iodometry.

(EQ 1.8)

However, most classical iodometrical methods work only in aqueous solutions, especially

when using starch as indicator for lower detection limits. Unfortunately, MMA is neither soluble

in water nor in most polar solvents. And neither iodine salts nor thiosulfates, both necessary for

this type of method, are soluble in unpolar solvents. In addition, oxygen can have - depending on

the method - a strong, disturbing effect on the measurement. Therefore, a new iodometrical

method was needed to reliably determine MMA peroxides in organic phase and down to concen-

trations of several ppm.

It was quite clear from the beginning that, in spite of a titration of the iodine with thiosul-

fate, a more elegant spectrophotometrical analysis would be advantageous. Iodine exhibits a char-

Figure 1.13: Example for a coupled TGA-MS experiment of PMMA with two characteristic MS-
responses for MMA (t < 4000 s: isothermal step 110 °C, t > 4000 s: temperature scan 5 °C/min) 
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acteristic absorption at a wavelength of 360nm and can, therefore, be easily determined that way.

The only problem was to find a suitable sample preparation method for the reliable quantification

of peroxides.

At first, a standard method for the determination of peroxides was tried. The peroxide con-

taining sample was dissolved in a mixture of chloroform and methanol [25:75] and a 5% methan-

olic solution of NaI was added. Since the oxidation is rather slow under these conditions, the

solution had to be heated to 55°C for two hours. Afterwards, the iodine was titrated with a metha-

nolic thiosulfate solution.

The first problem that arose from this method was the solubility of the salts in methanol.

NaI and thiosulfate dissolve very poorly, which makes it difficult to produce a 5% solution. Sec-

ondly, the reaction time of 2 hours at 55°C is too long to yield reproducible results, especially

since the reactive system seems to be considerably influenced by air, leading to strongly varying

results. Other analytical methods can be found in literature, working with a variety of different

solvents, e.g. isopropanol [22] or even in two phase systems with water.

The deciding information was found in an article from 1946: Nozaki [34] used acetic anhy-

dride as solvent and reported the following advantages with regards to other solvents: 

• High solubility for NaI

• No important influence of atmospheric oxygen

• High reactivity of iodine with organic peroxides

Acetic anhydride was, therefore, chosen as solvent for further experiments and found to be

suitable for the peroxide determination by UV spectroscopy. The exact procedure is described in

the following.

1.5.1 Method description

Spectrophotometrical Iodometry is done with a Hewlett-Packard HP8452A spectrophotom-

eter at the maximum iodine absorption wavelength of 360nm. The samples are analyzed in a 1cm

quartz cuvette and prepared as described in the following:

• 0.5 g of NaI (Fluka, p.a.) are dissolved in 10 ml of acetic anhydride (Fluka, p.a.) in glass 

vial with clip cap

• 5 ml of the peroxide containing sample are added
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• The solution is stirred during 15minutes and directly analyzed with the spectrometer

The calibration of the system is done with benzoyl-peroxide (Acros, 25% residual water)

solutions in MMA. To be sure that the MMA does not already contain any peroxides, it was pre-

polymerized at 100°C for 5 hours under reflux and argon atmosphere. In order to keep the molec-

ular weight and, thus, the viscosity low, 10 wt-% of dodecanethiol (Fluka, p.a.) were added as

chain transfer agent. In a following step, the monomer was separated from the polymer by vac-

uum distillation under argon atmosphere. Throughout all further handling, the argon atmosphere

was carefully kept to prevent any oxygen from contaminating the system.

        Benzoyl peroxyde (BPO)

For the calibration, two solutions of 8.85 mg and 84.9 mg BPO (25% residual water) in

10 ml of the above MMA were prepared. This corresponds to a concentration of 0.66375 mg/ml,

respectively, 6.3675 mg/ml of pure BPO in MMA. Different amounts of these solutions were sub-

sequently added to 5ml MMA each and analyzed as described above.

Table 3: Calibration solutions for the UV-peroxide determination

Stock Solution 1:

mg BPOaq. mg BPO V [ml] c [mg/ml]

8.85 6.6375 10 0.6637

Calibration solutions (* w.r.t. 5ml MMA + V(BPO)):

µl BPO1 added c [mg/ml]* c [mol/l] Abs [AU]

1 0 0 0 0.15

2 10 0.00132 5.5.10-6 0.20

3 20 0.00264 1.1.10-5 0.26

4 40 0.00527 2.2.10-5 0.36

5 60 0.00787 3.3.10-5 0.47

O

O O

O
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These calibration points lead to the following calibration curve and relation between UV

absorption and peroxide concentration:

Stock solution 2:

mg BPOaq. mg BPO V [ml] c [mg/ml]

84.9 63.675 10 6.3675

Calibration solutions (* w.r.t. 5ml MMA + V(BPO)):

µl BPO2 added c [mg/ml]* c [mol/l] Abs [AU]

6 10 0.01271 5.25.10-5 0.61

7 20 0.02537 1.05.10-4 1.00

8 50 0.06304 2.60.10-4 2.30

9 70 0.08791 3.63.10-4 3.08

Figure 1.14: Calibration curve for the UV peroxide quantification

Table 3: Calibration solutions for the UV-peroxide determination
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(EQ 1.9)

The error of oxidation by air after 24h is approximately 2 to 4.10-5 mol/l. For concentrations

above 3.115.10-4 mol/l (i.e. 80 ppm BPO), the signal saturates quickly and the solution has to be

diluted in a 1:10 ratio.

1.6 Oxygen determination in organic solvents

UV-Spectrophotometry was also employed for the determination of oxygen in the mono-

mer. Since the saturation concentration for physically dissolved oxygen in MMA is crucial for the

whole topic of MMA peroxides, it was considered as necessary to try to get a more reliable value

than the assumed 60-80 ppm. However, the determination is not at all trivial and succeeded only

Figure 1.15: Hewlett-Packard 8452a Photospectrometer

Figure 1.16: UV-spectrum of the iodine containing MMA solution

Conc mol
l

--------- 1.24026 10 4– ABS 2.1553 10 5–⋅–⋅ ⋅=

360nm I2 Absorption
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partially. The basic method was found in literature: Scherzer and Langguth [35] determined the

temperature dependent oxygen concentration for tripropylene glycol diacrylate (TPGDA) and

found a strong decrease in oxygen with increasing temperature (see figure 1.17). Another, similar

method is provided by Gou et al. [122], but was not considered in this work.

Their method proceeds as follows:

• The monomer is saturated with air at the desired temperature

• It is then shock-frosted with a dry-ice / acetone mixture (-90 °C)

• The gas phase over the frozen monomer is purged with inert gas (He)

• The monomer is defrosted and purged continuously with inert gas

• The inert gas is conducted through a washing bottle with an ammoniacal 

containing solution of Cu-(I)-Cl (0.01 mol/l)

• The Cu-(I) ion is oxidized by the O2 driven out of the monomer and the cre-
ated Cu-(II) ion forms a complex with ammonia (Cu(NH3)4

2+)

• This complex can be detected by UV-spectrophotometry at λ = 600nm and, 

thus, the oxygen content of the monomer be quantified.

As simple as it sounds, several problems were encountered while trying to reproduce this

method: firstly, it was not possible to completely freeze the monomer with a dry-ice / acetone

mixture. Only with liquid nitrogen was this possible. Secondly, atmospheric oxygen had a

strongly disturbing effect, especially during the sampling from the washing bottle and during the

Figure 1.17: Temperature-dependent oxygen concentration in TPGDA [35] 
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preparation of the Cu(I)-solution. Thirdly, the residence time of the inert gas stream in the wash-

ing bottle was not long enough for a complete conversion of the contained oxygen with Cu-(I). A

second washing bottle with the same Cu-(I)-solution, which was connected in series to the first

one, also showed blue coloration after a short time.

Therefore, the experimental setup and the method, itself, had to be refined several times. In

particular, the measurement at different temperatures with consecutive freezing of the monomer

had to be abandoned due to the narrow time frame available for this measurement. The monomer

was, therefore, taken directly at room temperature. The final experimental setup can be seen in

figure 1.18. It consists of a three-neck round flask with funnel, a washing bottle with sampling

valve at the bottom and two gas syringes for the displacement of the inert gas within the installa-

tion. The oxygen-saturated monomer was filled in the inertized system through the funnel, while a

small stream of inert gas (He) was maintained to minimize the error caused by introduced atmo-

spheric oxygen. In the following, a volume of ~ 100 ml He was pumped in several cycles forth

and back through the monomer and the washing bottle with Cu-(I)-solution with the help of two

three-way valves. Samples were taken over time from the washing bottle and analyzed immedi-

ately on the UV-spectrophotomer (same as used for the peroxide determination), which had been

calibrated beforehand with ammoniacal Cu-(II)-solutions.

Figure 1.18: Experimental setup for the determination of oxygen in MMA
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The results were strongly varying, although the expected order of magnitude for the oxygen

concentration could be very well confirmed. Figure 1.19 shows the results for two experimental

series obtained with monomer at room temperature (~ 18 °C). The extrapolated saturation value is

supposed to be between 80 and 100 ppm, which is slightly higher than the value estimated from

batch and DSC experiments by simulation (60 ppm).

 Another attempt to determine the oxygen concentration in the monomer feed of the pilot

plant was undertaken by means of a special electrochemical probe (Orbisphere) designed to mea-

sure in organic solvents. However, the membranes used in this probe were not resistant enough

for the rather aggressive butyl acetate used in this work and, therefore, the measurement did not

lead to stable values. Additionally, the probe only allowed the measurement of a partial pressure

for oxygen, which, in order to calculate the concentration of O2 in MMA, would require the

knowledge of solubility data.

Finally, it was tried to estimate the oxygen concentration in MMA with ASPEN PLUS by

means of a one-step flash (1 bar, 25 °C) with a two-phase monomer / air feed stream and one liq-

uid and one gaseous exit stream. The equilibrium concentration of O2 in the monomer was esti-

mated to be ~115 ppm, which is - although of the same order of magnitude - much higher than the

values determined by the methods mentioned beforehand. 

Figure 1.19: Detected oxygen concentration at room temperature (18 °C) over bubbling time 
(experiment was carried out twice, compare hollow and filled circles)
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ANNEXE 2

Experimental procedures

2.1 Monomer purification

For certain experiments, the monomer could not be taken directly from the barrel but had to

be purified prior to its use. This was done in several manners, depending on the necessary purity.

Removing the stabilizer

In order to remove the stabilizer (20 ppm MEHQ), the monomer was washed with 2N-

NaOH and rinsed with deionized water until the aqueous phase was neutral (pH = 6-7).

Prepolymerization

In the case of the UV calibration, it was necessary to be sure that the monomer used for the

calibration solutions did not contain any peroxide. Therefore, a prepolymerization was carried out

at 100°C during 5 hours under argon atmosphere. A large amount of chain transfer agent (~ 10 wt-

%) was added to the monomer in order to keep the viscosity low. Following the prepolymeriza-

tion, the monomer was distilled as described in the next paragraph.
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Vacuum distillation

The distillation of MMA was carried out under argon atmosphere at reduced pressure

(~ 150 mbar) and at T = 45 °C. A The monomer was distilled over a column for better separation

and fractionated in three distillate fractions, of which only the middle one was kept. Depending on

the use of the monomer in the following experiments, it was either kept under argon atmosphere

or in a flask closed only with a drying tube in order to garantuee contact with air (e.g. for MMA-

peroxide formation experiments).

2.2 PMMAP synthesis

For the synthesis of PMMAP, 250 ml of distilled monomer are heated to 70 °C under reflux

and molecular oxygen from a gas cylinder bubbled through it for several hours (4 - 7 h). A picture

of the setup can be found in chapter 2, figure 2.5. In a following step, the monomer was removed

from the flask at a rotary evaporator until a viscous residue was obtained. This residue was

reduced as far as possible in vaccuum (~ 1 mbar), dissolved in chloroform (CHCl3) and precipi-

tated twice in 20 times the volume of cold petrol ether (bp. 40-60 °C) for purification. From the

petrol ether, the precipates were separated by centrifugation. The final product was a white, sticky

powder. Its quantity depends largely on the duration and the temperature of the formation experi-

ment. It varied from 8 to 125 mg for 3h at 60 °C and 7h at 70 °C, respectively. In the latter exper-

iment, also the molecular weight of the peroxide and its amount compared to the parallely formed

PMMA was higher. It can, therefore, be said that with increasing temperature and duration of

oxygen bubbling, the amount and molecular weight of the formed peroxides increases. However,

it has to be considered that with increasing temperature, also the decomposition of the peroxide

gets more important.

2.3 Batch experiments

The batch experiments for verification of the kinetic model were carried out in a stainless

steel bench-scale reactor. The general procedure for each experiment is presented in the follow-

ing:
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Preparation: 

• Chemicals (monomer, solvent, CTA) are weighed and filled in the reactor

• Screw cap vials are stored in the deep freezer to cool them to -18 oC

Reaction:

• t = 0 min: The reactor is pressurized to p = 10 bar and the reaction subsequently started 

by heating (heating ramp = 3.5 oC / min.) to the desired reaction temperature

• t = 15 min: First sample; The immersion tube is purged with 10 ml reaction mixture 

before another 10 ml of the reaction mixture are taken for sampling into a frozen 

screw cap vial and immediately stored at -18 oC

• t = 30 - 240 min: Samples are taken in regular intervals as described before. For certain 

experiments, the initiator solution is filled into the funnel and added under pressure to 

the reaction mixture at a preset time.

• t = 240 min: Reaction is stopped by cooling down; the rest of the reaction mixture is 

disposed and the reactor is cleaned

Analysis:

• Samples are analyzed by GPC and GC for conversion respectively molecular weight 

analysis

2.4 Pilot Plant experiments

For the pilot plant experiments, always the same procedure was followed during startup,

running and shut-down. This procedure is described in the following as detailed as possible.

Heating Phase

• Firstly, the pilot plant was heated up by setting the temperature on the thermostats to 

120 °C for the reaction zone and to 260 °C for the devolatilization.

• During the heating up of the pilot plant, the feed solution was prepared. Therefore, the 

necessary amounts of monomer, initiator and CTA, which had been calculated before-

hand for the planned duration of the experiment, were weighed and mixed in a stain-
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less steel recipient. From this recipient, they were transferred into a 60-litres stainless 

steel tank through a hose by reducing the pressure inside the tank. From this tank, the 

feed solution is transferred directly into the pilot plant.

• When the reactor has reached the set temperature, a small solvent flow (0.5 kg/h) is 

established and the recycle pump activated. The membrane valve is set to 10 bars to 

evoke a slight pressurization of the reactor. At the same time, the pressure in the 

devolatilization chamber is reduced (150 mbar) so that the solvent is correctly 

removed and condensed.

• The computer with Dasylab is switched on for data acquisition

Startup phase

• With the solvent flow established, the temperature is set to reaction temperature and the 

feed flow switched from solvent to monomer feed. The flowrate is set to the desired 

value (e.g. 1.84 kg/h for a residence time of 30 minutes in the loop)

• During this phase, the beginning reaction can be followed by ultrasound and by an 

increase in pressure.

• As soon as polymer falls into the devolatilization chamber (approximately after 1 hour 

at the given feed flowrate), the discharge gear pump is activated.

• Samples are taken regularly from positions at the loop exit, at 2/3 length of the tube and 

from the condensate and the final polymer. During the sampling, the second feed 

pump, which pumps solvent and initiator into the tube reactor, is deactivated to avoid 

a backflow into the loop sample. The reactor samples are taken through heated valves, 

on which hermetic, 10cm stainless steel tubes with 12mm diameter are screwed. 

Before mounting the tubes, the valves are purged (tube valve before, then loop valve). 

For the sampling, the valves are left open until the sampling tubes are hot over their 

whole length. The sample is consecutively transferred from the tubes into 25ml screw 

cap vials (Schott) and immediately frozen at -18°C.

• At steady state, the polymer is transfered as two strands to the granulator and processed 

to granules.

• In regular intervals, the condensate recipient is emptied.
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Shut-down phase

• At the end of the experiment, the feed flow is again switched from monomer solution to 

solvent and the flowrate increased to 10 kg/h. Thus, the polymer / monomer solution 

is pushed out of the reactor. The flowrate is varied several times from 10 to 5 kg/h  in 

order to improve the rinsing of the plant.

• Once the polymer stops falling into the devolatilization chamber, which is generally the 

case after 1 hour, the solvent flow and the reactor temperature are decreased to 0.5 kg/

h and 120 °C, respectively.

• Both gear pumps, the one in the recycle loop and at the exit, are stopped.

• For the final shut-down, the temperature of all thermostats is lowered to <20°C, the 

cooling water circuits are openend, the membrane valve depressurized, the vacuum of 

the devolatilization cut and the solvent flow stopped.

• At last, the condensate recipient is emptied, the data acquisition is halted and all equip-

ment switched off.
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ANNEXE 3

Modeling with Predici®

PREDICI® stands for Polyreaction Distributions by Countable System Integration and is the

name of an industrially recognized and widely spread simulation package for the treatment of

kinetic equations in models of polymerization reactions. The input consists of a complete reaction

model with reaction equations and kinetic parameters, together with concentrations and stuff-data

of all reactive components and reaction conditions. The software performs a numerical integration

of the resulting system of differential equations, based on recent mathematical-numerical methods

[123]. For each time step, the complete concentration profile as well as molecular weight distribu-

tions of polymeric species are estimated.

The user can - within the limits of available kinds of reaction steps - freely add elementary

reactions of all types to the model and define various output-functions (e.g. ultrasound velocity,

conversion, etc.), the calculation of which can be based on the estimated process parameters for

each time step (e.g. temperature, concentration of a species, etc.).

PREDICI® offers four different reactor models: ideal batch, semi-batch and continuous tank

reactor and the ideal plug flow tube reactor. Several CSTR can be combined to a cascade. The

combination of CSTR and tube, however, is not possible in the present version. This combination

can, yet, be realized by a transfer data sheet, which uses the data of a CSTR exit stream as input

for a tubular reactor located in another file.
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For each model, recipes can be created for the components defined in the model, which con-

tain the initial composition of the reactor’s contents as well as feed streams with arbitrary compo-

sitions at user-defined times. This increases significantly the flexibility of each model, as it is

enough to change the recipe in order to model another experiment.

The use of PREDICI® for the modeling in this work was motivated by the fact that it is

widely present in industry. The model can, therefore, easily (and without huge loss of time to

reprogram the equations in another modeling tool) be used by other researchers using the same

software and be applied to comparable processes and reactions.

This annex contains all the information ncessary to reproduce the model, which was devel-

oped in this work for the methyl methacrylate / methyl acrylate copolymerization at high temper-

ature.

Figure 3.1: Screenshot of the result window for a batch polymerization in PREDICI®
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3.1 Reactor

R1 continuous

Vr = 0.907 l

T = temperature program following pilot plant data

p = pressure program following pilot plant data

flowrate defined by recipe

Tube Tube reactor

Length L = 3.84 m

Diameter d = 0.02 m

T = constant (as in experiment)

p = constant (as in experiment)

Input flow as defined in “initial data sheet”

Additional solvent / initiator feed defined by recipe

3.2 Reaction equations

Reaction step Reaction equation Rate constant

MMA-OO formation MMA + O2 MMA-OO kpo,f 

MMA-OO decomposition MMA-OO 2 fpo MMA-OO. kpo,d , fpo

MMA-OO initiation MMA-OO. + MMA P1,1
. kp1 

MMA-OO. + MA P2,1
. kp2 

Thermal initiation 2 MMA 2 MMA. kth 

MMA.+ MMA P1,1
. kp1 

MMA. + MA P2,1
. kp2 

Initiation by CTA CTA CTA. kdt 

CTA.+ MMA P1,1
. kp1 
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CTA.+ MA P2,1
. kp2 

Initiation by Initiator I  2 f I.  ki , f

I.+ MMA P1,1
. kp1 

I.+ MA P2,1
. kp2 

Propagation P1,n
. + MMA  P1,n+1

.  kp1

(ultimate model) P1,n
. + MA  P2,n+1

.  kp1, r12

P2,n
. + MA  P2,n+1

.  kp2

P2,n
. + MMA  P1,n+1

.  kp2, r21

Depropagation P1,n
.  P1,n-1

.  kdp

Transfer to monomer P1,n
. + MMA  Dn + P1,1

.  kf1

P1,n
. + MA  Dn + P2,1

.  kf12

P2,n
. + MA  Dn + P2,1

.  kf2

P2,n
. + MMA  Dn + P1,1

.  kf21

Transfer to solvent P1,n
. + LM  Dn + P1,1

.  CS

P2,n
. + LM  Dn + P2,1

.  CS

Transfer to CTA P1,n
. + CTA  Dn + P1,1

.  CCTA

P2,n
. + CTA  Dn + P2,1

.  CCTA

Termination P1,n
. + P1,m

.  Dn+m  ktc,11

P1,n
. + P1,m

.  Dn + Dm  ktd,11

P1,n
. + P2,m

.  Dn+m  ktc,12

P1,n
. + P2,m

.  Dn + Dm  ktd,12

P2,n
. + P2,m

.  Dn+m  ktc,22



3.3:  Rate coefficients

A-XXXV

3.3 Rate coefficients

Coefficient Value Source

k0 [l, mol, s] Ea [kJ / mol]
kpo,f 1.7691.106 73.0 this work

kpo,d 1.7752.106 70.378 this work

fpo 0.21 [-] this work

kp1 2.67.106 22.36 [124]

(IUPAC recommended)

kp2 2.656.108 29.726 [94]

kth 9.54.10-2 90.623 [14]

kdt 6.78.107 128.7 [66]

ki DTBP 9.178.1014 147.9 this work

TBPEH 1.84.1014 123.95 this work

TBPIN 1.22.1013 124.31 this work

f DTBP 0.7 [-] [47]

TBPEH 0.61 [-] this work

TBPIN 0.7 [-] this work

r12 1.59 [-] this work

r21 4.46 [-] this work

kdp 6.48.1011 76.364 this work

kf1 2.024 33.306 this work

kf12 1.10-4 [-] this work

kf2 1.10-4 [-] this work

kf21 1.10-4 [-] this work

CS = kl / kp  1.10-4 [-] this work

CCTA = kcta / kp  0.68 [-] [96]

kt0,11 1.21.109 83.66 this work1

γ = ktc / ktd 3.956.10-4 -17.168 [63]

kt0,22 9.85.1010 22.148 [94]

1. The value for kt0, i.e. the intrinsic termination rate constant for MMA, was determined by plotting the 

term  (with the IUPAC value for kp) against 1/T and comparing it to graphs resulting from several 

literature values. The kt0 value was then determined in the way to yield the best fit with literature data.

kp

kt

--------ln
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3.4 Calculations (fun-files)

Initiator efficiency f
result1=arg1

result2=arg2

cm=getco(":MMA")

cp=getmy(":dead_polymer",1)+getmy(":active_polymer_1",1)+getmy(":active_polymer_2", 1)

X=eval("X_comp", cm, cp)

rhom=getdensitylow(":MMA")

rhop=getdensityhigh(":dead_polymer")

eps=1-rhom/rhop

Fs=0

Phis=getcf(":BuAc")*getmmlow(":BuAc")/getdensitylow(":BuAc")

if((1-Phis)>0)

{Fs=Phis/(1-Phis)}

Phip=X*(1-eps)/(1-eps*X+Fs)

alpha = 15

beta = 5

result2=setkp("f", getkp("f0")/(1+alpha*Phip^beta))

Termination rate constant (gel effect) kt11
T=gettemp(":")

ratiokt=getkp("ratio_kt")

kt0=getkp("kt0")

mw=getmw(":dead_polymer")*1000

Tgp=116

A=0.168-8.21e-6*(T-Tgp)^2

B=0.03

R=8.314

c0=7.69577e-09*exp(-4854.97/(T+273.15))

cm=getco(":MMA")+getco(":MA")

cp=getmy(":active_polymer_1", 1)+getmy(":dead_polymer", 1)+getmy(":active_polymer_2", 1)

X=eval("X_comp", cm, cp)

rhom=getdensitylow(":MMA")

rhop=getdensityhigh(":dead_polymer")



3.4:  Calculations (fun-files)

A-XXXVII

eps=1-rhom/rhop

Phis=getcf(":BuAc")*getmmlow(":BuAc")/getdensitylow(":BuAc")

Fs=0

if((1-Phis)>0)

{Fs=Phis/(1-Phis)}

Phip=X*(1-eps)/(1-eps*X+Fs)

delta=mw^1.75*c0/exp(2.3*(1-Phip)/(A+B*(1-Phip)))

kt=setkp("kt", 1/(1/kt0+delta))

result1=kt*ratiokt/(1+ratiokt)

result2=kt/(1+ratiokt)

Termination rate constant (gel effect) kt12
t=gettemp(":")

F1=getmolpart("M1")

F2=getmolpart("M2")

kt11=getkp("kt0")

kt22=getkp("kt22_0")

kt0=F1*kt11+F2*kt22

ratiokt=getkp("ratio_kt")

mw=getmw(":dead_polymer")*1000

Tgp=116

A=0.168-8.21e-6*(t-Tgp)^2

B=0.03

c0=7.69577e-09*exp(-4854.97/(t+273.15))

cm=getco(":MMA")+getco(":MA")

cp=getmy(":dead_polymer", 1)+getmy(":active_polymer_1", 1)+getmy(":active_polymer_2", 1)

X=eval("X_comp", cm, cp)

rhom=getdensitylow(":MMA")

rhop=getdensityhigh(":dead_polymer")

eps=1-rhom/rhop

Phis=getcf(":BuAc")*getmmlow(":BuAc")/getdensitylow(":BuAc")

Fs=0

if((1-Phis)>0)

{Fs=Phis/(1-Phis)}

Phip=X*(1-eps)/(1-eps*X+Fs)

if(kt0>0)
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{delta=mw^1.75*c0/exp(2.3*(1-Phip)/(A+B*(1-Phip)))

kt=1/(1/kt0+delta)}

else

{kt=kt0}

result1=kt*ratiokt/(1+ratiokt)

result2=kt/(1+ratiokt)

Termination rate constant (gel effect) kt22
t=gettemp(":")

kt0=getkp("kt22_0")

ratiokt=getkp("ratio_kt")

mw=getmw(":dead_polymer")*1000

Tgp=116

A=0.168-8.21e-6*(t-Tgp)^2

B=0.03

c0=7.69577e-09*exp(-4854.97/(t+273.15))

cm=getco(":MMA")+getco(":MA")

cp=getmy(":dead_polymer", 1)+getmy(":active_polymer_1", 1)+getmy(":active_polymer_2", 1)

X=eval("X_comp", cm, cp)

rhom=getdensitylow(":MMA")

rhop=getdensityhigh(":dead_polymer")

eps=1-rhom/rhop

Phis=getcf(":BuAc")*getmmlow(":BuAc")/getdensity(":BuAc")

Fs=0

if((1-Phis)>0)

{Fs=Phis/(1-Phis)}

Phip= X*(1-eps)/(1-eps*X+Fs)

if(kt0>0)

{delta=mw^1.75*c0/exp(2.3*(1-Phip)/(A+B*(1-Phip)))

kt=1/(1/kt0+delta)}

else

{kt=kt0}

result1=kt*ratiokt/(1+ratiokt)

result2=kt/(1+ratiokt)
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Ultrasound calculation (theoretical speed of sound from solution composition)
T=gettemp("dummy")

kappa_m1 = 7.823735E-14*T^2 + 1.257146E-12*T + 7.135903E-10

kappa_m2 = 0.00000000000004*T^2 + 0.000000000002*T + 0.0000000006

kappa_s = 9.416596E-14*T^2 + 5.884506E-13*T + 8.111514E-10

kappa_p=exp((-22.220389+0.36888905*T-0.0015726875*T^2)/(1-

0.016394164*T+0.000067228059*T^2+0.000000015752519*T^3))

rho_m1  = getdensitylow("M1")

rho_m2 = getdensitylow("M2")

rho_s  = getdensitylow("LM")

rho_p  = getdensityhigh(":dead_polymer")

p=getpressure("R1")

wp = getmy(":dead_polymer", 1)*getvol("R1")*getmmlow(":MMA") / getmass("R1")

wm1 = getco(":MMA")*getmmlow(":MMA")*getvol("R1") / getmass("R1")

wm2 = getco(":MA")*getmmlow(":MA")*getvol("R1") / getmass("R1")

ws = getco("LM")*getmmlow("LM")*getvol("R1") / getmass("R1")

alpha=0.40604-0.37541*wp+0.00364*T

result1=1/sqrt(1000)*(wp/rho_p + wm1/rho_m1 + ws/rho_s + wm2/rho_m2)/sqrt(wp*kappa_p/rho_p

+ ws*kappa_s/rho_s + wm1*kappa_m1/rho_m1 + wm2*kappa_m2/rho_m2)+alpha*p

Density monomer
T=arg1

rho=(-9.4146E-06*T^3 + 1.3028E-03*T^2 - 1.1552*T + 9.6339E+02)/1000

result1=1/rho-arg3

Density solvent
T=arg1

rho=-2.48E-06*T^2 - 5.28E-04*T + 8.70E-01

result1=1/rho-arg3

Density polymer
T=arg1

rho=-1E-06*T^2 - 0.0002*T + 1.195

result1=1/rho-arg3
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ANNEXE 4

Determination of the Initiator
Decomposition by DSC

In analogy to the determination of the MMA peroxide decay kinetics by DSC (compare

chapter 2, “Differential Scanning Calorimetry (DSC)” on page 26), also the decomposition of

commercial initiators has been investigated as a part of this work. For standard initiators like di-

tert.butyl-peroxide (DTBP) or azo-bis-isobutyro-nitril (AIBN), which are widely used in polymer

research, the kinetics of their decomposition are well-known and published in unnumerous scien-

tific articles. When it comes to less common peroxides, as they are used mostly in industrial pro-

cesses, where it is important to have very specific decomposition characteristics, the situation

changes drastically and it gets very difficult to obtain reliable kinetic parameters. Often, the data

provided for a component vary between different manufacturers and the conditions under which

they had been determined are rarely revealed.

It is, therefore, inevitable for precise modeling of polymerization processes, to determine

the exact decomposition kinetics of the employed thermal initiators under controlled experimental

conditions. In the following, the results from DSC experiments are presented for the two indus-

trial initiators tert.butyl-peroxy-2-ethylhexanoat (TBPEH) and tert.butyl-peroxy-3,5,5-trimethyl-

hexanoate (TBPIN), as well as for di-tert.butyl-peroxide (DTBP) in order to validate the determi-

nation method with values from literature.
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The experiments were carried out in 60 µl medium-pressure, stainless steel crucibles (see

annex 1, “Differential Scanning Calorimetry” on page XIII) with either the pure peroxide or per-

oxide diluted in butyl acetate. For the mathematical algorithm, which is used by the PerkinElmer

software to determine the kinetic parameters, see chapter 2, “Differential Scanning Calorimetry

(DSC)” on page 26.

4.1 Tert.butyl-peroxy-2-ethylhexanoat (TBPEH)

The decomposition of TBPEH was measured by DSC in solution (~50% butyl acetate) and

for the undiluted peroxide. The DSC results, i.e. heat flow peak and Arrhenius diagram from the

peak integration, are shown in figure 4.1 (a)+(b) for the undiluted and in figure 4.2 (a)+(b) for the

diluted peroxide.

The kinetic parameters for both cases, as well as values provided by two different producers

of TBPEH are presented in table 1.

Finally, the different kinetic parameters are compared by tracing the half life time against

temperature in figure 4.3.

Table 1: Kinetic rate constants for the thermal decomposition of TBPEH

k0 [s-1] EA [kJ mol-1]

DSC pure 1.312.1014 124.13

DSC (50% BuAc) 1.847.1014 123.95

Degussa Initiators 1.840.1015 132.68

Akzo 9.990.1013 122.96
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(a)

(b)
Figure 4.1: Decomposition of TBPEH (undiluted) measured by DSC

(a) heat flow curve (b) Arrhenius diagram from the integrated heat curve
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(a)

Figure 4.2: Decomposition of TBPEH (50% BuAc solution) measured by DSC
(a) heat flow curve (b) Arrhenius diagram from the integrated heat curve
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As shown in the above figure, the kinetics determined for the undiluted TBPEH is the fast-

est decomposition kinetics. This is an effect often observed for this kind of reaction. It is, there-

fore, recommendable to measure in dilute solutions. The kinetics determined for a 50% TBPEH

solution in BuAc is rather close to the values provided by the two manufacturers, i.e. the curve is

almost parallel to the one from DEGUSSA, from where the peroxide was obtained. However, the

conditions under which the kinetics were determined by AKZO and DEGUSSA is unknown,

which makes it impossible to explain the difference between the three cases.

(b)

Figure 4.3: Half life times for TBPEH using the kinetic constants from table 1

Figure 4.2: Decomposition of TBPEH (50% BuAc solution) measured by DSC
(a) heat flow curve (b) Arrhenius diagram from the integrated heat curve
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4.2 Tert.butyl-peroxy-3,5,5-trimethyl-hexanoate (TBPIN)

The same procedure as for TBPEH was followed to determine the decomposition kinetics

for TBPIN. The peroxide was measured undiluted and in 50% butyl acetate. The resulting kinetic

constants are listed in table 2. The corresponding half life time plot is depicted in figure 4.4 and

the DSC results in figure 4.5 (a)+(b) respectively figure 4.6 (a)+(b) for the diluted peroxide.

Table 2: Kinetic rate constants for the thermal decomposition of TBPIN

k0 [s-1] EA [kJ mol-1]

DSC pure 1.176.1010 100.03

DSC (50% BuAc) 1.217.1013 124.31

Degussa Initiators 2.020.1015 142.88

Figure 4.4: Half life times for TBPIN using the kinetic constants from table 2
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(a)

(b)
Figure 4.5: Decomposition of TBPIN (undiluted) measured by DSC

(a) heat flow curve (b) Arrhenius diagram from the integrated heat curve
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(a)

(b)
Figure 4.6: Decomposition of TBPIN (50% BuAc solution) measured by DSC

(a) heat flow curve (b) Arrhenius diagram from the integrated heat curve
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4.3 Di-tert.butyl-peroxide (DTBP)

Finally, to validate the DSC method, a peroxide with well-known decomposition kinetics

(DTBP) was taken as example and the measured decomposition kinetics compared to the one

found in literature. DTPB is one of the most popular thermal initiators used in research studies. In

industrial polymerizations it is less preferrable since its decomposition mechanism is rather com-

plex and affected by the formation of various side products like aceton, free oxygen and different

hydrocarbons [125]. For the other peroxides used in this work, on the other hand, the decomposi-

tion mechanism consists of a simple scission of the O-O group into to R-O. radicals.

In this study, the DTBP decomposition was only measured undiluted. The results from this

comparison are presented in the following. The activation energy is in very good agreement with

literature / manufacturer data. Although measured only undiluted, the half life time curve for the

DSC kinetics is very close to the one calculated with the kinetic constants from the other sources.

Table 3: Kinetic rate constants for the thermal decomposition of DTBP

k0 [s-1] EA [kJ mol-1]

DSC undiluted 9.178.1014 147.90

Literature [47] 2.800.1014 146.40

Degussa Initiators 1.164.1015 150.69



Annexe 4:  Determination of the Initiator Decomposition by DSC

A-L

Figure 4.7: Half life times for DTBP using the kinetic constants from table 3
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(a)

(b)
Figure 4.8: Decomposition of DTBP (undiluted) measured by DSC

(a) heat flow curve (b) Arrhenius diagram from the integrated heat curve
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ANNEXE 5

Physico-chemical data

5.1 Density of methyl methacrylate
ρΜΜΑ(Τ) = -9.4146.10-6.T3 + 1.3028.10-3.T2 - 1.1552 T + 9.6339 102

Figure 5.1: Density of methyl methacrylate as a function of temperature [°C], source: measured 
data from industrial partner

y = -9.4146E-06x3 + 1.3028E-03x2 - 1.1552E+00x + 9.6339E+02
R2 = 9.9995E-01

500.0

550.0

600.0

650.0

700.0

750.0

800.0

850.0

900.0

950.0

1000.0

0 50 100 150 200 250 300

T [°C]

rh
o 

[g
/l]



Annexe 5:  Physico-chemical data

A-LIV

5.2 Density of butyl acetate

ρBuAc(Τ) = -3.1905.10-4.T2 - 1.0635.T + 9.0305 102

Figure 5.2: Density of butyl acetate as a function of temperature [°C], source: [88] (straight 
line), [126](squares)
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y = -3.1905E-04x2 - 1.0635E+00x + 9.0305E+02
R2 = 0.99998
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5.3 Density of methyl acrylate

ρMA(Τ) = -1.1788.10-3.T + 0.9774

Figure 5.3: Density of methyl acrylate as a function of temperature [°C], source: [47, 127-129]
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5.4 Density of poly (methyl methacrylate)

ρPMMA(Τ) = -0.0014.T2 - 0.2309.T + 1195

Figure 5.4: Density of poly (methyl methacrylate) as a function of temperature [°C]

y = -0.0014x2 - 0.2309x + 1195
R2 = 0.99998
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5.5 Isentropic compressibility of methyl methacrylate

κMMA(Τ) = 7.8237.10-14.T2 +1.2571.10-12.T + 7.1359.10-10

Figure 5.5: Isentropic compressibility of methyl methacrylate as a function of temperature [°C], 
literature values:  [6]

y = 7.8237E-14x2 + 1.2571E-12x + 7 .1359E-10
R 2 = 9.9922E-01
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5.6 Isentropic compressibility of butyl acetate

κBuAc(Τ) = 9.4166.10-14.T2 + 5.8845.10-13.T + 8.1115.10-10

Figure 5.6: Isentropic compressibility of butyl aceate as a function of temperature [°C] Literature 
values: [89]
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5.7 Isentropic compressibility of poly (methyl methacry-
late)

Table 1: Fitting parameters for the κs,PMMA curve fitting

A
[Pa-1]

B
[Pa-1°C-1]

C
[Pa-1°C-2]

D
[Pa-1°C-1]

E
[Pa-1°C-2]

F
[Pa-1°C-3]

-22.22 0.36889 -1.57.10-3 -0.01639 6.723.10-5 1.57.10-8

Figure 5.7: Isentropic compressibility of poly (methyl methacrylate) as a function of temperature 
[°C], literature values: [47]
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ANNEXE 6

Raw Materials and Qualities

Methyl Methacrylate (MMA)

Manufacturer: Degussa Röhm GmbH & Co. KG, Germany

CAS-No.: 80-62-6

Quality: > 99.9% GC, stabilized with 25 ppm MEHQ

Molar mass: 100.12 g/mol

Density at 20°C: ca. 0.943 g/cm3

Viscosity at 20°C: ca. 0.63 mPa•s

Boiling point (1 atm): 100.3 °C

O

O
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n-Butyl Acetate (BuAc)

Manufacturer: Schweizerhall SA, Switzerland

CAS-No.: 123-86-4

Quality: liquid, technically pure

Molar mass: 116.16 g/mol

Density at 25°C: ca. 0.881 g/cm3

Boiling point (1 atm): 124-126 °C

Ethyl Benzene (EB)

Manufacturer: BASF AG, Germany

CAS-No.: 100-41-4

Quality: liquid, technically pure

Molar mass: 106.17 g/mol

Density at 25°C: ca. 0.867 g/cm3

Boiling point (1 atm): 136 °C

O

O

C2H5



:

A-LXIII

Methyl Acrylate (MA)

Manufacturer: FLUKA GmbH&Co KG, Switzerland

CAS-No.: 96-33-3

Quality: >99% GC, stabilized with 0.0015% MEHQ

Molar mass: 86.09 g/mol

Density at 20°C: ca. 0.955 g/cm3

Boiling point (1 atm): 80 °C

n-Dodecanethiol (DDT)

Manufacturer: Riedel-de-Haëhn, Germany

CAS-No.: 112-55-0

Quality: > 98% GC

Molar mass: 202.4 g/mol

Density at 25°C: ca. 0.854 g/cm3

Boiling point (1 atm): 266 - 283 °C

Tert.butyl-peroxy-2-ethylhexanoat (TBPEH)

Manufacturer: Degussa Initiators GmbH & Co.KG, Germany

O

O

SH

H3C C O O C CH C
H2

H2
C C

H2
CH3

CH3

CH3 O

C2H5
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CAS-No.: 3006-82-4

Quality: liquid, technically pure (99% peroxide content)

Molar mass: 216.3 g/mol

Density at 20°C: ca. 0.90 g/cm3

Viscosity at 20°C: ca. 4 mPa•s

Half life time 10h/1h/1min: 74 °C / 92 °C / 130 °C (0.1 M benzene solution)

Critical temperature: ca. 40°C (SADT1)

Tert.butyl-peroxy-3,5,5-trimethyl- hexanoate (TBPIN)

Manufacturer: Degussa Initiators GmbH & Co.KG, Germany

CAS-No.: 13122-18-4

Quality: liquid, technically pure (99% peroxide content)

Molar mass: 230.3 g/mol

Density at 20°C: ca. 0.89 g/cm3

Viscosity at 20°C: ca. 5 mPa•s

Half life time 10h/1h/1min: 100 °C / 119 °C / 160 °C (0.1 M benzene solution)

Critical temperature: ca. 60°C (SADT1)

1. Self Accelerating Decomposition Temperature, SADT

H3C C O O C
H2
C CH

H2
C C CH3

CH3

CH3 O CH3

CH3

CH3
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Di-tert.butyl-peroxide (DTBP)

Manufacturer: FLUKA GmbH&Co KG, Switzerland

CAS-No.: 110-05-4

Quality: liquid, technical (>95% GC)

Molar mass: 146.2 g/mol

Density at 20°C: 0.794 g/cm3

Viscosity at 20°C: ca. 0.8 mPa•s

Half life time 10h/1h/1min: 125 °C / 146 °C / 190 °C (0.1 M benzene solution)

Critical temperature: > 80°C (SADT1)

N,N-Dimethylformamid (DMF)

Manufacturer: Riedel-de-Haëhn, Germany

CAS-No.: 68-12-2

Quality: >99% GC

Molar mass: 73.09 g/mol

Density at 20°C: 0.944 g/cm3

Boiling point (1 atm): 153 °C

H3C C O O C CH3

CH3

CH3 CH3

CH3

H N

O
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Tetrahydrofuran (THF)

Manufacturer: FISHER Scientific, Switzerland

CAS-No.: 109-99-9

Quality: for GPC (>99.99% GC), stabilized with 0.025% BHT

Molar mass: 72.1 g/mol

Density at 20°C: 0.89 g/cm3

Boiling point (1 atm): 66 °C

O
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ANNEXE 7

List of pilot plant experiments
Reaction Conditions Feed conditions Results

T VWZ BUAC BUAC MMA MA TBPEH TBPIN DTBP n-Dodecylm. X-Loop X-Tube X-total Mw PD
Nr. Aim Reactor [°C] [min] [%] [%] [%] [%] [ppm] [ppm] [ppm] [%] [%] [%] [%] [g/mol] [-]

1 MA-TH Loop 140 30 0 0 100 0 250 0 0 0.3 38 112'782 2.5
Tube 140 20 100 0 0 0 1250 0 0 50 106'534 2.1

Exp.: 5.4.05 + 20.4.05 54 107'499 1.9
2 MA-TH Loop 140 30 0 0 98.5 1.5 250 0 0 0.3 41 114'863 2.1

Tube 140 20 100 0 0 0 1250 0 0 53 106'916 2.0
Exp.: 26.04.2005 Kond 62 95'618 1.9

2a MA-TH Loop 140 30 0 0 96.5 3.5 250 0 0 0.3 35 119'832 1.7
Tube 140 20 100 0 0 0 1250 0 0 48 112'235 1.8

Exp.: 14.09.2005 Kond long duration experiment (10h) ?? 100'026 2.1
3 MA-TH Loop 140 30 0 0 94.5 5.5 250 0 0 0.3 35 110'928 1.9

Tube 140 20 100 0 0 0 1250 0 0 47 106'494 1.7
Exp.: 21.04.2005 Kond 54 103'007 2.2

4 CTA-I Loop 140 30 0 0 100 0 250 0 0 0.2 50 162'070 1.9
Tube 140 20 100 0 0 0 1250 0 0 61 152'746 2.1

Exp.: 27.4.05 + 30.06.2005 ?? 138'901 2.2
4a CTA-I Loop 140 30 0 0 100 0 250 0 0 0.2 54 176'064 2.1

Tube 140 20 100 0 0 0 0 0 0 51 177'443 1.9
Exp.: 04.07.2005 Kond Experiment with Inhibitor (250ppm TEMPO) in the tube ?? 165'510 2.0

4b CTA-I Loop 140 30 0 0 100 0 250 0 0 0.2 45 149'323 1.7
Tube 140 20 100 0 0 0 1250 0 0 56 140'055 2.1

Exp.: 08.07.2005 Kond Experiment with 5% EB as internal standard ?? 133'446 2.8
5 CTA-I Loop 140 30 0 0 100 0 250 0 0 0.5 35 73'022 2.1

Tube 140 20 100 0 0 0 1250 0 50 73'807 1.9
Exp.: 03.05.2005 Kond ?? 117'043 2.2

6 MA-TH Loop 120 30 0 0 100 0 250 0 0 0.3 38 123'954 2.1
Tube 120 20 100 0 0 1250 0 0 0 52 120'669 2.2

Exp.: 04.05.2005 Kond 62 68'352 2.3
6a MA-TH Loop 120 30 0 0 100 0 500 0 0 0.3 56 127'708 2.0

Tube 120 20 100 0 0 1250 0 0 0 72 116'000 2.5
Exp.: 11.05.2005 Kond Experiment aborted due to strong pressure increase (consequence: broken sealing) ?? 99'268 1.9

7 MA-TH Loop 120 30 0 0 98.5 1.5 400 0 0 0.33 56 123'195 1.7
Tube 120 20 100 0 0 1000 0 0 0 67 119'144 1.8

Exp.: 13.09.2005 Kond again strong pressure increase, aborted at 42bar ?? 105'672 1.7
9 MA-TH Loop 150 30 0 0 100 0 0 250 0 0.3 53 119'553 2.2

Tube 150 20 100 0 0 0 0 1250 0 65 113'721 2.2
Exp.: 18.07.2005 Kond 78 102'280 2.1

10 MA-TH Loop 150 30 0 0 98.5 1.5 0 250 0 0.3 52 115'120 1.8
Tube 150 20 100 0 0 0 0 1250 0 68 110'316 2.1

Exp.: 19.07.2005 Kond 78 96'982 1.8
10a MA-TH Loop 150 30 0 0 98.5 1.5 0 250 0 0.3 30 105'695 1.6

Tube 150 20 100 0 0 0 0 1250 0 50 103'522 1.7
Exp.: 12.09.2005 Kond long duration experiment (10h) 62 92'048 1.8

11 MA-TH Loop 150 30 0 0 96.5 3.5 0 250 0 0.3 29 104'927 1.9
Tube 150 20 100 0 0 0 0 1250 0 49 102'535 1.8

Exp.: 15.09.2005 Kond 63 87'352 1.8
12 MA-TH Loop 150 30 0 0 94.5 5.5 0 250 0 0.3 50 115'343 1.9

Tube 150 20 100 0 0 0 0 1250 0 66 108'016 2.1
Exp.: 21.07.2005 Kond 82 86'532 2.2

13 MA-TH Loop 160 30 0 0 98.5 1.5 0 250 0 0.25 45 126'900 1.8
Tube 160 20 100 0 0 0 0 1250 0 65 113'607 1.8

Exp.: 03.08.2005 Kond 76 101'144 1.8
14 MA-TH Loop 160 30 0 0 97 3 0 250 0 0.25 30 114'735 2.0

Tube 160 20 100 0 0 0 0 1250 0 60 108'224 1.8
Exp.: 05.08.2005 Kond 70 91'146 1.8

15 MA-TH Loop 160 30 0 0 94.5 5.5 0 250 0 0.25 36 114'638 2.1
Tube 160 20 100 0 0 0 0 1250 0 62 106'967 1.7

Exp.: 04.08.2005 Kond 75 92'771 1.7
16 MA-TH Loop 170 30 0 0 98.5 1.5 0 250 0 0.2 26 119'838 1.9

Tube 170 20 100 0 0 0 0 1250 0 47 98'056 1.9
Exp.: 12.08.2005 Kond 58 85'007 1.9

17 MA-TH Loop 170 30 0 0 94.5 5.5 0 400 0 0.2 25 110'654 1.7
Tube 170 20 100 0 0 0 0 1250 0 48 94'330 2.0

Exp.: 16.08.2005 Kond 65 82'852 2.0
18 MA-TH Loop 170 30 0 0 96.5 3.5 0 600 0 0.2 48 110'876 1.8

Tube 170 20 100 0 0 0 0 1502 0 56 97'738 1.9
Exp.: 06.09. + 08.09.2005 65 88'058 2.0

19 MA-TH Loop 170 30 0 0 98.5 1.5 0 500 0 0.2 32 108'121 1.9
Tube 170 20 100 0 0 0 0 1250 0 52 92'658 1.9

Exp.: 18.08.2005 Kond long duration experiment (10h) 61 87'541 1.7
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ANNEXE 5

Tablecurve fitting parameters

5.1 α correction factor

5.2 κs, PMMA - fitting

Table 1: Fitting parameters for the α curve fitting

Parameter Value Error

α0 0.40604 ± 0.0221

A1 0.00364 ± 0.0002

A2 -0.39541 ± 0.0968

Table 2: Fitting parameters for the κs,PMMA curve fitting

A
[Pa-1]

B
[Pa-1°C-1]

C
[Pa-1°C-2]

D
[Pa-1°C-1]

E
[Pa-1°C-2]

F
[Pa-1°C-3]

-22.22 0.36889 -1.57.10-3 -0.01639 6.723.10-5 1.57.10-8
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5.3 UPV-Conversion fit

Table 3: Fitting parameters for the fittings presented in figure 4.24

Parameter wp to speed of sound speed of sound to X

a 1808.1378 [-] 1.9646026

b -18.522899 -0.016100033 

c 0.092598977 8.1124055.10-5 

d -0.00017919959 -1.6127687.10-7 

e -159.6025 [-] -0.001146163 

f -151.65653 [-] -0.0014100568 

g -0.0019820557 -2.5559475.10-6 

h -0.29202612 [-] -0.0012009741 

i -0.25516883 [-] 1.0616658.10-7 

1
°C
------ 1

°C
------

1
°C2
--------- 1

°C2
---------

1
°C3
--------- 1

°C3
---------

s
m
----

1
°C
------

1
°C
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1
°C2
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s
m
----

s2

m2
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Symbols and Abbreviations

Symbols

Symbol Description Unit (unless specified in the text)

Bo Bodenstein number [-]

Cm monomer concentration [mol/l]

Cb Bulk monomer concentration [mol/l]

CCTA chain transfer constant [-]

d diameter [m]

Dax axial dispersion coefficient [m2/s]

Deff Diffusion coefficient [m2/s]

DPn Degree of polymerization [-]

e Euler number [-]

EA activation energy [kJ/mol]

f efficiency of a thermal initiator [-]

ΔH reaction enthalpy [kJ/mol]

k kinetic rate constant [l, mol, s]

kd decomposition rate for thermal initiators

kdt rate coefficient for the initiation by CTA

kdp rate coefficient for the depolymerization

kCTA rate coefficient for the radical transfer to CTA
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kH-1 rate coefficient for the formation of dimer

kp propagation rate coefficient

kpo,f formation rate coefficient for PMMAP

kpo,d decomposition rate coefficient for PMMAP

kt0 intrinsic termination rate coefficient

ktc rate coefficient for the combination termination

ktd rate coefficient for the disproportionation termination

kth rate coefficient for the thermal initiation mechanism

kf, ktr,m rate coefficient for the radical transfer to monomer

Kγ shear constant [-]

K volume specific heat transfer coefficient [W/m3 K]

L length [m]

m mass [kg]

Mw weight average molecular weight [kg/mol]

Mn number average molecular weight [kg/mol]

Nu Nusselt number [-]

n reaction order [-]

P kinetic chain length [-]

Pi,n
. chain radical ending with species i (1=MMA / 2=MA) [-]

p pressure [bar]

Rp rate of polymerization [mol/l s]

r1, r2 reactivity ratios for MMA, MA [-]

rt termination radius [m]

R organic substituent

Re Reynolds number [-]

ΔS reaction entropy [J/mol K]

T temperature [K]

Tg glass transition temperature [°C]

U surface specific heat transfer coefficient [W/m2 K]

uz flow velocity in z-direction [m/s]

Wf weight fraction (in GPC distribution analysis) [-]



:

xiii

w weight fraction [-]

X conversion [-]

Xc fitting parameter in the Fenouillot model [-]

α parameter for the pressure dependence in US [m/s bar]

α, β fitting parameters in the Fleury model [-]

β heating rate [K/min]

ε volume contraction coefficient [-]

ε porosity of the reactor tubes [-]

κ compressibility [1/Pa]

λ concentration of chain radicals [mol/l]

λl heat conductivity [W/m K]

η, η0 viscosity, zero shear viscosity [Pa s]

φ volume fraction [-]

γ’ shear rate [1/s]

γ ktc/ktd [-]

θ(T) fitting function in the CCS gel effect model

ρ density [kg/mol]

τ(T) fitting function in the gel effect model derived in this work

τ residence time [s]

Abbreviations

AIBN 2, 2’-Azobis(2-methylpropionitrile)

amu atomic mass unit (in MS analysis)

BPO Di-benzoyl peroxide

BA Butyl acrylate

BMA Butyl methacrylate

BuAc Butyl acetate

CTA Chain transfer agent

1,2-DCB 1,2-Dichlorobenzene
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xiv

DSC Differential scanning calorimetry

DTBP Di-tert.butyl peroxide

EB Ethyl benzene

GPC Gel permeation chromatography

HS-GC Head space gas chromatography

MA Methyl acrylate

MMA Methyl methacrylate

MMA-OO MMA polyperoxide

MS Mass spectroscopy

NMR Nuclear Magnetic Resonance spectroscopy

PMMA Poly (methyl methacrylate)

PS Poly (styrene)

PMMAP MMA polyperoxide

SEC3 Size Exclusion Chromatography with triple detection

TBPEH Tert.butyl-peroxy-2-ethylhexanoat

TBPIN Tert.butyl-peroxy-3,5,5-trimethylhexanoat

TGA Thermogravimetry

THF Tetrahydrofuran

US Ultrasound

UV UV-Vis Photospectrometry

Indices

m monomer

s solvent

p polymer

obs apparant value (for rate constants)
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