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Abstract— Autonomous control of ultra-light indoor microfly-
ers is a difficult and largely unsolved task because of the strong
limitations on the kind of sensors that can be embedded. We
propose a new approach for altitude control of a 10-gram
microflyer, where altitude as well as pitch angle are estimated
using a set of visual, airspeed and gyroscopic sensors that weight
about 1 (g) in total. This approach does not rely on an explicit
estimation of optic flow, but rather takes as input the raw images
as provided by the vision sensor.

We show that altitude and pitch angle of a simulated agent can
be successfully estimated. This result is thus a first step toward
autonomous altitude control of indoor flying robots.

I. INTRODUCTION

Autonomous indoor flight poses a number of challenges
that are yet to be solved. Unlike outdoor drones, the weight
constraint precludes the use of many sensors. High precision
inertial measurement units (IMU) are too heavy to be em-
bedded on ultra-light microflyers, GPS signals are unavailable
indoors and the horizon cannot be used as visual absolute
angular reference. In general, active sensors, like distance
sensors, tend to consume too much energy, as opposed to
passive sensors such as simple CMOS cameras, MEMS rate
gyros and anemometers. It is interesting to note that the
fly seems to use the same kind of sensory modalities for
navigation. The most important one is vision [1], [2], but
gyroscopic information is also available thanks to organs
called halteres [3], and it is probably the case for airspeed
by the means of hairs and antennas [4].

It has been suggested that basic control of an indoor
microflyer can be reduced to a minimal set of four behaviors1:
attitude control (ATC), course stabilization (CS), obstacle
avoidance (OA) and altitude control (ALC) [5], [6]. ATC
consists of keeping the airplane roll and pitch angles stable.
CS forces the airplane into straight or, at least, controlled
trajectories when flying in free spaces, while OA ensures that
it will not collide with walls and other obstacles. Finally, ALC
keeps the airplane at proper altitude over ground or obstacles.

Implementation of the first three of these behaviors has
already been demonstrated with a 30-gram airplane [7]. ATC
was for the most part passively stabilized by the airplane

1While not strictly necessary to control an microflyer in flight, landing and
take off behaviors will also be necessary for practical applications.

geometry, CS was implemented by a control loop that tied
the rudder to a rate gyro, and OA was based on frontal optic
flow (OF) divergence. However, in that study, no automatic
ALC was implemented and an operator had to take care of it
manually.

One possibility to address this problem is to take inspiration
from insects. Bees have been shown to be acting as if they
were regulating the OF perceived in the ventral part of their
compound eyes [8]. Indeed, OF due to translation is inversely
proportional to the distance over ground and proportional to
the relative speed of the observer [9]. Therefore by maintaining
OF constant the altitude can be regulated, given that the speed
is known [10].

A few studies aiming at reproducing this mechanism based
on OF or implementing it in flying robots have been com-
pleted, but they still suffer from severe limitations. Altitude
control has been implemented on a gantry robot [8], and a
tethered rotorcraft has been successfully controlled [11]. Both
systems have a way to ensure that the OF detector is vertically
oriented, downward pointing, which is not possible on a free-
flying airplane. An OF detector that is fixed to an airplane in
a perpendicular direction with respect to its axis will perceive
a greater distance when the airplane has a nonzero pitch
angle, thus the necessity to measure the pitch in order to
either compensate for it, regulate it or actively control the
OF detector optical axis. A simulated agent that successfully
regulates altitude has been demonstrated [6], but both pitch and
roll were controlled using color gradients present in the virtual
environment. This cue is generally not available indoors. OF
detectors have also been embedded on various autonomous
aircrafts in order to control altitude [12]–[14], but in all cases
the altitude controller ignores both the pitch angle and the pitch
rate. The consequence of the later is a positive feedback2 that
makes the control unstable and forces the use of low gains in
controllers, further reducing the control efficiency.

In this paper, we propose to reconsider the problem of
vision-based altitude control. As a first step, we demonstrate
that, contrary to previous studies, it is possible, using an opti-
mization technique, to estimate altitude as well as pitch angle

2For example, a nose down pitch rate causes a reduction in the measured
OF, thus an augmentation of the perceived altitude, which will lead the
unaware controller to further apply a negative pitch rate command.



without preliminary OF estimation. The only required sensory
signals are available on an existing 10-gram indoor microflyer
called MC1 (Fig. 1), which is equipped with a camera, a rate
gyro and an anemometer. Ultimately, such a method could
be embedded in this microflyer to implement ALC and lead,
using the other, already demonstrated behaviors, to a fully
autonomous indoor microflyer.

The next section presents the theoretical ground of our
method. The simulations we performed to assess the model
and their analysis are presented in section III and IV. Finally,
we discuss the results in section V.

II. MODEL

Instead of first estimating OF and then estimating altitude
and pitch from it, we propose to base altitude and pitch
estimation on raw sensory data. For this first step toward a
new ALC method, we simplify the problem by assuming that
the microflyer has a null bank angle (the angle about the roll
axis, i.e. the longitudinal axis of the airplane) at all times and
that the projection of its trajectory on the ground is a straight
line. This allows for reducing the problem to two dimensions,
as represented in Fig. 2. Also, the ground is assumed to be
planar and free of obstacles, and the air to be still.

Under these assumptions, altitude and pitch can be estimated
by minimizing the difference between an interpolated image
and an actual image, obtained by the sensor. This approach is
similar to the image-interpolation technique proposed in [15],
but instead of evaluating image motion we directly estimate
the parameters we want to measure. Two images f and f ′

are grabbed from the vision sensor at time t and t + ∆t.
In the meanwhile, the other sensors are used to measure the
microflyer velocities3 vx and vy , and pitch rate ω, that are
assumed to be constant during the time interval ∆t. Then,
from f , vx, vy , ω and ∆t, an interpolated image f̂ ′(θ, h)
corresponding to f ′ and function of the altitude h and the
pitch θ is calculated. Finally, θ and h are optimized so as
to minimize the square error between the interpolated image
f̂ ′(θ, h) and the actual image f ′.

We model the vision sensor as a perfect, circular camera
whose pixels sample the ground image at its intersection with
their looking direction, noted αi for the i-th pixel (this angle
has a negative value, since the camera points downward). The
ground light intensity is noted I(x), where x is the distance
on ground calculated from the origin of the coordinate system,
which is underneath the microflyer at time t. Then, the image
f can be expressed as

f(αi) = I(l) = I(h · tan(αi + θ +
π

2
)) = I(h ·k(αi, θ)), (1)

where by definition k(α, θ) = tan(α + θ + π/2) =

3In principle, the anemometer provides only the speed along the airplane’s
main axis. The velocity vy can be interpolated based on previous altitude
estimations and used, together with the anemometer and previous pitch
estimations, to estimate vx.
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Fig. 1. Photograph and outline of the actual microflyer prototype, code
named MC1. The MC1 is based on a microCeline, a 5.2-gram living room
flyer produced by DIDEL (http://www.didel.com) that is equipped with a
4mm geared motor (a) and two magnet-in-a-coil actuators controlling the
rudder and the elevator (b). When fitted with the required electronics for au-
tonomous vision-based navigation, the total weight reaches 10 (g). The custom
electronics consists of a microcontroller board (c) featuring a PIC18LF4620
running at 32MHz, a Bluetooth radio module (for parameter monitoring),
and two camera modules, which comprise a gray-level CMOS linear camera
(TSL3301) and a MEMS rate gyros (ADXRS150) each. One of those camera
modules is oriented forward with its rate gyro measuring yaw rotations, and
is meant to be used for obstacle avoidance. The second camera module is
oriented downwards, looking longitudinally at the ground, while its rate gyro
measures rotation about the pitch axis. Each of the cameras have 78 active
pixels spanning a total field of view (FOV) of 120 (deg). In order to measure
its airspeed, the MC1 is also equipped with an anemometer (d) consisting of a
free propeller and a hall-effect sensor. This anemometer is placed in a region
that is not blown by the main propeller (a). The 90 (mAh) Lithium-polymer
battery (e) ensures an autonomy of approximately 15 minutes.
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Fig. 2. Geometrical layout of the problem. The top graphs represent the
airplane position in space at time t and t+∆t. The bottom graph shows how
the ground texture intensity, noted I(x), is interpolated, based on the intensity
of the neighboring pixels. l, l+ and l− correspond to the position on ground
sampled by pixels i, resp. i + 1, and i − 1. The local slope of the intensity
function is estimated using I(l−) and I(l+), and is used to interpolate I(vx ·
∆t+ l′) from I(l), leading to the estimate intensity Î(vx ·∆t+ l′) (see (3)).

−1/ tan(α + θ). Similarly, the second image is

f ′(αi) = I(vx ·∆t + l′) =
= I(vx ·∆t + (h + vy ·∆t) · k(αi, θ + ω ·∆t)). (2)

As represented in the bottom part of Fig. 2, we compute an
interpolated image f̂(αi) based on the linearization of I(x)
around x = h · k(αi, θ). Using the symbols defined in Fig. 2,
we can write

Î(vx ·∆t+ l′) = I(l)+
I(l+)− I(l−)

l+ − l−
· (vx ·∆t+ l′− l). (3)

Of course, this approximation is acceptable only under certain
conditions. First, the interpolated point vx ·∆t + l′ should lie
within the range [l−; l+] or close to it. This means that either
the velocities (especially the rotational velocity) are limited,
or the time interval ∆t is kept short. Second, it limits the
acceptable spatial frequencies for the ground texture, since
the intensity should be close to linear in the range [l−; l+].
In practice, it is relatively easy to cut higher frequencies, for
example by defocusing the vision system, but the image must
contain some low frequencies for this method to be feasible.

Based on (1) and (2), we can rewrite (3), using for simplicity
f(αi) = fi and k(αi, θ) = ki(θ)

f̂ ′i = fi +
fi+1 − fi−1

h · (ki+1(θ)− ki−1(θ))
·

· (vx ·∆t + (h + vy ·∆t) · ki(θ + ω ·∆t)− h · ki(θ)) . (4)

Fig. 3. The agent in the Webots simulator [16] with a representation of the
field of view of the downward pointing camera.

Finally, we can write the following error function

ε(h, θ) =
∑

i

(f ′i − f̂ ′i)
2 =

=
∑

i

[
f ′i − fi −

fi+1 − fi−1

ki+1(θ)− ki−1(θ)
·

·
(

vx ·∆t

h
+ (

vy ·∆t

h
+ 1) · ki(θ + ω∆t)− ki(θ)

)]2

. (5)

Minimizing ε(h, θ) leads to an estimation of h and θ.

III. SIMULATIONS

To experimentally assess the model presented in the previ-
ous section, we use a flying agent simulated in the Webots
simulator [16], as illustrated in Fig. 3. It is equipped with
a downward-pointing linear camera whose geometry (field of
view, number of pixels, etc.) is similar to that of the MC1
(Fig. 1). The agent can move in an artificial world composed
of a textured ground. The ground texture is made of a sum of
sines with frequencies ranging from 0 to 1 (m−1) and random
phases.

In this paper, no attempt has been made to simulate the
physics of a real microflyer since the goal is not to implement
a control system for the microflyer. However, the velocities and
trajectories imposed to the agent are kept within ranges that are
reasonable for real indoor flyers like the MC1. In particular,
the altitudes are kept between 0.5 and 2 (m), the pitch angle
between −20 and 20 (deg), the velocity between 1 and 2 (m/s)
and the pitch rate below 20 (deg/s). The interval ∆t is set to
5 (ms) in all simulations, to match what is technically feasible
in terms of image acquisition frequency. All these numerical
values have been derived from experimental data recordings
from the real microflyer. While the agent is moved in the simu-
lated world, all available data, including sensors, true positions
and speeds, are logged for subsequent analysis. Finally, using
the logged data for each time-step the error function in (5) is
numerically minimized using Matlab’s Optimization Toolbox
to obtain an approximation of the altitude and pitch angle of
the agent.
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Fig. 4. Example of a trajectory and the corresponding estimation of altitude
and pitch angle. The horizontal velocity vx is set to 1.5, while both altitude
and pitch angle are sinusoidal, by using proper, varying values for vy and
ω. The true altitudes and pitches are marked by the dashed lines, while the
circles represent the approximations.

IV. RESULTS

Fig. 4 shows true and estimated altitudes and pitch angles
when the agent flies along a nontrivial trajectory. Here both
vertical velocity and pitch rate have sinusoidal values over
time, leading to sinusoidal trajectory and pitch angle. The
graphs show that despite some variability, the estimations are
on average very close to the actual values, even in a case where
both pitch angle and pitch rate are nonzero.

To better characterize the estimation, a set of simple exper-
iments are run. Fig. 5 compares the estimated altitude to the
true altitude when the agent performs a level flight (a flight at
constant altitude, i.e. vy = 0) with a constant forward velocity
and a null pitch angle. The mean of the estimations stay
within 1% of the true value up to an altitude of 1.5 (m). The
variability tends to increase with the altitude. This is due to
the fact that when the microflyer is higher, the sampling points
of neighboring pixels are separated by a greater distance,
therefore reducing the precision of the interpolation.

In the next set of experiments, the agent still performs a
level flight, but at a constant, nonzero pitch angle. Fig. 6 shows
that the pitch angle is, on average, estimated within 10% of the
true value, up to angles of ±20 (deg). Moreover, Fig. 7 shows
that the average altitude estimation is not biased by the pitch
angle. This is an interesting result showing that this method
is capable of a correct estimation of altitude even when the
airplane has a relatively large pitch angle, unlike in previous
studies [12]–[14]. It must be noted, however, that both altitude
and pitch estimations suffer from a slight increase in variability
at high angles. This, again, is due to the fact that at high pitch
values, some pixels are sampling the ground far in front of (or
behind for negative pitch angles) the agent, leading to greater
separation of sampling points and reduced precision of the
interpolation.

In previous studies [12]–[14], OF generated by pitch rate
was disturbing ALC even more than static pitch angle. Fig. 8
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Fig. 5. Estimated altitude vs. true altitude, when the agent performs level
flights at various altitudes. The velocity vx is equal to 1.5 (m/s). The pitch
was set to zero. Each data point corresponds to 200 estimations on a single
level flight. The mean and the standard deviation of the estimation are shown.
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Fig. 6. Estimated pitch vs. true pitch, when the agent performs level flights
with various pitch angles. The velocity vx is equal to 1.5 (m/s). The altitude
is fixed to 1 (m). Each data point corresponds to 200 estimations on a single
level flight. The mean and the standard deviation of the estimation are shown.

shows that with our method, altitude estimation is not biased
by nonzero pitch rate, remaining on average well below a 1%
error within ±20 (deg/s). The variability of the measurement
is not affected either. As an example, by not compensating
for a pitch rate of 20 (deg/s) an OF detector would see, in
similar conditions, an augmentation of the OF in the order
of 25%, leading to an altitude estimation 20% below the true
value. Such a bias makes altitude control intrinsically unstable,
because an unaware controller would further increase the pitch
to catch up with altitude, leading to a positive feedback loop.

To summarize, these results show that the estimation of
altitude using the method we propose does not suffer from
significant biases, even in the cases where the agent has
nonzero pitch angle and pitch rate. Of course, there is some
variability in the estimation since the first-order interpolation
is not exact, but it is easy to cope with this problem using
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Fig. 7. Estimated altitude vs. true pitch, when the agent performs level flights
with various pitch angles. The velocity vx is equal to 1.5 (m/s). The altitude
is fixed to 1 (m). Each data point corresponds to 200 estimations on a single
level flight. The mean and the standard deviation of the estimation are shown.
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Fig. 8. Estimated altitude vs. pitch rate, when the agent performs level flights
with various pitch rates. The velocity vx is equal to 1.5 (m/s). The altitude
is fixed to 1 (m) and the pitch angle kept in the range [−20; 20]. Each data
point corresponds to 200 estimations on a single level flight and the error bars
show the standard deviation on the measurements.

temporal low-pass filtering on the estimation signal. Moreover,
the blurring due to defocused optics could help to cut the
apparent high frequencies seen by the pixels pointing far in
front or behind the microflyer4.

V. DISCUSSION AND FUTURE WORK

We have demonstrated that it is possible to reliably estimate
altitude and pitch of an microflyer using the raw data provided
by simple vision, inertial and airspeed sensors that have
already been embedded in a 10-gram indoor flying robot. This
is achieved without any distance sensors or IMUs that are
generaly too heavy and consume too much power to be of
practical use on such platforms.

4The pixels pointing far in front of the plane sample the ground at a greater
distance from each other. The ground texture has then a comparatively higher
frequency.

Of course, several limitations need to be overcome to
actually use this technique to control the altitude of a real
robot. For this initial study, we simplified the model in ways
that are not practical for the real microflyer. First, the airplane
is assumed to have a null bank at all times, which is obviously
not the case in reality. To cope with this problem, the model
could be extended to three dimensions, considering not only
the pitch angle and rate, but also the roll angle and rate.
This would require a vision system equipped with a 2D
sensor. Recent technological progresses make us confident that
it will soon be possible to embed 2D vision systems in a
10-gram microflyer (VGA camera modules that weight less
than 0.5 (g) are already commercially available). Alternatively,
the controller could be made to estimate altitude only when
the microflyer is known to have no roll angle and rate. For
instance, in [7], the airplane is forced into straight trajectories
during which obstacles are detected and avoidance takes the
form of a short, open-loop saccade. A similar approach could
be used where ATC would be active only during straight flight.

The used camera model is also too simple to faithfully
represent a real vision system. In this model, pixels sample the
ground texture at the intersection of their looking direction. In
a real camera, the value of each pixel is the convolution of
the image with a kernel and corresponds to a finite, nonzero
field of view, especially when the optics are defocused to cut
disturbing high frequencies. For insect eyes, this kernel has
been shown to be approximately gaussian [17]. In the future,
we will extend the model to take this property into account.
This should allow us to reduce the requirements for the ground
texture and eventually assess the method with real images by
means of, for example, an actuated rotating arm or directly
with the MC1 along with a tracking system.

The most important limitation is the required computational
power. Each estimation requires the minimization of a rather
complicated nonlinear function of two variables. This cannot
be practically implemented on the 8-bit microcontroller em-
bedded in the MC1. A way of simplifying this computation
must be found. A possibility that we will investigate in the
future is the use of neural networks that would be trained of-
fline using learning or genetic algorithms. This could be made
possible by feeding to the network higher level primitives
inspired by the various terms found in (5). An added advantage
of this approach would be that it could be extended to directly
handle the control of the microflyer altitude without explicitly
evaluating it, using the information that we demonstrated to
be present in the sensory signals.

A clear advantage of the method we demonstrated is that
it does not require any preliminary OF computation, thus
avoiding the need to choose a particular estimation method
among those available (Elementary Motion Detectors [18],
image-interpolation techniques [15], or others [19], [20]).
Also, there is no need to select a particular direction for the OF
detectors [12]–[14] or to use matched filters [6]. The geometry
of the vision system (i.e. the pixel looking directions) is
automatically taken into account by the model and used for
the estimation. This allows for a reliable estimation even with



nonzero pitch angle or pitch rate, which is a clear improvement
compared to previous studies.
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