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Abstract. This article presents the first results of a project in under-
water modular robotics, called Neubots. The goals of the projects are to
explore, following Von Neumann’s ideas, potential mechanisms underly-
ing self-organization and self-replication. We briefly explain the design
features of the module units. We then present simulation results of the
artificial co-evolution of body structures and neural controllers for lo-
comotion. The neural controllers are inspired from the central pattern
generators underlying locomotion in vertebrate animals. They are com-
posed of multiple neural oscillators which are connected together by a
specific type of coupling called synaptic spreading. The co-evolution of
body and controller leads to interesting robots capable of efficient swim-
ming. Interesting features of the neural controllers include the possibility
to modulate the speed of locomotion by varying simple input signals, the
robustness against perturbations, and the distributed nature of the con-
trollers which makes them well suited for modular robotics.

1 Introduction

This article presents an adaptive scheme for underwater navigation of modu-
lar robots based on the artificial co-evolution of body structures and neural
controllers for locomotion. The modular robots used in this paper are part of
a long-term project [1] aimed at conceiving robots capable of self-construction
and self-reproduction, as first proposed by John von Neumann. Therefore, we
call such robots Neubots from von NEUmann roBOTS, which also means New
Robots in German.

The neural controllers studied in this paper are central pattern generators
(CPGs), which are networks capable of producing coordinated patterns of rhyth-
mic activity while being modulated by simple non-oscillatory signals. Our CPGs
represent an interesting framework for modular robotics because of (1) their dis-
tributed nature, (2) the locality of their interactions, (3) their robustness against
perturbations, and (4) their ability of coordinating multiple degrees of freedom
while being modulated by simple input signals.

In this article, the controllers are designed incrementally, with first the design
of a neural oscillator which serves as the building block for the complete CPGs.



In a second stage complete CPGs are co-evolved with the body structure. Dur-
ing this second stage, the neural oscillators embedded into each robot unit are
coupled to oscillators in neighboring units using synaptic spreading, which corre-
sponds to projecting connections between two types of neurons to the same type
of neurons in neighbor neural oscillators. This type of intercoupling is well-suited
for modular robotics because of its locality and because it can be described in
fewer parameters than an all-to-all coupling between oscillators.

Neubots and related modular robots More than 50 years ago, John von
Neumann investigated the possibility of designing physical robots that can self-
assemble and self-reproduce. He arrived to the conclusion that such robots should
be composed of a dozen different types of simple modules produced in hundreds
of thousands of copies [3]. Von Neumann also argued that the control system of
such modules should be composed of some sort of McCulloch-Pitts neurons [4].
However, von Neumann abandoned this line of research because of technological
limitations of that time and concentrated on the computational aspects of such
systems, which eventually resulted on the birth of cellular automata. We think
that today’s technology and science of complex self-organizing systems is ripe
for the realization of physical self-assembling and self-reproducing robots. In the
Neubots project, which is described more extensively elsewhere [1], we continue
from where von Neumann left and redefine some of his intuitions in light of
recent scientific and technological advancements.

The Neubot project rests on three main principles: 1) an heterogeneous and
large pool of simple and specialized modules that can be combined in various
ways to form a multicellular artificial organism; 2) a set of mechatronic and con-
trol mechanisms that allows the active recruitment and release of modules by the
growing and self-reproducing organism; 3) a process of intrinsic and open-ended
evolution of the organism mediated by its cells (modules), which possess the
entire genome of the organism. In order to simplify the recruitment and release
of modules, we conceived the early prototypes as underwater units. In this paper
we investigate candidate solutions for simple navigation of the Neubot modules
and we focus our investigation only on one specific module, which operates as
a joint. The modules are made of faceted hull with 6 actuators (Figure 1). The
connectors are based on a magnetic system composed of one permanent mag-
net and three yokes. A motor allows switching connectors between attractive,
repulsive, and neutral states. Physical prototypes of the module have been con-
structed and tested [2], but only simulation experiments will be presented in this
article.

Neubots belong to the larger family of self-organizing modular robots. In
particular, the Neubot modules described here are similar to the M-Tran and
Hydron robotic systems. The M-Tran system is composed of several identical
modules that can connect to each other by means of active magnetic surface
[6]. Robots made of such components can autonomously transform themselves
into different shapes and use the joints to walk. However, the detaching process
requires a lot of energy and is rather slow. The Hydron robotic system instead is
composed of several identical waterproof and spherical units that are suspended



Fig. 1. Left: Schematic view of a Neubot’s module and its actuation. Right: Schematic
view of the connector.

in water and can move by means of water jets. These robots are currently used
for exploring principles of self-organization [7], but cannot connect to each other.
The Neubot modules used here are underwater units that can connect to each
other by means of active magnets that require considerably less energy to detach
and attach. Furthermore, the contact interface of the Neubot modules can rotate,
thus permitting a complex articulation of the entire system.

Adaptive Locomotion for Modular Robots A promising way to control
locomotion is provided by the Central Pattern Generators (CPGs) observed in
invertebrate and vertebrate animals [10].

CPGs have been used in the modular M-Tran system described above [11, 12],
in ”monolithic” robots [13], and in simulated robots [14]. CPGs are interesting for
modular robotics because of their distributed nature and their ability to generate
efficient locomotion for complex multi-DOF structures while being modulated by
simple control signals. One of the novelties of our approach is the use of neural
oscillators connected by synaptic spreading (see next sections). The approach
is well suited for a distributed implementation and for the optimization by a
genetic algorithm.

In this paper we will co-evolve the body structures and the locomotion con-
trollers of the modular robots in a three-dimensional simulation. Other exam-
ples of co-evolution include Karl Sims seminal work [8], Framsticks, a three-
dimensional simulation project which offers various genotypes and fitness func-
tions, to co-evolve morphology and control of virtual stick creatures [15], the
work by Pollack and colleagues [16], and other interesting projects [17]. Our ap-
proach differs from previous work mainly in the type of neural controllers that
we use (see above).

2 Co-evolving structures and controllers for locomotion

2.1 Neuronal simulation of the CPG, evolution of oscillators

The CPG models are designed incrementally. In a first stage, we evolve a canoni-
cal neural oscillator, which produces stable oscillations and whose frequency can
be adapted by simple tonic signals. In a second stage, we co-evolve the body
structure and the neural controller of multi-unit robots.



As in [14], neural oscillators are evolved from neural networks which have
a left-right symmetry (cf Fig. 2) with three neurons of different ”type” (A, B
and C) and one motoneuron (M) on each side. Each neuron receives a tonic (i.e.
non-oscillating) input BS representing the driving signals produced by the brain
stem in vertebrates.

Neuron model The neuron units are modeled as leaky integrators. According to
this model, the mean membrane potential mi and the short-term average firing
frequency xi of a neuron i are governed by the equations:

τi
dmi

dt = −mi +
∑

j wi,jxj and xi = (1 + e−(mi+bi))−1

where bi is the neuron’s bias, τi is a time constant associated with the passive
properties of the neuron’s membrane, and wi,j is the synaptic weight of a con-
nection from neuron j to neuron i. Both the neuron parameters and the synaptic
weights are evolved.

Genetic Algorithm GALib [20] was used for the real-number genetic algorithm
(GA). The GA begins with a population of N = 100 randomly created individ-
uals. At each generation, crossover, mutation and pruning operators are applied
for creating C = 50 new children. For parent selection we used a rank-based
roulette wheel method which chooses a parent with a probability which is in-
versely proportional to its rank. The crossover operator takes two parents and
for each position exchanges the genes at that position with probability PC = 0.5.
Mutation changes, with a probability PM = 0.4, the real value of a gene accord-
ing to a Gaussian distribution (SD = 1.0) around the old value. The pruning
operator is specific to the neural network optimization and prunes a connection
(probability PP = 0.05) by setting the gene corresponding to the weight of this
connection to zero. The children are then evaluated and, as the population size is
fixed, the C = 50 worst individuals are rejected from the total population (par-
ents and children). The GA is stopped when the difference between the current
best-of-generation score and the one 10 generations back in time is less than 1
percent.

Encoding The parameters of a neural network are encoded into chromosomes
which are fixed-length strings of real values. The genome encodes both the neural
parameters of each neuron type —the time constant (τ), the bias (β), and the
sign (excitatory (+) or inhibitory (−))— and the connectivity of the network
— the synaptic weights of the outwards connections from itself to other neurons
(including self-connections) and the synaptic weights from the tonic drive (BS,
left and right). The motoneurons M are forced to be excitatory and do not have
connections to other neurons. The total number of genes is 43.

Fitness Function The fitness function is defined to reward solutions that (1)
oscillate regularly with left and right motoneurons out-of-phase, (2) have as
few connections as possible, and (3) have a frequency of oscillation that can be
varied monotonically with the level of BS. Mathematically, the fitness function
is a product of six factors:

fit = nb connect · oscil · regularity · oscil phase · freq range · ampl



Fig. 2. Left: The neuronal oscillator. A black point indicates an inhibitory connection,
a fork indicates an excitatory connection. The neurons of type B are not connected to
any other neuron and can therefore be removed from the network. Right: Evolution
of the frequency and amplitude when varying the input drive (BS). The vertical lines
determine the region in which the amplitude and frequency increase monotonically.

where nb connect corresponds to the inverse of the number of connections
from a neuron, oscil to the number of optima (in order to favor oscillating net-
works), regularity to the inverse of the Standard Deviation of periods, oscil phase
to |θoscil − 0.5| with θoscil the phase between the left and right motoneuron,
freq range to max freq/min freq with min freq ≥ 0.8 and finally ampl cor-
responds to the mean of amplitude. Each factor varies linearly between, and is
bounded by, 0.05 and 1.0.

The network is evaluated during 6 seconds after a stabilization time of 6
seconds. The original input (BS) is set arbitrary to 1.0, but the network is
evaluated multiple times with small BS increments and decrements in order to
evaluate the capacity of the network to modify the amplitude and the frequency
monotonically with the input.

Results Fifteen runs were carried out until convergence (approximately 1000
generations per run) with populations of 100 randomly initialized individuals.
All runs converged to networks capable of generating regular oscillations whose
frequency can be modulated using the tonic drive (BS). One of them, the best,
had the same topology as the network found in [14], but with small differences
on the weights and thus on the neural activity.

Since the second design step is to evolve the connections between multiple
neural oscillators by projecting internal connections to neighboring oscillators,
it is important that the number of internal connections (from a neuron of type
A, B or C to neurons of type A, B, C or M) is as small as possible. We therefore
chose another one, with a smaller range of frequencies but with only 8 internal
connections instead of 14. Figure 2 shows the topology of the chosen evolved
network. The level of tonic drive (BS) can be varied between 0.2 and 1.13 (the
frequency and the amplitude increase monotonically in this range of input), and
a range of frequencies from 0.8 to 3.3 Hz can thus be covered. The amplitude
then ranges from 0 to 0.21. Each neural oscillator will drive one motor in the
mechanical structure by using the difference between left and right motoneurons
(ML and MR)): i.e. the desired angle (in radians) is defined as θ = γ(ML −
MR) + δ where δ is an angular offset and γ = 5.



2.2 Co-evolution of body and brain

In this section, the structure of simulated multi-unit robots and their locomotion
controllers are co-evolved. The locomotion controllers are constructed out of
the neural oscillators presented in the previous section, with one oscillator per
robotic module. The coupling between the different neural oscillators is based on
synaptic spreading similar to that used to model the lamprey’s CPG in [5, 9, 14].
The idea is to project the connection between two neurons within one oscillator
to corresponding neurons in neighboring oscillators. The synaptic spreading can
be to the nearest neighbor oscillator only or even further.

An interesting property of this type of coupling is that it is specified by
relatively few parameters compared to a scheme using all possible connections
between different neural oscillators. Synaptic spreading only requires for each
connection within one oscillator integers determining the extents of the projec-
tions (i.e. to first, second, third, ... neighbors).

Genetic Algorithm and Encoding The genetic algorithm is the same as the
one used for the neural oscillator but with several different parameters: PC =
0.2;PM = 0.05;PP = 0.0, and a probability of structural mutation Pstruct =
0.025 is added.

The genotype is a tree (no cycle allowed) as in [8] and [18], each node rep-
resenting a module (see fig. 3 for details). It is thus a direct encoding which
strongly correlates the phenotype and the genotypes. The simulation and evolu-
tion environment uses the genotype as the internal representation of the robot.
In addition, a chromosome of real numbers, which we will call High Level Pa-
rameters (HLP), encodes the left and right input drive (BS). These genes specify
the best BS in order to achieve the fastest locomotion. Crossover is simply done
by exchanging two randomly chosen subtrees of the parents.

Fitness Function The individuals are tested during 30 simulated seconds in a
simulated 3D world. The simulation is a physics-based simulator (articulated
rigid body dynamics with a simplified hydrodynamics model) built using ODE
[19]. Throughout the evaluation period, the robot must cover as long a distance as
possible. As the simple measure of the straight distance from the initial location
to the final location seems not to be sufficient because of the risk to return
to starting point after 30 seconds, the fitness function is based on the covered
distance plus the cumulated distance:
f = α · ‖p(N)−p(1)‖+β ·

∑N−1
t=1 ‖p(t + 1)−p(t)‖ where p(t) is the tth point

sampled on the trajectory of the robot, N is the total number of recorded points,
and α = 1 and β = 0.3 are coefficients that modulate the weights of the absolute
and integrated distances.

2.3 Results

Two sets of 5 runs each, called A and B (view table 1), were carried out until
convergence with a population of 100 robots. The first generations of the runs A
and B start with randomly initialized populations of 5-unit robots, and 10-unit



Fig. 3. Genome of a robot: It is designed as a tree with a node for each module of the
robot. As we use a tree, each module has one and only one face which is actuated (the
face attached to the parent) and therefore only one neural oscillator. Thus each node
contains a chromosome of 55 genes containing the following information: positions of
the children (5 binary genes whether or not a child module is attached to one of the
5 faces), angular offset of the joint between the module and its parent (1 real number
gene), one binary gene indicating if the motor of the module must be actuated, and 48
integer genes encoding the synaptic spreading, i.e. coding the extent of the projections
in the six possible directions for each oscillator.

robots, respectively. Of course, the size of the robots can then be increased or
decreased during the evolution. All runs converged to interesting robot structures
capable of progressing in water (Table 1). The minimal number of generations
required for the convergence is 128 (B5) and the average number of generation
is 860.

Description of the most efficient robots The only two robots (A5 and B3) that are
identical among all runs are, interestingly, also the most efficient, the simplest
and the smallest of all. As they are the only two robots that have the same
shape and as they are the most efficient, they probably correspond to a good
optimum in the search space. They consist of 5 modules forming two limbs of
unequal sizes (fig. 4 top left). All the oscillators are activated although this can
appear useless since only the joint number 2 is really generating thrust. However,
all contribute to the general behavior, and the fact that the limbs oscillate on
themselves reduces their rubbing, and helps the locomotion.

Diversity Except for the best solutions of runs A5 and B3 mentioned above,
all runs evolved to different types of robots. The number of parameters to be
optimized and their relatively large intervals of values, make the search space
very large. With the ten runs presented here, we thus explore only a small part
of the search space. That, and the topology of the search space which might have
many local optima, probably explains the diversity of the results.

Evolution of the number of modules The five runs of the set A did not add
or remove large number of modules to or from robots compared to the initial
populations and to a lesser extent it is also the case for runs of the set B. Simple
and effective solutions are quickly found by the GA and the addition or the
withdrawal of modules is almost never done. It is primarily the neural network



Table 1. Table of the ten runs. Velocity means : Average velocity on the XY plane of
the best robot in [m/min] calculated during 15 seconds after 15 seconds for stabilization.
INM means Initial Number of Modules and specifies the size in terms of modules of
the robots of the first generation. FNM means Final Number of Modules and is the
final size in terms of modules of the evolved robots.

Set ID INM FNM Fitness Max. Fitness Av. Velocity

A

1 5 6 4.81 4.76 9.08
2 5 6 4.08 3.98 6.8
3 5 5 5.32 5.22 10.03
4 5 6 4.8 4.71 9.42
5 5 5 6.3 6.23 10.58

B

1 10 8 4.6 4.53 9.13
2 10 9 4.63 4.54 9.14
3 10 5 5.46 5.41 10.50
4 10 9 3 2.99 6.12
5 10 8 2.25 2.2 4.79

which is optimized. This ”inertia” of the size is probably explained by the fact
that adding or removing a module constitutes a significant perturbation of both
the dynamics of the body and of the global neural network.

Symmetry In nature, the majority of animals have an axis of symmetry. For an
efficient, controllable and rectilinear locomotion it seems to be necessary. How-
ever, we made the choice not to force this symmetry and to see if it appeared
spontaneously. That was not the case here maybe because for having and keep-
ing symmetrical structures two mutations must appear at the same time and
symmetrically which is unlikely (see [21] for a related study). To go straight in
spite of this handicap, all robots follow spiral trajectories turning on themselves.
As the center of this spiral is a line, the robots go as straight as possible with
respect to the fitness function.

Evolution of the BS The values of the left and right BS are evolved with the
robots and can be varied between 0.2 and 1.13 (cf the neural oscillator). Half
of the robots converge to the maximum value for the two inputs. Indeed, to
swim as fast as possible it seems to be important to have high frequencies and
amplitudes of the movements. The others robots have different values for the
left and right BS.

In vertebrate animals, it is known that increasing the tonic drive from the
brainstem increases the speed of locomotion. We tested if the robots which we
evolved reacted in same the manner. We noted that speed indeed increased or
decreased according to BS (cf Fig 4 top right) as awaited, although that must
be moderated because the trajectory also changes, i.e. if the robot goes straight
with maximum and symmetrical input values, it happens that the robot does
not swim straight anymore when we decrease symmetrically.

Resistance to perturbations We tested the robustness of our robots to perturba-
tions by perturbing the membrane potentials of all neurons and setting them to
random values. The neural activity and the speed of the robot B2 is shown on



Fig. 4. Top left: Robot evolved by the run A5 (same shape as B3). Top middle:
Neural activity of the robot A5. Each curve corresponds to the difference between left
and right motoneuron of one oscillator. The four oscillators are synchronized and appear
to be able to generate a lot of different signals. Top right: Influence of the tonic input
(BS) on the velocity of the robot A5. The vertical lines determine the region in which
the velocity increases monotonically with the BS. Bottom left: Neural activity of the
robot B2. Each curve corresponds to the difference between left and right motoneuron
of one oscillator. At 3.75 seconds, a random perturbation is applied to membrane
potentials. Bottom right: Evolution of the speed of the center of mass of the robot.
The oscillations are due to the periodic flutters of the limbs.

figure 4 on the bottom. The neural activity rapidly recovers from the perturba-
tion and returns to steady state after 2 oscillations. The velocity also recovers
although it takes a little bit more because the robot has to struggle against
the water inertia. This robustness against perturbations is one of the interesting
features of using CPG models for locomotion.

3 Conclusion

This article presented first results of a project in underwater modular robotics,
called Neubots. Body structures and neural controllers based on central pattern
generators were co-evolved for efficient underwater locomotion. The main results
are the design of neural oscillators linked together by synaptic spreading capable
of producing robust signals for locomotion. The controllers can adjust the speed
of locomotion by the modulation of simple signals and quickly recover from
random perturbations in the neural activity.
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