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Abstract

In this paper, we describe the artificial evolution of adaptive neural controllers for an
outdoor mobile robot equipped with a mobile camera. The robot can dynamically
select the gazing direction by moving the body and/or the camera. The neural con-
trol system, which maps visual information to motor commands, is evolved online
by means of a genetic algorithm, but the synaptic connections (receptive fields) from
visual photoreceptors to internal neurons can also be modified by Hebbian plasticity
while the robot moves in the environment. We show that robots evolved in physics-
based simulations with Hebbian visual plasticity display more robust adaptive behav-
ior when transferred to real outdoor environments as compared to robots evolved
without visual plasticity. We also show that the formation of visual receptive fields
is significantly and consistently affected by active vision as compared to the formation
of receptive fields with grid sample images in the environment of the robot. Finally, we
show that the interplay between active vision and receptive field formation amounts to
the selection and exploitation of a small and constant subset of visual features available
to the robot.
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1 Introduction

Biological vision systems filter, compress, and organize the large amount of optical
stimulation as electrical signals proceed from the retina towards deeper structures
of the brain. This data reduction is achieved by a layered, distributed, and topolog-
ically organized set of neurons that individually respond to specific aspects of the
optical stimulus. In mammals, for example, neurons in the early stage of the visual
cortex selectively respond to particular features of the environment, such as oriented
edges (Hubel and Wiesel, 1968), that are linear combinations of the pattern of retinal
activations. Neurons in later stages of the visual cortex respond to more complex
patterns that also take into account the direction of movement of the stimulus and
cannot easily be reduced to a linear combination of lower-level features (Wandell, 1995).

The features that trigger the response of a neuron represent the receptive field of
that neuron. The receptive fields of cortical visual neurons are not entirely genetically
determined, but develop during the first weeks of the newborn baby and there is
evidence that this process may already start before birth. Studies of newborn kitten
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raised in boxes with only vertical texture show that these animals do not develop as
many receptive fields for horizontal features as kitten raised in normal environments
(Blakemore and Cooper, 1970) and therefore see the world in a different way. The
development of visual receptive fields occurs through Hebbian synaptic plasticity, an
adaptive process based on the degree of correlated activity of pre- and post-synaptic
neurons (Singer, 1987, e.g.,). This amounts to a bottom-up, data-driven, and self-
organizing process that captures the statistics of the environment where the animal
lives. Simple computational models, in the form of feed-forward neural networks
with Hebbian learning, develop receptive fields that resemble those found in the early
stages of the mammalian visual cortex when exposed to input signals taken from
uniform contrast distributions (Linsker, 1988) or from large sets of natural images
(Hancock et al., 1992).

The ability to become sensitive only to a subset of all the possible features that
could be derived from the huge array of optical stimulation allows brains with limited
computational and storage resources to exploit at best their information processing ca-
pacity. Since the receptive fields are not entirely genetically determined, but depend on
the visual stimulation to which the animal is exposed during its life, the developmen-
tal process plays an adaptive role for the animal. Although the details of the features
accounted for by the receptive fields, and their role in perception, is still a topic of de-
bate (Field, 1994, e.g.,), it is generally accepted that animals and models of early-vision
stages extract the dominant statistical features of their visual environment.

1.1 The Role of Active Behavior

Within that perspective, the visual system is a passive, albeit plastic, device shaped by
the environment. However, all behavioral systems, biological and artificial, are capable
of actively selecting—at least in part—their own sensory stimulation. They do so by
moving in the environment and exploring the visual field by means of head and eye
movements. The sequential and interactive process of selecting and analyzing parts
of a visual scene is known as active vision (Bajcsy, 1985, 1988; Ballard, 1991). Active
vision can simplify the computation involved in vision processing by selecting only
characteristics of the visual scene that are relevant for the task to be solved (Yarbus,
1967; Aloimonos, 1993), thus reducing the information load on the neural system.
Indeed, a deeper understanding of the visual cortex can be gained by correlating neu-
rophysiological measurements with the optical stimulation recorded from a camera
placed on the head of a freely moving animal in its own natural environment (Betsch
et al., 2004).

Nonetheless, the interaction between receptive field formation and active vision
has been largely neglected in the biological and computational literature. This void
most likely stems on the one hand from the difficulty of measuring neural dynamics
in freely behaving animals and on the other hand from the fact that computational
models are often designed to operate on predefined input pattern distributions (Parisi
et al., 1990). Mobile robots are therefore an ideal tool to investigate adaptive processes
that take place in a behavioral context because such robots can autonomously select
the sensory stimulation by moving in the environment (Pfeifer and Scheier, 1999; Nolfi
and Floreano, 2000).

In recent work (Floreano et al., 2004), we investigated the co-development of active
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vision and receptive fields within the same time scale using behavioral robotic systems
equipped with a primitive retinal system and deliberately simple neural architectures.
The input layer of the neural network consisted of an array of visual neurons spanning
a rudimentary rectangular retina. The output layer was divided into two parts, one
controlling the movement of the retina on the visual field and the other the behavior
of the robotic system. Therefore, the network had to select the features necessary to
perform a given task and at the same time control the vision system. We deliberately
did not provide any hidden units to the neural network in order to keep its computing
and representational abilities as simple as possible. The synaptic strengths of the
network were encoded in a binary string and evolved with a genetic algorithm while
the robotic system was free to move in the environment. In a first set of experiments,
we showed that sensitivity to very simple linear features is co-evolved with, and
exploited by, active vision to perform size and position invariant shape discrimination.
We also showed that such discrimination problem is very difficult for an architecturally
similar neural system without active behavior. In a second set of experiments, we
applied the same co-evolutionary method and architecture for driving a simulated car
over mountain roads and showed that active vision is exploited to locate and fixate
simple road features that are used to control the car steering and acceleration. In a
third set of experiments, we applied once again the same co-evolutionary method and
architecture to an autonomous robot equipped with a pan/tilt camera that was asked
to navigate in an arena located in an office environment. Evolved neural controllers
exploited active vision and simple features to direct their gaze at invariant features of
the environment and perform collision-free navigation.

In this article, we go one step further and investigate the ontogenetic development!
of receptive fields in an evolutionary mobile robot with active vision. In contrast to
our previous work where synaptic weights for both receptive field and behavior were
genetically encoded and evolved on the same time scale, here the synaptic weights for
receptive fields develop during the life of the individual. The synaptic weights of the
neural network are genetically encoded and evolved, but the synaptic weights from
visual photoreceptors to internal neurons (receptive fields) can also be modified by
Hebbian synaptic plasticity while the robot moves in the environment. The Hebbian
mechanism and architecture is one of those used in the literature for modeling recep-
tive field formation (Hancock et al.,, 1992). In these experiments, behavioral abilities
and receptive fields develop on two different temporal scales, phylogenetic and on-
togenetic respectively. The evolutionary experiments are carried out in physics-based
simulation and the evolved controllers are tested on the physical robot in an outdoor
environment. We show that robots evolved in simulation with Hebbian visual plasticity
display more robust adaptive behavior when transferred to real outdoor environments
as compared to robots evolved without visual plasticity. We also show that the de-
velopment of visual receptive fields is significantly and consistently affected by active
vision as compared to the development of receptive fields with grid sample images in
the environment of the robot. Finally, we show that the interplay between active vision
and receptive field formation amounts to the selection and exploitation of a small and
constant subset of visual features available to the robot.
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Figure 1: The Koala mobile robot with pan/tilt camera.

2 Method

We use a Koala (K-Team S.A.) wheeled robot equipped with a pan/tilt camera
(Sony EVI-D31) and infrared proximity sensors distributed around the body of the
robot (Figure 1). Infrared sensors are used only by the operating system to detect
collisions and reposition the robot between trials; their activation values are not
given to the neural controller. The robot has three wheels on each side, but only the
central wheel (which is slightly lower) is motorized (the remaining two wheels rotate
passively using a system of gears). The wheels have rotation encoders that are used
for reconstructing the trajectories of the robot during behavioral analysis. The pan
and tilt angles of the camera are independently controlled by two motors. The robot
is equipped with an onboard computer (PC-104), hard disk, and operating system
(Linux). The cables are used only for powering the robot through rotating contacts and
to download /upload data through Ethernet at the beginning and end of an experiment.

The neural network has a feed-forward architecture with evolvable thresholds
and discrete-time, fully-recurrent connections at the output layer (Figure 2). A set
of visual neurons, arranged on a five by five grid, with non-overlapping receptive
fields receive information about the grey level of the corresponding pixels in the image
provided by a camera on the robot. The receptive field of each neuron covers a square
area of 48 by 48 pixels in the image. We can think of the total area spanned by all
receptive fields (240 by 240 pixels) as the surface of an artificial retina. The activation of
a visual neuron, scaled between 0 and 1, is given by the average grey level of all pixels
spanned by its own receptive field or by the grey level of a single pixel located within
the receptive field (Figure 3). The choice between these two activation methods can
be dynamically changed by one output neuron at each time step. Two proprioceptive
neurons provide information about the measured horizontal (pan) and vertical (tilt)
angles of the camera. These values are in the interval [-100, 100] and [—25, 25] degrees

!n this paper we will use the term ontogenetic development to indicate modifications during lifetime of an
individual.
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Figure 2: The architecture is composed of a grid of visual neurons with non-
overlapping receptive fields whose activation is given by the grey level of the corre-
sponding pixels in the image; a set of proprioceptive neurons that provide information
about the movement of the camera with respect to the chassis of the robot; a set of
output neurons that determine at each sensory motor cycle the filtering used by visual
neurons, the new pan and tilt speeds of the camera, and the rotational speeds of the
left and right wheels of the robot; a set of memory units whose outgoing connection
strengths are equivalent to recurrent connections among output units; and a bias neu-
ron whose outgoing connection weights represent the thresholds of the output neurons.
Dashed connection lines can be modified by Hebbian learning in some experimental
conditions.

for pan and tilt, respectively. Each value is scaled in the interval [0, 1] so that activation
0.5 corresponds to 0 degrees (camera pointing forward parallel to the floor). Memory
input units store the values of the output neurons at the previous sensory motor cycle
step and send them back to the output units through a set of connections, which
effectively act as recurrent connections among output units (Elman, 1990). The bias
unit has a constant value of —1 and its outgoing connections represent the adaptive
thresholds of output neurons (Hertz et al., 1991, ch. 5).

Hidden and output neurons use the sigmoid activation function f(z) =
1/(1+ exp(—=x)), where x is the weighted sum of inputs to the neuron. Output neurons
encode the behavior of the active vision system and of the robot at each sensory motor
cycle. One neuron determines the filtering method used to activate visual neurons
and two neurons control the movement of the camera, encoded as angles relative to
the current position. The remaining two neurons encode the direction and rotational
speeds of the left and right motored wheels of the robot. Activation values above—and
below—a0.5 stand for forward—and backward—rotational speeds, respectively.
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Figure 3: Left: Snapshot from the robot camera. Center: Pixel average. Right: Pixel
sample.

The connection strengths between visual neurons and hidden neurons are either
genetically determined (“No learning” condition) or they can be modified by means
of a Hebbian learning rule (“Learning” condition), which has been shown to produce
connection strengths that approximate the eigenvectors corresponding to the princi-
pal eigenvalues of the correlation matrix of the input patterns (Sanger, 1989). In other
words, this learning rule implements an approximate Principal Component Analysis of
the input images (Jolliffe, 1986). The modification of connection strength Aw;; depends
solely on postsynaptic and presynaptic neuron activations y;, x;,

Aw; j = y; (xj - Z wkj?Jk) (1)
k=1

where k£ is a counter that points to postsynaptic neurons up to the neuron whose
weights are being considered.  The new connection strengths are given by
wt = w' + nAw}; where 0 < 7 < 1 is the learning rate, which in these experi-
ments starts at 1.0 and is halved every 80 sensory motor cycles. This learning rule has
been used in previous computational models of receptive field development (Hancock
et al., 1992) and is intended to capture a system-level property of visual plasticity, not
the precise way in which biological synaptic strengths are modified in the visual cortex.
Among the several available models of synaptic plasticity (Hinton and Sejnowski,
1999, for a review), we opted for this one because it can be applied online while the
robot moves in the environment and because it implements an approximate Principal
Component Analysis, which is a widely used technique for image compression.

The robotic system and neural network are updated at discrete time intervals of
300 ms. At each time interval, the following steps are performed: 1. the activations
of the visual and proprioceptive neurons are computed from the values provided by
the robot, the values of the memory units are set to the values of the output units at
the previous time step (or to zero if the individual starts its “life”); 2. the activations
of the hidden units are computed and normalized (in experimental conditions where
learning is enabled); 3. the activations of the output units are computed; 4. the wheels
of the robot are set at the corresponding rotational speed for 300 ms while the camera
is set to its new position; 5. in the experimental conditions where learning is enabled,
the connection weights from visual neurons to hidden neurons are modified using the
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current neuron activation values. In step 2 the activation of each hidden unit is nor-
malized to have the same magnitude in order to equalize the contributions of hidden
units to activations of the output units. The normalized output value of the kth hidden
neuron o}, is computed by:

s
o) =op x =,  k=1,2,34,5 )
Sk
where o, and s, denote the current output value of kth hidden neuron and the
standard deviation of the stored output values by the current time step, respectively.

The strengths of the synaptic connections are encoded in a binary string that repre-
sents the genotype of the individual. In experimental conditions where learning is en-
abled, the connections between visual neurons and hidden neurons are not genetically
encoded. In that case, they are randomly initialized in the range [—+/3/25, \/3/25] at
the beginning of the life of each individual. Genetically encoded connection strengths
can take values in the range [—4.0, 4.0] and are encoded on 5 bits. The genotype totals
325 bits (65 connections x 5 bits) in the learning condition and 950 bits (65 + 125 connec-
tions x 5 bits) in the no-learning condition. A population of 100 genomes is randomly
initialized by the computer and evolved for 20 generations. Each genome is decoded
into the corresponding neural network and tested for four trials during which its fitness
is computed. The best 20% individuals (those with highest fitness values) are repro-
duced, while the remaining 80% are discarded, by making an equal number of copies
so to create a new population of the same size. These new genomes are randomly
paired, crossed over with probability 0.1 per pair, and mutated with probability 0.01
per bit. Crossover consists in swapping genetic material between two strings around a
randomly chosen point. Mutation consists in toggling the value of a bit. Finally, a copy
of the best genome of the previous generation is inserted in the new population at the
place of a randomly chosen genome (elitism).

3 Experiments

-4 Botl oader - GiviLabs Simulations Inc: Vartex Toolkit (v2.0.1) [OpenGL [ GLUT] [=Tmfx]
T

Figure 4: Simulated and real environment.

Robots were evolved in physics-based simulation and tested both in simulated
and real outdoor environments (Figure 4). We simulated the robot and the environ-
ment using Vortex libraries, a commercially-available software package that models
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gravity, mass, friction, and collisions (http://www.cm-labs.com). Texture was
generated from pictures taken in the outdoor environment. However, even simulations
that include physical quantities and realistic textures as in this case, are quite different
from the corresponding physical world. Consequently, robots designed or evolved in
simulated environments do not operate properly when transferred to real environ-
ments. The reason for evolving robots in simulation and testing the best controllers in
the real environment was to assess the adaptive role of ontogenetic visual plasticity.

We have carried out two sets of evolutionary experiments (Figure 5) to investigate
whether ontogenetic development of receptive fields provides an adaptive advantage
in new environmental conditions—namely when transferred from a simulated to a
real outdoor environment—and to investigate the interactions between evolution and
learning. The evolutionary experiments are carried out in simulations and the best
evolved individuals are tested in the real environment. In the first condition (“No
learning”), which serves as a control condition, all synaptic connections are genetically
encoded and evolved without learning. In the second condition (“Learning”), learning
is enabled for the connections from visual neurons to hidden neurons which are not
genetically encoded, but initialized to small random values. Connection strengths
developed during learning are not transmitted to offspring.

The fitness function selected robots for their ability to move straight forward as
long as possible for the duration of the life of the individual. This is quantified by mea-
suring the amount of forward rotation of the two motorized wheels of the robot. Each
individual is decoded and tested for four trials, each trial lasting 400 sensory motor
cycles of 300 ms. A trial can be truncated earlier if the operating system detects an im-
minent collision with infrared distance sensors. The fitness function F(Sjef:, Sright) 1S
a function of the measured speeds of the left Si.; and right S;;41: Wheels:

1 E T |Sltft_St'ht|
F(Sieft, Srignt) = (Sape + Stigne)x (1 — | el _Trioht. ) (3)
ExT e=0 t=0 2 % Sma:n

f(Steft,Srigntst)

where Siesr and Spign: are in the range [-8, 8] cm/sec and f(Sieft, Sright,t) = 0 if
Sieft OF Sright is smaller than 0 (backward rotation); F is the number of trials (four
in this paper), 1" is the maximum number of sensory motor cycles per trial (400 in
these experiments), 7" is the observed number of sensory motor cycles (for example,
34 for a robot whose trial is truncated after 34 steps to prevent collision with a wall).
At the beginning of each trial the robot is relocated in the real outdoor environment
at a random position and orientation by means of a motor procedure during which
the robot moves forward and turns in a random direction for 10 seconds. In simula-
tion, position and orientation are instantly randomized. In the learning condition, the
synaptic weight values are re-initialized to random values at the beginning of each trial.

The results of the two experimental conditions, without learning and with
learning, do not show significant differences and reach comparable performance
levels (Figure 5). In both cases, evolved individuals perform large, collision-free paths
around the environment for the entire duration of a trial.

One way to observe the effects of receptive field development consists of freezing

8 Evolutionary Computation Volume x, Number x



Active Vision and Receptive Field Development

Learnin
07 _-carming

No learning

0.6 . 0.6
0.5 - 0.5
0.4 . 0.4}

03 03F

Fitness
Fitness

0.2 . 02

0.1 . 0.1

0 - 0F

01 0 2 4 6 8 10 12 14 16 18 20 01 0 ‘2 é‘t t"’ é 1‘0 1‘2 1‘4 1‘6 1‘8 20
Generations Generations

Figure 5: Population average (thin line) and best fitness (thick line) during evolution
in physics-based simulations for “No learning” and “Learning” conditions. Each data
point is the average of three evolutionary runs with different initializations of the pop-
ulation.

the receptive fields at different periods of life and measuring the corresponding
performance of individuals in the environment. We have carried out a series of such
tests in the simulated environment for all best evolved individuals with learning and
compared their performance to that of best evolved individuals without learning
(Figure 6). The initial random synaptic strengths (RandRF) of visual neurons do not
provide sufficient information to let the robot move around properly, but the final
connection strengths (FinRF) do provide the structure necessary for the rest of the
network to achieve a performance comparable to that of best evolved individuals
without learning. The absence of difference between performance measured with
well-formed receptive field and performance measured during the entire learning
phase (400 sensory motor cycles) indicates that learning does not produce a significant
cost for the individuals-see (Mayley, 1996) for a discussion of the cost of learning in
evolutionary individuals. The development of sufficiently good receptive fields is
very fast probably because the relative uniformity and predictability of the simulated
environment can be quickly captured by the Hebbian learning mechanism.

The advantage of receptive field development becomes evident when the best
evolved robots from simulation are tested in the real outdoor environment (Figure 7).
In that case, the performance of best individuals evolved without learning drops signif-
icantly (horizontal line in graph) whereas the performance of “Learning” individuals
with receptive fields that developed in the new environment (FinRF) is almost the same
as that measured in simulation tests (Figure 6, FinRF). The large difference between
performance with initial random receptive fields (RandRF) and final receptive fields
(FinRF), as well as the significant performance cost incurred during learning (Learn-
ing), is an indication of the discrepancies and novelties in the real environment that the
learning mechanism had to integrate.
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Test in Simulated Environment

RandRF  FinRF  Learning

Figure 6: Performance of best individuals evolved in the “Learning” condition (three
for each evolutionary condition) and tested each five times in the simulated environment
from different initial positions and orientations. The horizontal line represents the test
performance of the best evolved individuals evolved in the “No learning” condition.
Individuals are tested with random and fixed receptive fields (RandRF), with final and
fixed receptive fields (FinRF), and with learning enabled. The duration of the test is the
same as that used during evolution.

4 Behavioral analysis

Figure 8 plots the trajectories in the outdoor environment of the typical best individuals
evolved in the two evolutionary conditions. In order to discount trajectory adjust-
ments due to online development of the receptive fields in the “Learning” condition,
the synaptic weight values have been fixed while the trajectory was recorded. The
individual from the “No learning” condition cannot always avoid collision with the
environment. Instead, the trajectories of the individual from the “Learning” condition
change during its life. With initial random receptive fields, it performs straight
trajectories that, although taking it closer to obstacles, increase temporarily the fitness
score during evolution. When the receptive fields are not yet developed though, the
robot cannot avoid a collision with the wall. However, when the receptive fields are in
their final form, they support collision-free navigation in the outdoor environment.

In both experimental conditions, best evolved individuals tilt the camera towards
the floor where they can see the edge between the ground and the walls of the building.
Individuals evolved in the “Learning” condition display higher use of pan movements
of the camera than individuals evolved in the “No learning” condition (Figure 9). A
possible explanation for this difference is that “Learning” individuals become sensitive
to a smaller number of environmental features than “No learning” individuals, and
they use the camera more actively in order to track those features while they navigate
in the environment. We will come back to this hypothesis in the next section. Also, best
individuals evolved in the two experimental conditions converge on the use of pixel
average to activate input visual neurons.
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Figure 7: Performance of the best individuals evolved in the simulated environment
(three for each evolutionary condition) tested each five times in the real environment
from different initial positions and orientations. See legend of figure 6 for explanation
at column labels.

5 Receptive Field Development

In order to understand the effect of behavior on receptive field formation, we compared
the final receptive fields of evolved robots tested in the outdoor environment with the
receptive fields obtained by training visual neurons on a grid sample of all images
that the robot could possibly gather in the outdoor environment. Grid sample images
were collected by placing the robot in the center of the outdoor environment and
taking snapshots with the camera pointed at different directions, tilt, and time of the
day (Figure 10). We chose 36 directions by letting the robot perform a full rotation in
place, three tilt values (—25, 0 and 25 degrees), and three times of the day to account
for different lighting conditions and shadows that varied also during the behavioral
tests with evolved robots. The complete set was composed of 324 images. Images were
filtered using pixel averaging (the strategy chosen by all best evolved individuals) and
fed as input to the visual part of the neural architecture in random order. The synaptic
weight values were initialized to small random values within the same range used
during evolution and modified after each image presentation using the learning rule
described in equation 1. Synaptic weight values stabilized approximately after 200
applications of the learning rule, which is less than the trial time of evolutionary robots.

Figure 11 shows the final receptive fields of the network trained on grid sample
images of the network of the best individual evolved in “Learning” condition and
of the network of the best individual evolved in “No learning” condition for the
sake of completeness. As we explained in section 2 above, the synaptic weight
values developed with the Hebbian learning rule used here approximate the principal
components of the correlation matrix of the images. The leftmost receptive field in the
figure corresponds to the first principal component, that is the component that explains
most of the image variance which represents the most important feature in the visual
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Figure 8: Trajectories of robots in real outdoor environment reconstructed from wheel
odometric information. A dot is plotted every 20 sensory motor cycles. The maximum
duration is 400 sensory motor cycles. Top: “No learning”. Bottom: “Learning”, with
fixed random receptive fields and final receptive fields.

environment. The second-from-left receptive field corresponds to the second principal
component, that is the component that explains most of the residual image variance,
which represents the second most important feature in the visual environment, and so
forth.

The most significant difference emerging from this comparison is that the dom-
inant receptive field for evolved learning individuals is an horizontal edge on the
lower portion of the visual field whereas the dominant receptive field for the network
trained on a grid sample resembles a light central blob against a dark background
combined with a weak edge in the upper portion of the visual field. The horizontal
edge appears only as the second most important receptive field for the network trained
on grid sample images. This difference is supported by the fact that the subspace of
the distribution of snapshots collected by evolved learning robots with well formed
receptive fields is significantly different from that of the distribution of grid sample
snapshots (Figure 12). The comparisons become more difficult for the remaining
three receptive fields, but this is not surprising because these receptive fields capture
any small residual variance of the image distribution that may have been caused by
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Figure 9: Pan angles of the camera during the trajectory in the outdoor environment
for the “No learning” and “Learning” individual with fully formed receptive fields
(FinRF). Angle values are mapped from 0.5 to 1 for rotations to the left of the robot
and from 0.5 to 0 for rotations to the right of the robot. The trial of the “No learning”
individual is terminated after 155 sensory motor cycles (see also Figure 8).

Figure 10: Examples of images taken at different times of the day (9am, 3pm, and 9pm)
from the same location.

different starting positions and/or trajectory differences of evolved individuals. The
receptive fields of the “No learning” individual cannot be easily interpreted as in
the other two cases because our genetic representation and evolutionary method is
not forced to represent visual information in any predefined order. We can however
speculate that these receptive fields may contain a linearly scrambled version of the
first principal component observed in the “Learning condition” because both evolved
robots perform similar trajectories and point the camera towards the edge between the
ground and the wall.

The behavioral and receptive field analysis indicate that evolved learning robots
pay attention to specific visual features of the environment, notably the edge be-
tween the ground and the walls, in order to navigate in the environment. This phe-
nomenon can be further investigated by measuring the diversity of snapshots captured
by evolved robots as compared to grid sample snapshots. For sake of clarity, we project
the 25 dimensional space of the input images (given by the five by five visual neu-
rons) onto the 3 dimensional subspace of the first three principal components of the
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Figure 11: Visual Receptive fields. Each 5 by 5 matrix displays the incoming synaptic
strengths for one of the five visual neurons. Gray levels correspond to the sign and
strength of the corresponding synapse (white = maximum value; black = minimum
value). Leftmost receptive field approximates first principal component of the visual
environment.

image distribution (here the principal component analysis is performed using the exact
mathematical procedure (Jolliffe, 1986)). Each snapshot is represented by a dot in the
three dimensional space. Figure 12 shows that the distribution of snapshots collected
by evolved learning robots with well formed receptive fields is significantly more com-
pact and is composed of a smaller number of different snapshots than the distribution
of grid sample snapshots. These data indicate that such robots self-select through their
behavior (body movements and camera movements) a significantly smaller and con-
sistent subset of visual features that are useful for performing their survival task of
collision-free straight navigation. This holds also for individuals of the “No learning”
condition evolved and tested in simulated environments (data not shown), but not
when such individuals are tested in the real environment, as shown in Figure 12.

6 Discussion

The results described in this paper agree with those obtained in previous work (Flo-
reano et al., 2004) where synaptic weights for both receptive field and behavior were
genetically encoded and evolved on the same time scale to the extent that receptive
fields become sensitive to linearly separable features of the environment, such as
oriented edges, that can be actively pursued in order to support the navigation task.
But, in addition to that, the results described here show that evolved active behavior
significantly affects the development of visual receptive fields during the life of our
robotic individual as compared to receptive fields obtained from grid sample images.
These experiments suggest that the statistics of the environment may not be sufficient
to explain the visual receptive fields (and consequently the perception) of behavioral
systems even without invoking top-down mechanisms that may guide perception.
Active behavior, here instantiated as the coordinated movement of the robotic body
and camera, can affect the formation of receptive fields by actively selecting a subset
of the visual world during the early plasticity period. A similar pattern of interaction
between perception and behavior has been recently documented using a different
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Figure 12: Distribution of snapshots projected onto the three dimensional space of the
first three principal components (computed using the exact mathematical procedure).
In the last two conditions, snapshots have been recorded during trajectories of evolved
individuals. The number of plots in each graph is 324, 155, 400, respectively.

neural architecture embedded in a mobile robot (Verschure et al., 2003).

The type and organization of receptive fields developed in these experiments are
most likely specific to the choice of learning rule and neural architecture. A different
learning rule and architecture may have resulted in different receptive fields, but not
necessarily into different patterns of interactions between behavior and development
as long as the learning system belongs to the class of data-driven, Hebbian instances of
unsupervised learning (Hinton and Sejnowski, 1999) and is computationally sufficient
to support evolutionary maximization of the fitness criterion used in the experiments.

The evolutionary experiments have been carried out in simulations and the best
evolved controllers have been tested in the real world. As mentioned earlier in the
paper, even the most recent type of physics-based and visually realistic simulation
methods include approximations that adaptive robots may exploit to develop efficient
strategies. For that reason, control strategies evolved in simulated environments
most often do not transfer well to real environments. Still, simulations offer several
advantages, such as that of “being faster” than evolving robots in real environments
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and of avoiding the shortcomings of mechanical failures. Moving back and forth from
simulation to reality could therefore open several new possibilities for evolutionary
robots if one could ensure a way to guarantee a smooth transfer. The results described
in this paper indicate that evolution of adaptive—instead of fixed—control systems is
a promising solution to this issue because the differences between real and simulated
environments can be taken into account by ontogenetic adaptation of evolved individ-
uals. The successful transfer of evolved adaptive individuals from simulation to reality
described here provide further support for the benefits of incorporating unsupervised
learning in evolutionary control systems that are transferred from simulated to real
environments (Urzelai and Floreano, 2001). This holds as long as the difference
between simulated and real environments do not violate the consistency of the world
(however, see (DiPaolo, 2000) for a case of ontogenetic adaptation to inverse worlds)
or introduce completely new situations that lifelong adaptation mechanisms alone
cannot cope with.

As in our previous work on evolution and learning, we have not genetically en-
coded the initial synaptic strengths of connections that are subject to learning. This
prevents the indirect assimilation of learned features into the genetic code, whereby
genetically encoded strengths tend to converge towards values that are produced by
the learning mechanism, thus gradually reducing the space for adaptation. This in-
direct genetic assimilation, a facet of the so-called Baldwin effect (Baldwin, 1896), can
happen when the environment does not change or changes significantly slower than
generational time (Mayley, 1996; Belew and Mitchell, 1996; Nolfi and Floreano, 1999,
for a review).

7 Conclusion

The experimental results described in this article indicate that the interaction between
learning and behavior within an evolutionary context brings a number of synergetic
phenomena: a) behavior affects learning by selecting a subset of learning experiences
that are functional to the survival task; b) learning affects behavior by generating
selection pressure for actions that actively search for situations that are learned; c)
learning contributes to the adaptive power of evolution (as long as the parameters
subject to learning are not also genetically encoded) by coping with change that occurs
faster than evolutionary time, as is the case of transfer from simulation to reality. These
results are promising for scalability and potential applications of evolutionary robotics
in real-world situations where robots cannot possibly be evolved in real-time in the
real world, but may have to evolve at least partly in simulations. They are also an
indication that complex behavior can be generated by relatively simple control archi-
tectures with active behavior and local unsupervised learning that can be implemented
in low-power, low-cost micro-controllers. The significant role of behavior in receptive
field formation during learning is being increasingly recognized in the neuroscience
community (Polley et al., 1999, 2004) too. Within this context, Evolutionary Robotics
is very well positioned to address specific questions raised by theories and models of
learning in a behavioral context because it does not require hardwiring of behavior,
but only set up of the environment and of the performance criterion where evolution
will operate.

The experimental settings, neural architecture, genetic encoding, and learning
mechanisms used in these experiments have been kept deliberately simple to facilitate
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the analysis and comparison with previous results, but they also represent a limita-
tion for what concerns the generalization and scalability of the system. For example,
the learning component of the network (architecture, rule, neuron model) is such that
only linearly separable, and static, features of the image can be detected. It is thus
unlikely that this specific system will scale up to more complex situations where time-
dependent and non-linear combinations of features are functionally related to the task
at hand. Similarly, in the context of an open-ended evolutionary experiments where
robots would evolve in a dynamic and increasingly more complex environment, the
one-to-one encoding of synaptic parameters used here is most likely not suitable. Our
current work is aimed at both these aspects as part of our effort to pave the ground for
a methodology where complex robotic artifacts continuously evolve without human
intervention and pre-defined performance criteria.
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