
Evolution of Analog Networks using Local String Alignment on Highly
Reorganizable Genomes

Claudio Mattiussi
Autonomous Systems Laboratory

ASL-I2S-STI-EPFL
1015 Lausanne, Switzerland
claudio.mattiussi@epfl.ch

Dario Floreano
Autonomous Systems Laboratory

ASL-I2S-STI-EPFL
1015 Lausanne, Switzerland

dario.floreano@epfl.ch

Abstract

We introduce and apply a genetic representation for ana-
log electronic circuits based on the association of charac-
ter strings extracted from the genome with the terminals and
parameters of components, and the use of local string align-
ment to generate the connection between components. The
representation produces a variable genome length structure
that tolerates the execution of major genome reorganization
operators such as duplication and transposition, along with
less disruptive ones such as character insertion, deletion
and substitution. The representation can be applied also to
other analog networks such as artificial neural networks,
control systems, and genetic regulatory networks.

1. Introduction

Many biological and artificial systems are networks,
or are controlled by networks. Familiar examples are
metabolic, signaling, and genetic regulatory networks; bi-
ological and artificial neural networks; electrical and elec-
tronic circuits; and any system containing one of these.
The functionality of such systems depends on the num-
ber and properties of the nodes of the network, and on the
characteristics of the links connecting the nodes. The pos-
sibility to alter all these aspects is therefore a plus point for
an evolutionary process dealing with these systems.

An evolutionary algorithm aimed at the synthesis of net-
works typically obtains them through the decoding of a
genome. If we assume an unchanging decoding process dur-
ing the course of evolution, the reorganization of the net-
work follows from the reorganization of the genome. It
is easy to define genetic operators that radically reorga-
nize a genome, but we must keep in mind that the genome
must have a reasonable probability of remaining decodable.
Moreover, besides the genome reorganizations that result in
major restructuring of the network, it is desirable that the
genetic operators possess also a certain degree of smooth-

ness in their effect, to give the evolutionary process the pos-
sibility to test slight variations on a given network. For all
these reasons, the definition of the structure of the genome,
of the genetic operators, and of the decoding process that
transforms the genome into a network – in a word, the ge-
netic representation of the network – is in itself a challeng-
ing task [2, 3, 8, 9]. This is especially true if one wants to fa-
vor the open-endedness of the evolutionary process by lim-
iting to a minimum the constraints imposed on the topology
of the network and on the properties of its nodes and links.

In this paper, we define a genetic representation that ful-
fills all the desiderata listed above for a particular kind of
networks, which we call generically analog networks. The
nodes of this kind of networks can belong to a finite num-
ber of basic types, each endowed with a finite collection
of evolvable parameters. A node is connected to the other
nodes through links characterized by a scalar parameter,
which represent the strength of the interaction between the
nodes. This strength can vary gradually from the absence of
interaction to one with maximal strength.

Analog electronic circuits are a first example of this kind
of network, where the nodes are electronic components such
as transistors and capacitors, and the value of resistance of
the resistors connecting the terminals of the components
define the strength of the interaction. Artificial neural net-
works are another example, where the nodes are the arti-
ficial neurons and their input weights define the strength
of the interaction. A genetic regulatory network is a bio-
logical example of analog network, where the genes act as
nodes of the network, and the degree of influence of the bio-
molecules produced by one gene on the expression of an-
other gene defines the strength of their interaction. Control
systems in their functional block representation are another
example, and many other examples of analog networks ex-
ist. In this paper, all the examples and discussions are based
on analog electronic circuits but the adaptation of this rep-
resentation to other kinds of analog networks is straightfor-
ward and is currently under way for neural networks. The

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



evolvability of these other analog networks with the pro-
posed representation, however, remains to be proved.

2. Genetic representation and decoding
In our genetic representation the genome is composed by

a finite number of character strings - the chromosomes. The
characters of the chromosomes are called nucleotides and
belong to a finite genetic alphabet, typically, a subset of the
ASCII character set.

2.1. Representing non-resistive components.

The basic idea of the genetic representation for the case
of analog electronic circuits is the association of a string ex-
tracted from the genome – a label – with each terminal of
the non-resistive components that can appear in the circuit.
Each component can also have a finite number of evolv-
able parameter values, for example the value of capacitance
of a capacitor. With each evolvable parameter, we also asso-
ciate a string extracted from the genome (Figure 1). These
strings are used to define the connections between the ter-
minals and assign the parameter values, as explained below.

Figure 1. To construct the genetic represen-
tation of an analog electronic circuit, we as-
sociate a label with each terminal of the non-
resistive components. A parameter string is
associated with each evolvable parameter of
the components.

To represent in the genome a component with its asso-
ciated terminal labels and parameters strings, we first de-
fine for each component a particular string or token that will
uniquely identify it. For example, assuming as genetic al-
phabet the set of uppercase letters of the ASCII character
set, we associate as token the string “NBJT” to NPN bipo-
lar transistors, and the string “CAPA” with capacitors. Then,
we define a token that will act as delimiter for the terminal
labels, for example the string “LEAD”. Finally, we define a
token that will act as a delimiter for the substrings associ-
ated with the evolvable parameters of the components, for
example the string “VALU”. Figure 2 shows an example of
a fragment of genome containing all these tokens.

2.2. Decoding the components.

To extract the components and their associated strings
from the genome we proceed as follows. We start by locat-

Figure 2. A fragment of genome encoding
an NPN BJT and a capacitor with evolvable
capacitance value. The “NBJT” token sig-
nals the start of the fragment coding for
the BJT, and the token “CAPA” the start
of that coding for the capacitor. The label
“LSILWUPIEDUNO” delimited by “NBJT” and
“LEAD” is associated with the first termi-
nal of the transistor, which are assumed to
be assigned a predefined order, for example
(C)→(B)→(E). The label “RTCCICWGT” de-
limited by the first and second “LEAD” to-
kens is associated with the second termi-
nal, and so on. For the capacitor, the param-
eter string “TRGDNZCZ” terminated by the
“VALU” token is associated with the capac-
itance value.

ing the tokens that identify the components. Then, in the
fragment of genome that follows the identifying token we
search for the tokens that delimit the terminal labels and
parameter strings. For example, once we have located the
“NBJT” token of a transistor, we know that we need three
terminal labels, whereas for a capacitor we need two ter-
minal labels and one parameter string. If the required lead
and value delimiter tokens cannot be found in the genome,
no component is extracted from the genome, even if a le-
gal identifier is present. If all the tokens are found, the cor-
responding component is created in the circuit (for the mo-
ment, unconnected) and the substrings delimited by the to-
kens are extracted and associated with its terminals and
evolvable parameters. If the terminals of the component are
not interchangeable, an order is defined for the association,
for example (C)→(B)→(E) for the terminals of a BJT, or
(+)→(−) for polarized capacitors, and the association fol-
lows the order in which the labels appear in the genome.
To enlarge the set of decodable genomes, when both termi-
nal labels and parameter strings are required they are left
free to mix in any order. Fragments of genome that cannot
be decoded meaningfully are just left undecoded as “junk”
genome. This decoding technique for components applies
to genomes with an arbitrary number of chromosomes.

The procedure of component extraction just de-
scribed permits the overlapping of strings correspond-
ing to different components. For example, if after
the identifier NBJT and before the “CAPA” one in

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



Figure 2 we delete the last “LEAD” delimiter, the
whole string “YKRSTZEPTTBKVEYDZGTMJADB-
VKPVVIFDUCAPASMAUSDH” is associated with the
third terminal of the transistor. Although in principle this
is acceptable, it generates an interaction between compo-
nents, and this could complicate the evolutionary process.
For this reason, in the experiments reported below, we ex-
cluded the possibility of component overlapping by con-
sidering associated with a component token only the frag-
ment of genome that goes from the end of the current
component token to the start of the next one. Note how-
ever, that gene overlapping is known to occur in natural
genomes [4]. The potentialities of component overlap-
ping will therefore be also explored in future experiments.

2.3. Connecting the components.

At this point, we have obtained from the genome a col-
lection of components having strings associated with their
terminals and with their evolvable parameters. To derive
a network from these components we must connect them.
This we do by inserting a resistor between each pair of ter-
minals. The value of this resistor is obtained by comparing
the labels associated with the terminals and calculating for
each pair of labels a nonnegative integer value s, their lo-
cal alignment score (Figure 3).

Figure 3. The connection between labeled ter-
minals is established with a resistor whose
resistance value is determined by the local
alignment score s of the two labels.

We will give the definition of s in Section 4. For the time
being, it is sufficient to know that is determined by the simi-
larity of the two labels. To define the strength of the connec-
tion between terminals, we map the values of s into a set of
resistance values {Rmin, . . . , Rmax}. Figure 4 gives an ex-
ample of this mapping. To the values of this series, we add
the zero-valued resistor R0 = 0, which corresponds to a
direct connection between two terminals, and the infinite-
valued resistor R∞ = +∞, which corresponds to the ab-
sence of a direct connection between them. The ranges of
values of s above that associated with Rmin and the range
below that associated with Rmax, are associated with R0

and R∞.

2.4. Assigning parameter values.

We said above that a component successfully extracted
from the genome has a string associated with each of its

Figure 4. The logarithmically distributed set
of resistance values used in the experiments
of circuit evolution described at the end of
the paper. It covers 6 decades with 8 values
per decade, from 1Ω to 1MΩ. The numbers
in parentheses are the alignment scores as-
sociated with the values. The whole range
of scores below 20 is associated with an
infinite-valued resistor (no connection) and
that above 68 is associated with a zero-
valued resistor (direct connection).

evolvable parameters. To assign a value to those parameters
we use once again the technique of calculating an alignment
score s and mapping it to a value from a discrete set, for ex-
ample a capacitance C = C(s). Since in this case we have
only one string per parameter extracted from the genome,
we must define a fixed string that will be used to calculate
the alignment score of the parameter string relatively to the
fixed string. The fixed string can be the same for all kind of
parameter values, or may be specialized for each of them.

Note that we could define parameter values by encoding
directly integers in the genome and mapping them into the
set of parameter values. However, we opted for the same
kind of encoding for connections and parameter values in
the effort of obtaining a similar behavior for the connec-
tion strengths and the parameter values relatively to the ac-
tion of the genetic operators.

3. External connections and compartments.
To perform a useful function a circuit must be connected

to the external world to provide at least an output signal.
More commonly the circuit receives also some input signal
and power. This corresponds to the presence of some com-
ponents that must be considered external to the evolved cir-
cuit [2, 9], for example a fixed voltage source as power sup-
ply, a signal generator with its source resistance, and a load.
To complete the definition of our genetic representation we
must specify how these external components are connected
to the decoded circuit.

A simple way to extend the decoding of the connectiv-
ity defined above to external components consists in associ-

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



ating a fixed, predefined label with each terminal of the ex-
ternal components that must be connected to the decoded
circuit. Then, these labels can be added to the collection of
those of extracted from the genome, and used to determine
the connecting resistors. Although simple, this approach re-
quires some care in the choice of the fixed labels, to assure
that all the range of alignment scores that goes from R0 to
R∞ can be actually obtained.

3.1. I/O ports

A solution for the connection of external components to
the decoded circuit that does not require the choice and as-
sociation of fixed labels to the external terminals, is based
on the introduction of new kind components called I/O
Ports. Each external node that can be connected to the de-
coded circuit is associated with a particular I/O Port. This
I/O Port is identified in the genome by a token. For exam-
ple, if there are three external nodes to connect we intro-
duce three tokens “IOPTA”, “IOPTB”, and “IOPTC”. Each
time one of these tokens followed by a “LEAD” terminated
label is found in the genome, it is associated with corre-
sponding external node. These labels are then added to the
set of those associated with the components extracted from
the genome, to derive the connecting resistors as described
above. This is the approach used in the experiment reported
below. Figure 5 shows an example of genome and circuit
corresponding to the application of this technique.

3.2. Compartments

The idea of distinguishing the components of the evolved
circuit from the fixed external ones can be extended to give
evolution the possibility to generate modular and hierarchi-
cal circuits. To this end, it is sufficient to add to the ter-
minals of the components an evolvable marker that identi-
fies the compartment to which each terminal belongs. In this
way, the generation of the connecting resistors can be lim-
ited to pairs of terminals having the same mark. Alterna-
tively, the whole components can be marked and the con-
nections between compartments can be obtained introduc-
ing a new kind of two-terminal component connecting dif-
ferent compartments. This approach, besides giving the pos-
sibility to evolve modular and hierarchical networks, limits
the rapid growth of the number of comparisons of labels that
are required to decode the circuit when the number of com-
ponents grows.

3.3. Evolving the evolutionary parameters

One of the banes of evolutionary algorithms is the pres-
ence of a multitude of parameters whose value the user, of-
ten through a process of trial and error, must assign. A pos-
sible solution is the encoding of some of those parameters

Figure 5. An example of application of the
technique of connection of external com-
ponents to the decoded circuit (bottom) by
means of I/O Ports associated with the ex-
ternal terminals connected to the decoded
circuit. The fragment of genome represented
above (top) contains the tokens “IOPTA”,
“IOPTB” and “IOPTC” corresponding to the
three connected external nodes. The sub-
strings of the genome delimited by these to-
kens and by the “LEAD” token are associated
to the terminals of the external components.

– typically those governing the operation of genome reor-
ganization – in the genome, to let the evolutionary process
select those values [1]. There is some biological evidence,
however, that at least for unicellular organisms, the extent
of genome reorganization during reproduction depends also
on the state of the phenotype and is not simply hardwired in
the genome [6].

With the genetic representation described above, we can
easily implement this kind of dynamic generation of the pa-
rameters. For example, we can introduce a fixed resistive
voltage divider connected to the power supply for each pa-
rameter. The output voltage of the divider defines the value
of the parameter, and is included in the set of nodes that can
be connected to the evolved circuit. When the output node
is not connected to the rest of the circuit, the output voltage
gives the default value assigned to the parameter by the user.
The evolutionary process, however, can generate a connec-
tion to the node and vary this default value.

4. Local alignment of strings

We anticipated above that the value of resistance inserted
between the terminals of the decoded components depends
on the similarity of the labels associated with the terminals.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



These labels are strings that have been extracted from the
genome, where in the course of evolution they have been
subjected to the action of the genetic operators. Since we
are willing to admit major reorganizations of the genome,
the length of the labels will in general vary while evolution
proceeds. Therefore, we cannot assume that these strings
have equal length. This prevents us from basing our defini-
tion of similarity on the familiar Hamming distance, which
counts the number of positions where two strings of charac-
ters of equal length differ.

We can generalize the Hamming distance by suppos-
ing that besides substitutions of characters, one string can
be transformed into another using insertions and deletions
of characters. We can then assign a nonnegative weight
ws(x, y) to each substitution of a generic character x with
a character y, and nonnegative weight wdi(x) to the dele-
tion or insertion a character x. We can transform one string
into another using insertion, deletion and substitution, and
associate with the transformation the sum of the weights
of the operations performed. The global alignment distance
between two strings is defined as the minimum value of that
sum for all the transformations leading from one string to
the other. The correspondence established by each transfor-
mation is called a global alignment of the two strings [5].

This definition satisfies our need to operate with strings
of different length. However, the fact that it puts in corre-
spondence the whole length of the two strings appears as
a drawback for our application. This follows from the fact
that in general one component terminal can be connected
to more than one other terminal. We would like evolution
to deal with each connection independently, whereas, by
forcing the establishment of a correspondence of the whole
length of both strings, the use of the global alignment dis-
tance would tend to frustrate this independence.

We can solve this problem by considering alignments be-
tween portions of the two labels. This corresponds to the no-
tion of local alignment of strings. Now we can no longer
reason in terms of distance and of the minimum sum of
weights of the operations that transforms a portion of a
string into a portion of the other, because this minimum
would be usually attained for very short portions of the
strings, for example a single character. We must therefore
substitute the nonnegative weights ws(x, y) and wdi(x) de-
fined above, with matching scores ss(x, y), sdi(x) for sub-
stitutions, deletions and insertions of characters. Contrary
to the weights, which penalize dissimilarities, the match-
ing scores reward the similarities with positive values and
penalize the dissimilarities with less positive or negative
ones. Based on the matching scores we can define the lo-
cal alignment score of two strings as the maximum value of
the sum of the scores that can be obtained for a transforma-
tion that leads from a substring of one string to a substring
of the other [5]. Using this definition to evaluate the simi-

larity of two labels, we obtain the desired result that a la-
bel can evolve multiple separate regions that independently
match many different other labels (Figure 6).

Figure 6. Using local alignment of strings,
one label can match independently many
other labels with multiple separate matching
regions, although overlapping of the match-
ing regions is still possible.

4.1. Calculating the local alignment score

A naïve approach to the calculation of the local align-
ment score of two strings requires the generation of all pos-
sible transformations of all substrings of a string into all
substrings of the other. This is computationally unfeasible
for even moderate string lengths. There are however algo-
rithms based on dynamic programming whose computation
time grows like mn, where m and n are the lengths of the
two strings [5]. Using these algorithms the local alignment
score of two strings some thousands of characters long takes
a few milliseconds on present-day Personal Computers.

5. Genetic operators
The genetic representation for electronic circuits de-

scribed above permits the execution of many kinds of re-
organizations of the genome without compromising its de-
codability. The only practical limit that must be imposed on
the genome concerns the length of the labels and param-
eter strings, to ensure that the string alignment algorithms
are practically executable in reasonable time and memory
bounds. Apart from this limit, the fragments of the genome
coding for components can be of variable length and be lo-
cated anywhere within the genome. The genome itself is ob-
viously a variable length genome.

This opens the way to the introduction in our evolution-
ary algorithms of many genetic reorganization operations
that are seldom used in artificial evolution experiments (al-
though they are known to be common in the evolution of
biological genomes [4, 6]). In particular, the genetic repre-
sentation introduced above allows

• Operations on nucleotides, such as insertion, deletion,
and substitution of single nucleotides.

• Operations on chromosome fragments, such as dupli-
cation, deletion, transposition of fragments of chro-
mosomes, creation of components, and recombination
(crossover) of pairs of chromosomes.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



• Operations on chromosomes, such as duplication and
deletion of whole chromosomes.

• Operations on the whole genome, such as the duplica-
tion of the whole genome.

6. Experiments

We report here the results of three series of experi-
ments: string alignment experiments, circuit matching ex-
periments, and circuit evolution experiments.

6.1. String alignment and circuit matching

The goal of the string alignment and circuit matching
experiments was the collection of information about the
process of local string alignment in an evolutionary con-
text. This information guided the selection of the genetic al-
phabet, of the matching scores for local string alignment,
and of the set of genome reorganization operators for the
subsequent experiments. The string alignment experiments
started with the random generation of a collection of tar-
get strings of different lengths. To each target string was as-
signed a target matching score, and a population of genomes
was randomly generated and evolved with the aim of ob-
taining a genome matching all the target strings with the as-
signed target scores. The fitness function was the Euclidean
distance of the vector of target scores from the vector of
evolved matching scores.

The circuit matching experiments are a variant of the se-
quence alignment experiments where the target strings are
not randomly generated. The main objective was the ex-
ploration of the evolutionary potentialities of the system
and the possibility to generate sets of strings with preas-
signed alignment properties that reproduce those required
by typical analog electronic circuits. We defined the prob-
lem for those experiments by choosing a simple circuit,
such as an elementary oscillator or amplifier. Then we com-
puted the equivalent resistance between the terminals of the
non-resistive components of the circuit. We assigned the
mapping R(s) described in Section 2.3 between alignment
scores and connecting resistances, and gave to the evolu-
tionary process the goal of generating a collection of strings
with alignment scores mapping to the terminal-to-terminal
equivalent resistances of the circuit. In other words, the fit-
ness was determined only by the distance between the vec-
tor of evolved resistances and the vector of the target circuit
resistances; the functionality of the circuit with the evolved
set of resistances was not even evaluated.

Without entering into the details of the experiments, the
main results obtained are the observation that the presence
of certain genome reorganization operators is instrumen-
tal to the success of an evolutionary string alignment pro-
cess. In particular, we observed frequently a phenomenon
of overlapping of the regions of the genome devoted to the

alignment of two or more target strings (Figure 7, top). An
analogous phenomenon of overlapping genes is observed in
biological genomes [4]. In the absence of operators of dupli-
cation of chromosome fragments or of the whole genome,
this phenomenon stalls the evolution, since typically at a
certain point any improvement in the alignment of one tar-
get string is detrimental to that of the other. The duplica-
tion of the fragment of genome where the overlap occurs,
allows evolution to operate separately on two now inde-
pendent matching regions, whereas the additional copies of
these regions thus generated are no longer under evolution-
ary pressure and become “pseudogenes” (Figure 7, bottom).
Figure 8 shows the progress of an experiment where this
phenomenon of overlapping was observed in the genome,
and could be overcome by assigning a positive value to the
probability of genome duplication.

Summing up, using a genetic representation based on
string alignment, operators of major genome reorganization
are not only a possibility: they are a necessity.

Figure 7. The presence of suitable genetic
operators is instrumental to the disentangle-
ment of situations that can bring evolution to
a standstill. Here, an overlap of genes (top)
is solved by the duplication of a fragment of
genome (bottom). The copies of the original
genes are then liberated from evolutionary
constraints and are probably bound to be-
come pseudogenes.

6.2. Circuit evolution experiments

To implement circuit evolution, each genome was de-
coded into a preliminary circuit, following the steps de-
scribed above. The components having all their terminals
coincident where removed from this preliminary circuit, and
the passive components in parallel where coalesced. The re-
sulting circuit was simulated with SPICE [7].

At the time of this writing, the results of only one kind
of circuit evolution experiment were available, aimed at the
evolution of a voltage reference analogous to the one de-
scribed in [2]. The external circuit is the one represented in
Figure 5, where the voltage of the power supply (left) can

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



Figure 8. An evolutionary string alignment
brought to a standstill by gene overlap, which
was observed inspecting the genome and is
witnessed here by the stagnation of the fit-
ness (top curve) relatively to its maximum
achievable value of zero. Following the acti-
vation of the genome duplication operator at
generation 700, the maximum genome length
(bottom curve) shows a series of short-lived
episodes of genome duplication. Eventually,
a successful double episode of genome du-
plication around generation 1050 eliminates
the overlap and lets the fitness attain its max-
imum value.

vary from 4V to 6V, the source resistance is 1kΩ, and the
load resistance (right) is 10kΩ. The goal is the generation
of a constant 2V voltage across the load when the tempera-
ture varies from 0oC to 100oC. To this end, the decoded cir-
cuits where simulated with a power supply voltage varying
from 4V to 6V in steps of 0.1V, with simulation tempera-
tures of 0oC, 25oC, 50oC, 75oC, and 100oC. For each power
supply voltage and circuit temperature, we computed the
square of the difference between the actual voltage on the
load and the required output voltage. The fitness was de-
fined as the opposite of the sum of all these squares, so that
the goal was the maximization of the fitness, with optimal
value zero. The genome of all the individuals of the initial
population was constituted by one chromosome containing
10 NPN BJT descriptors and two I/O Ports for each of the
three connected external nodes. The terminal labels for all
the components had an initial length of five characters, ran-
domly filled with elements of the genetic alphabet, which
corresponds to the set of uppercase alphabetic ASCII chars.
The matching scores were those shown in Figure 9, and the
mapping of the alignment scores to the connecting resistors
were those shown in Figure 4.

We used a genetic algorithm with tournament selection,
tournament size of 5, and elitism. The size of the popu-
lation was 100. The probabilities of nucleotide insertion,

Figure 9. A partial view of the matrix of
matching scores for nucleotide substitution
(top) and the complete vector of nucleotide
deletion and insertion scores (bottom). The
hidden lines of the matching scores matrix
repeat cyclically the pattern of those shown.

deletion, and substitution, those of chromosome duplica-
tion and deletion and the probability of genome duplication
were set to 0.001. The probabilities of chromosome frag-
ment duplication, deletion, transposition, and that of chro-
mosome single point crossover were set to 0.01. Chromo-
some fragment reorganization was performed by selecting
two random points in the source chromosome to define the
fragment, and one random point in the target chromosome,
when required. Figure 10 shows the best result obtained in
four runs of evolution of 10000 generations each. This run
achieved a fitness of −0.0062. The other runs achieved a
fitness of −0.018 and −0.019 – which correspond to good
regulation –, and -2.2 – which does not. The opportunistic
nature of the evolutionary process leads to the regulation be-
ing based on the particular values of the parameters of the
transistor model used in the simulations. Thus, the circuit
cannot be expected to work with non-selected components.
This problem can be addressed using Monte Carlo runs to
evaluate the fitness. Figure 11 shows the performance of the
best evolved circuit and Figure 12 shows the SPICE input
file (with a fictitious obsolete TEMP option including the
five actual simulation temperatures).

Figure 10. The result of the best run aimed at
the evolution of a voltage reference circuit.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



Figure 11. The performance of the evolved
voltage reference circuit.

7. Discussion

Let us finally comment on the properties of the repre-
sentation proposed and compare them with those of other
approaches to the same problem. The generation of compo-
nent connections via string alignment allows the description
of almost arbitrary circuit topologies. The only limitation
derives from the problem of interference between labels.
Given a finite genetic alphabet and a limit for the length
of acceptable terminal labels, there is obviously a limit to
the number of strings whose alignment scores stay all be-
low a given threshold. Even before that limit is attained,
the evolution of new independent strings can become diffi-
cult. This problem is in part alleviated by the freedom in the
choice of the genetic alphabet and matching scores, and can
be fully solved by the compartmentalization technique.

Compared with existing genetic representations for ana-
log electronic circuits [2, 3, 9], the main novelty of the one
presented here is the fact of defining implicitly the con-
necting resistors of the circuit instead of explicitly coding
them in the genome. Besides the interference problem men-
tioned above, this has a cost in terms of the complexity of
the decoding. When the number of components grows, the
number of comparisons grows quadratically and so does the
number of connecting resistors that can potentially appear
in the decoded circuit. This problem also can be tackled
with the compartmentalization technique.

The required presence of operators of genome reorgani-
zation entails the risk of rapid growth of the genome size.
The first observations of this representation at work, show
that most of the resulting genome does not code for com-
ponents, but is just “junk” genome, which takes memory
space but weighs only marginally on the complexity of de-
coding. Finally, there seem to be no natural way to imple-
ment within the string alignment philosophy, the evolution
of parameterized component values and circuit topologies
that was successfully demonstrated with the Genetic Pro-
gramming approach [3].

Figure 12. The SPICE description of the
evolved voltage reference circuit.

Acknowledgments
This work was supported by the Swiss National Science

Foundation, grant no. 620-58049.

References

[1] T. Bäck, Self-adaptation in genetic algorithms. In F.J. Varela,
and P. Bourgine, editors, Proceedings of the first European
Conference on Artificial Life, 263-271, MIT Press, Cam-
bridge, MA, 1992.

[2] J.R. Koza, F.H. Bennet III, D. Andre, and M.A. Keane, Ge-
netic Programming III: Darwinian Invention and Problem
Solving, Morgan Kaufmann, San Francisco, CA, 1999.

[3] J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu,
and G. Lanza, Genetic Programming IV: Routine Human-
Competitive Machine Intelligence, Kluwer, Norwell, MA,
2003.

[4] D. Graur and W.-H. Li, Fundamentals of Molecular Evolu-
tion, Sinauer, Sunderland, MA, 2000.

[5] D. Sankoff and J.B. Kruskal (eds.), Time Warps, String Edits,
and Macromolecules: The Theory and Practice of Sequence
Comparison, Addison-Wesley, Reading, MA, 1983.

[6] J.A. Shapiro, A 21st century view of evolution, Journal of Bi-
ological Physics, 28 (4): 745-764, 2002.

[7] A. Vladimirescu, The SPICE Book, Wiley, New York, 1994.
[8] X. Yao, Evolving Artificial Neural Networks, Proceedings of

the IEEE, 87(9): 1423-1447, Sep. 1999.
[9] R.S. Zebulum, M.A.C Pacheco, and M.M.B.R Vellasco, Evo-

lutionary Electronics: Automatic Design of Electronic Cir-
cuits and Systems by Genetic Algorithms, CRC Press, Boca
Raton, FL, 2002.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 


	footer1: 


