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Abstract. Evolving large phenotypes remains nowadays a problem due
to the combinatorial explosion of the search space. Seeking better scal-
ability and inspired by the development of biological systems several
indirect genetic encodings have been proposed. Here two different devel-
opmental mechanisms are compared. The first, developed for hardware
implementations, relies on simple mechanisms inspired upon gene regula-
tion and cell differentiation. The second, inspired by Cellular Automata,
is an Artificial Embryogeny system based on cell-chemistry. This paper
analyses the scalability and robustness to phenotypic faults of these two
systems, with a direct encoding strategy used for comparison.
Results show that, while for direct encoding scalability is limited by the
size of the search space, developmental systems performance appears to
be related to the amount of regularity that they can extract from the phe-
notype. Finally the importance of comparing different genetic encodings
is stressed, in particular to evaluate which key characteristics are neces-
sary for better scalability or fault-tolerance. The lack of standard tests
or benchmarks is highlighted and some characterisations are proposed.

1 Introduction

The evolution of large phenotypes is one of the most serious problems in the field
of evolutionary computation. With each characteristic of the phenotype encoded
by a single gene, the increase of the phenotypic size imposes for direct encoding
strategies a combinatorial explosion of the search space.

On the other hand, biological systems develop into mature organisms with
a complex process of embryogeny. Embryogeny is mediated by the interaction
of DNA, RNA and proteins to produce the cell regulatory system. This sort
of interaction does not permit a one to one map from gene to phenotypic trait
(phene), since each gene influences several aspects of the phenotype (pleiotropy).

Motivated by the development of biological systems, several authors have
proposed indirected encoding schemes. With indirect encoding, each phenotype
is developed by a process in which genes are reused several times.

In this case, development is de facto a decompression of the genotype. But
since compression is generally higher for regular targets, a serious question is how



much these methods will prove viable for the evolution of arbitrarily complex
phenotypes. For example, the correlation between genotype and phenotype space
may decrease as the complexity of the target increases [1].

In other words, when looking at system evolvability, it appears that there is
a tradeoff between the combinatorial gain achieved by searching in a restricted
genotypic space and hindrances of a more complex fitness landscape caused by
gene reuse.

Additionally, the restriction on the search space implies that a part of the
solution space becomes unreachable, and some targets (such as those of high
regularity) might be more viable than others.

These considerations imply that in the analysis of such systems, performance
benchmarks play a fundamental role. Still, there is little agreement on a set of
evolutionary targets that can be used for assessing their quality. On the contrary,
it appears that the tasks are often selected ad hoc to highlight the strengths of
a particular model.

In this paper we want to compare two different developmental models, the
first used in the POEtic circuit [2, 3], the latter an Artificial Embryogeny system
[4] based on cell chemistry [5, 6]. The comparison is carried out for varying
phenotypic sizes, against a direct encoding strategy in a task that should favour
the latter.

The intention is to investigate the viability of these two indirect encoding
methods without leaving doubts about the generality of the results.

To this end, we have tried to set up a ‘worst case scenario’ for developmental
systems, pushing for results that do not depend on particular features of the
targets.

The selected task is the evolution of specific 2D patterns of various complexity
(figures 3 and 4) and sizes (from 8x8 to 128x128), with fitness being proportional
to the resemblance to the target. In the case of the direct encoding strategy, with
a gene representing a single pixel, the fitness landscape is a simple unimodal
function. On the contrary, in the case of development, gene reuse may imply a
multimodal deceptive fitness landscape. Thus, the comparison of the methods
will allow to address the influence of search space and pleiotropy on evolvability.

Development systems also provide internal dynamics which are absent in
direct encoding strategies. These dynamics may provide a way to withstand
phenotypic injuries. This aspect is explored by comparing the tolerance to faults
of both systems with the linear deterioration typical of direct encodings.

The rest of this paper is organized as follows. Section 2 gives an overview
of the development systems, section 3 describes the evolutionary task, section 4
presents the results on fault resistance and section 5 concludes.

2 Multi-cellular growth and differentiation mechanisms

2.1 Morphogenetic System (MS)

The morphogenetic system [3] (MS) is a developmental model designed for
multi-cellular systems and focusing on simplicity and compact hardware imple-



mentation, initially developed for the POEtic circuit [2]. It uses signalling and
expression mechanisms which are remotely inspired by the gene expression and
cell differentiation of living organisms [7], notably by the fact that concentra-
tions of proteins and inter-cellular chemical signalling regulate the functionality
of cells. Related works include the use of L-Systems [8] and various cell-based
developmental processes [9, 10], and biologically plausible development models
[11].

The MS assigns a functionality to each cell of the circuit from a set of
predefined functionalities. Here functionalities are the colours necessary to draw
the patterns. It operates in two phases: a signalling phase and an expression
phase.

The signalling phase uses inter-cellular communication to exchange signals
among adjacent cells to implement a diffusion-like process. A signal is a simple
numerical value (signal intensity) that a cell owns. Special cells, called diffusers,
own a signal of maximum intensity and start the diffusion process. Diffusion
rules rely on the four neighbours of a cell to generate signal intensities which
decrease linearly with the Manhattan distance from the diffuser. They do so by
taking the smallest value for which the signal gradient with all the initialized
neighbours is -1, 0 or 1. Figure 1 shows an example of the signalling phase in the
case of a single type of signal, with two diffusers placed in the cellular circuit.

The expression phase finds the functionality to be expressed in each cell by
matching the signal intensities in each cell with a corresponding functionality
stored in an expression table.

The genetic code contains the content of the expression table and the position
of the diffusers. A genetic algorithm is used for evolution. 16 diffusers and 4
functionalities (colours) are used. The population is composed of 400 individuals,
selection is rank selection of the 300 best individuals, the mutation rate is 0.5%
per bit, one-point crossover rate is 20% and elitism is used by copying best
individuals without modifications into the new generation.

2.2 Embryogeny Model based on Cell Chemistry

Introduction Another way to develop the phenotype is to proceed with a
recursive process of rewriting, which starts from a single egg cell to produce the
mature organism. Among these Artificial Embryogeny (AE) systems [4], there
are two main approaches.

The first is aimed at the evolution of a grammar which is repeatedly applied to
the phenotype. Examples include the Matrix Rewriting scheme [12], the Cellular
Encoding [10], Edge Encoding [13] and the GenRe system [14].

The second evolves the regulatory system of a cell with its metabolism and its
ability to duplicate. Ontogeny results of the emergent interaction of neighboring
cells and the chemical concentrations in the environment.

The model used in this paper belongs to this second category, and is an
extension of the one presented in [6]. An extensive description on the model can
be found in [5].



Fig. 1. The arrays on the left are snapshots of the signalling phase with one type of
signal and two diffusers (gray cells) at the start of the signalling phase, after two time
steps, and when the signalling is complete. The number inside the cells indicates the
intensity of the signal in hexadecimal. The expression table used in the expression
phase is shown on the right. The signal D matches the second entry of the table with
signal F (smallest Hamming distance), thus expressing function F1.

Description Phenotypes are developed starting from a single egg (zygote)
placed in the center of a fixed size 2D grid. Morphogenesis proceeds in discrete
developmental steps, during which the growth program is executed for each cell,
one cell at a time.

Cells are characterized by internal and external variables. Two internal vari-
ables (cell type and internal chemical concentration) define the cell state and
move with it, while the external one belongs to the environment and follows a
simple conservative diffusion law.

At each developmental step, any existing cell can release a chemical to the
environment, change its own type, alter its internal metabolism and produce
new cells in the cardinal directions North, West, South and East.

The growth program is governed by a feedforward Artificial Neural Networks
(Morphers) without hidden layers. Each Morpher is specified by 144 genes (float-
ing values), one for each of the 8 inputs, 16 outputs and bias weights (see figure
2).

Ontogeny is governed by multiple morphers, each one defining an Embry-
onic Stage which spans one or more developmental steps. Stages are introduced
incrementally, those controlling earlier developmental steps being evolved first
and only the last one undergoing evolution (please refer to [5] for the full details
of the model). This system has the advantage of increasingly adding resolution
to promising areas of the search space while excluding the others, also reducing
pleiotropy among different developmental steps. New stages are introduced if
the performance did not increase for the last 100 generations.

The population is composed of 400 individuals, the 100 best individuals sur-
vive and reproduce. Crossover is set at 10%. All the offspring undergo mutation:
each of the weights of the evolving Morpher being changed with a .01 probability
by adding Gaussian noise with .035 variance.
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Fig. 2. The growth
program (Morpher)
input and output lines
with their respective
sizes. Each line is a
floating point value
∈ [−1, 1]. The Morpher
is implemented by
a feedforward ANN,
even though each cell
internal variables (cell
type and metabolism),
implement a direct
feedback pathway.
Chemical production
and diffusion offer a
channel for inter-cell
communication.

3 Evolution of patterns and scalability

The evolutionary task consists in evolving phenotypes resembling specific 2D
patterns of increasing size. This type of problem has been selected in order to
simplify the analysis of the results and avoid that the developmental models
might benefit from embedded “tricks”, which will not be applicable in other
settings.

The targets are 8x8, 12x12, 16x16, 32x32, 64x64, 96x96 and 128x128 multi-
cellular arrays. Each cell can take one of four possible types (colours). Two
different typologies of targets are considered. The first one is a more regular
‘Norwegian flag’ pattern (figure 3) which presents a high degree of symmetry that
should be exploitable by developmental systems. The latter, is a very complex
pattern generated from a Cellular Automata using Wolfram’s rule 90 and starting
from random initial conditions (figure 4). Wolfram’s rule 90 has been selected
because it steadily produces patterns of high complexity, which are supposedly
very difficult targets of developmental systems. In the case of direct encoding,
the target patterns have equivalent difficulty.

Fitness is proportional to the resemblance of the individual to the target. In
order to avoid premature convergence, individuals with rare phenotypic traits
(pixels) are rewarded (please refer to [5] for further details).

The experiments were conducted 20 times for each target size. The population
is composed of 400 individuals, undergoing elitism selection for 2000 generations.
Model specific GA parameters are listed in section 2. For direct coding, the GA
parameters are 10% single point crossover, mutation rate of 0.5% per gene, and
each gene represents one of the 4 possible colors.



Fig. 3. Norwegian Flag Target (64x64). Fig. 4. Target generated using a cellular-
automata with rule 90 of Wolfram start-
ing from a random initial line (64x64).

The genotype dimension for the various encodings and target sizes are listed
in table 1. The size of the genetic code with the MS scales with the logarithm of
the size of the array because the number of bits used to encode the position of
the diffusers depends on the size of the array. The size of the genetic code using
the embryogeny model remains constant because the morpher neural network
relies only on the state of immediate neighboring cells to update the state of the
current cell and hence needs no information about the size of the array. Size of
direct encoding scales with the size of the array.

Encoding Search space by target dimension
8x8 12x12 16x16 32x32 64x64 96x96 128x128

Direct coding 64 144 256 1024 4096 9216 16384
MS 192 224 224 256 288 320 320
AES 144 144 144 144 144 144 144

Table 1. Search space size of the 3 encoding methods presented for each target size.
Genes, in the Direct Encoding determine the color at a given position, in the Indirect
Encodings regulate the ontogeny of the phenotype. In the MS each gene is a bit, in
the Embryogeny model is a floating point number in the range [−1, 1].

Scalability is shown in figure 5 for the Norwegian flag and the CA-generated
pattern. Direct encoding steadily reaches 100% fitness for arrays up to size 32x32.
For larger targets, the explosion of the search space limits the overall perfor-
mance.

Both development approaches perform similarly for small target sizes where
they tend to get high fitness scores. Larger targets show a reduced performance
which tends to stabilize around a certain level. In the case of the Norwegian flag,
this level is determined by the complexity of the target pattern, which is constant



with its size. In the case of the CA-generated target, complexity increases with
size and solutions tend to exploit more the spatial frequency of the colours than
their exact position.

Fig. 5. Scalability for the morphogenetic system (MS), embryonic model (AES) and
direct encoding on evolution of the Norwegian flag and CA-generated pattern.

Figure 6 shows the best evolved solutions for 64x64 targets with the different
encoding schemes. Notice that the solutions generated by development systems
show artifacts, due to their decoding scheme (diamond-shaped patterns for the
MS and regular repetitions for the AES). On the other hand, direct encoding
exhibits Salt and Pepper noise.

4 Robustness

Natural organisms exhibit recovery capabilities, for example in case of injuries.
In this section, we explore how these models behave when subjected to faults.

In order to have a meaningful deterioration mechanism for both develop-
mental models, we consider here transient events which damage the state of the
cell (e.g. by means of radiation corrupting memory elements). As development
continues to operate normally, cell functionality could be recovered. Notice that
individuals were not selected for their fault resistance.

In the case of the MS, faults modify the chemical content of a cell1. For the
embryogeny model, faults kill selected cells, while for direct encoding they alter
their colour.

Robustness is tested on the best evolved phenotype of the Norwegian flag on
the 64x64 array. This pattern and size has been selected because the fitness of
the three genetic encodings is very similar and higher than the trivial solution

1 It is assumed that no faults occur in the expression table, since in any case it can
be recovered from neighboring cells with a majority voting scheme.



Fig. 6. Best evolved 64x64 solutions using, from left to right, MS, AES and direct
coding. Norwegian flag above, CA-generated pattern below. Please refer to figures 3
and 4 for the actual targets.

consisting of exploiting only the frequency of colours as is the case with the CA-
generated target. The damage rate (percentage of faulty cells) is varied between
0% and 100%. The damage process is repeated 100 times for each damage rate.

Figure 7 illustrates the results. While direct encoding is subject to a linear
decrease in fitness, both developmental systems show a superior resistance to
faults.

The MS benefits from the fact that chemical concentrations vary with con-
tinuity, and can be reconstructed with little effort. Also, evolution assigned the
most frequent colour in the target to the default cell type, which explains the
fitness value with 100% of faults.

In the case of the AES, fault recovery is a byproduct of ontogeny. These
results are in support to what was previously observed in [6, 5].

5 Conclusions

We have tested the scalability of two developmental and one direct encoding
strategy on a minimal task involving the evolution of specific target phenotypes.

Results show that the selected task, which was intended to be favorable to the
direct encoding scheme, is easily solvable by the latter only for reasonably small
target sizes. In these cases direct encoding greatly outperforms the developmen-
tal systems. Direct encoding benefits from the fact that each gene contributes
independently to the fitness and therefore its landscape is both unimodal and
non-deceptive.

On the other side, developmental systems suffer from the pleiotropy intro-
duced by gene reuse. Also, as there is a single optimal solution, this utterly



Fig. 7. Robustness of
the MS, the AES and
the direct coding on
the Norwegian flag (size
64x64). Average over
100 tests. The fitness
with 0% faults, is the
one of the evolved so-
lutions (.72 for develop-
ment systems, .71 for di-
rect encoding). Pheno-
types with similar fit-
ness scores were selected
for better comparison.
Fault recovery was not
selected for.

complicates the evolutionary task, since it is not guaranteed to fall within the
space of expressible phenotypes.

In any case, with bigger targets, development systems can take advantage
of their reduced search spaces, and this is reflected in their performance levels
starting at the 64x64 Norwegian flag and 96x96 CA-generated targets.

Developmental systems seem ‘smarter’ at finding exploitable regularities in
the targets, such as shape and most frequent cell types. On the other side, this
is impossible for direct encodings, so that errors in the evolved phenotypes must
take the shape of high frequency noise. This gives a different ‘psychological’
perception of incomplete phenotypes and seems to affect performance for larger
targets.

Finally, both developmental systems behave very well against phenotypic
faults and are capable of recovering from significant amount of damage, even if
the tested individuals were not selected for this characteristic.

As a last remark, we want to stress the lack of standard tasks usable for
benchmarking developmental systems. In [4] the authors suggest 4 different tasks:
evolution of pure symmetry, of specific shapes, of specific connectivity patterns
and of a simple controller.

We believe that some of these, albeit interesting to demonstrate capabilities
of a model in principle, leave doubts about the generality of the results. For
example, the evolution of a controller is a task that imposes complex fitness
landscapes with usually many optimal and suboptimal solutions, and therefore
is difficult to analyse in relation to system evolvability.

On the other side, testing a developmental model against targets of various
phenotypic complexity2, from pure symmetry to total lack of it, may offer a good
indication of the system strengths and weaknesses in more general settings.

2 possibly calculating phenotypic complexity as its compressibility with standard al-
gorithms
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