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Abstract

In this paper I explore the hypothesis that some of today’s robots
might possess a form of consciousness whose substrate is a mere algo-
rithm. First, consciousness is defined within an evolutionary framework
as awareness of one’s own state in relation to the external environment.
Then, the basic prerequisites for such conscious activity are discussed,
namely embodiment, autonomy, and adaptation mechanisms. Artificial
evolution, rather than evolutionary optimisation, is presented as a viable
methodology to create conscious robots, accompanied by some examples
of behaviours of artificially evolved robots. Finally, I argue that what
might be problematic with the concept of robot consciousness is not the
robot, but the notion of consciousness itself.

1 Paving the Road to Robot Consciousness

Could the ordered list of operations which forms any computer algorithm con-
stitute the basis of consciousness for a robot? “Of course not”, would be the
sensible answer probably given by most readers with a scientific or engineering
oriented mind. The popular justification for such a view is that computer pro-
grams are instructions used to control machines which must carry out a specific
task, such as a lengthy computation or assembly of car components. A robot
controlled by such an algorithm would be nothing more than an automaton,
a mechanical device which blindly and repetitively executes a pre-specified set
of instructions (see [39, chapter 1] for elegant elaborations of this view). In
this paper, I shall consider a different position and argue that it is not possible
to exclude that some of today’s robots might indeed possess a form of proto-
consciousness whose substrate is a mere algorithm, or something that can in
principle be described in terms of algorithmic computation (e.g., an artificial
neural network, a rule-based system, a classifier system, etc.). I will do so by

* Ago, first person singular of the Latin verb of Greek root, meaning “to lead, to play an
active role, to behave”. This article was originally written in 1996 under invitation, but recent
research advancements do not contradict its contents.



showing why this might be possible at all and by describing the basic ingredi-
ents that, if accurately mixed together, might give rise to forms of conscious
behaviour. I will support my line of reasoning with examples of behaviours
recorded during experiments of artificial evolution performed on mobile robots
at our laboratory.

All of what follows assumes that consciousness exists, if not as a reality, at
least as a scientific hypothesis worth considering. Before proceeding any further,
though, it is necessary to explain exactly what I mean by consciousness here in
order to make my ideas testable and concretely debatable.

1.1 Consciousness as Awareness

Consciousness is difficult to define in scientific terms because it has many facets
and attempts to provide an exaustive description often involve a good deal of
introspection. Whatever consciousness might be, it certainly is a product of nat-
ural evolution, the result of several generations of selective reproduction. Given
the fierce competition for energy and resources that characterises all aspects
of life, it is reasonable to assume that consciousness provided some survival
advantage for organisms that began to exhibit it, even though its primordial
manifestations migh have been an interesting byproduct of evolution with no
negative impact on inclusive fitness. If we consider consciousness as an ability
for better coping with the difficulties faced by a living organism, then it be-
comes inevitable that its characterisation should bear some relationship to the
basic challenges on which survival and success of reproduction is based. These
include, in increasing order of complexity (from [8]): sensori-motor coordination
and proprioception, object recognition and recognition of spatio-temporally in-
variants, spatial navigation, multi-modal sensory fusion and logical processing,
social behaviour. The common factor underlying all these abilities is the re-
quired capacity of an organism to position itself with respect to the external
environment, that is to achieve increasingly complex levels of situatedness.
Therefore, among all the possible definitions, here consciousness is taken to
be awareness of one’s own internal state with respect to the environment. Being
conscious is the process by which an intelligent control system performs sponta-
neous self-monitoring of internal states (which could take into account not only
neurally generated activity, but also physiological states) by putting them in
relation to the external environment. Thus, although consciousness is an inter-
nal reflexive activity, it is not purely subjective and disjointed from the external
environment (which would rather correspond to hallucination), but is intimately
linked to purposeful behaviour. Within this framework, consciousness becomes
useful because it allows comparison and processing of information coming from
several sensory modalities and it provides the system with the ability to make
predictions in order to change its course of actions. By spontaneously monitor-
ing, cross-correlating, and variously arranging several internal processing states
in relation to what happens in the environment, one can anticipate different
behavioural outcomes and act accordingly (see also [10, chapter 7]). This type
of consciousness also requires active exploration. When the system realises that
there is not sufficient information for performing an action, or feedback from
the environment does not correspond to the internally anticipated situation, the
organism will engage in exploratory behaviour in order to actively seek miss-
ing information or in order to change some of its own internal parameters. I



think that this type of consciousness is one of the characteristics that distin-
guishes purely reactive organisms from intelligent organisms. In simple words,
consciousness is a way of continuously refreshing and updating one’s position in
the world, a way of making sense of what is happening by coordinating relevant
information and of anticipating future situations for appropriate action.

The definition given above is quite reductive, but I think that it captures
the essential elements of what consciousness is, the basic purposes of conscious
activity in humans as well as possibly in other organisms. To this extent, my
analysis of consciousness as awareness of one’s own state refers to a type of
“proto-consciousness”, similar for several aspects to the definition of “primary
consciousness” given by Edelman [13], which does not exclude other phenom-
ena, such as feelings, sensations, etc., as long as they participate to the goal of
establishing and maintaining the position of the organism in its own environ-
ment. However, I deliberately do not consider phenomenal consciousness here,
which is largely based on introspection and might be characteristic of human
beings only or a pure artifact of our reasoning abilities.

In the remainder of this paper, I will try to show that a careful consideration
of some evolutionary issues might indeed give us a methodology to create with
our current technology conscious—that is, aware—artificially living organisms.

2 Prerequisites

One reason why attributing consciousness to an algorithm sounds weird is that
we tend to see algorithms as abstract instruction sets designed for a specific com-
putational purpose. I agree that such an algorithm cannot exhibit any form of
awareness. The type of interactions between such an algorithm and the external
world —if any— is precisely defined and regulated by the conditional statements
(e.g., if-else) which form the algorithm itself and guide its operation toward
the achievement of a pre-specified goal. There are no reasons whatsoever why
such an algorithm should be aware of its position in the environment, change
its course of action or its processing modality.

2.1 Embodiment

Things might change when the algorithm becomes embodied, that is when it
is part of a body equipped with a sensori-motor system; now the algorithm is
called a “control system”. A body is a physical entity which interacts with
a physical environment in forms which might drastically affect the processing
modality of its own controller. For example, let us consider information process-
ing in a certain type of algorithm, an artificial neural network which maps input
vectors into appropriate output vectors. Here the sequence of input-output vec-
tors (both during the learning phase and during normal functioning) is quite
arbitrary, usually random or in accordance with a certain schedule which has
been carefully chosen by the external user in order to maximise a well-defined
objective function. Instead, when the neural network is embodied in a sensori-
motor system (wherin it is often called a neurocontroller), the time sequence
of the input vectors (sensory information) depends on the output (motor ac-
tions) of the network itself, which in turn depends on the input. In this case
the flow of information between the network and the environment is coherent,



meaningful, and self-contained (in the sense that it is partially or completely
generated by the information-processing system itself) [38]. The interaction
with the environment affects not only the time sequence, but also the type and
frequency of information which is available to the network. That means that
the type of experiences to which such a network is exposed greatly depends on
the network itself. Such a neural network could actively avoid or seek certain
situations as well as potentially affect its own learning modality. If the control
system was not part of a physical body struggling for survival, all this potential
freedom could degenerate in un-interesting behavioural loops where the system
closes on itself and minimises interactions with the external world. However,
bodies have physiological demands—such as keeping an adequate temperature
level and maintaining a sufficient amount of energy—which continuously urge
the organism to develop better and more efficient behavioural strategies in order
to satisfy them.

If we sum up the consequences of embodiment mentioned above, it becomes
evident that such a control system would gain considerable advantage from the
type of conscious activity described in section 1.1, that is the ability to monitor
and regulate internal and physiological states; to seek, integrate, and coordinate
the multi-modal flow of information in order to establish appropriate correla-
tions, highlight important bits, and suppress the rest; to distinguish between
environmental changes that are due to its own actions and those that are due to
external causes (in other words, to understand the sensory consequences of its
own actions [38]); to anticipate future situations in order to find a timely solu-
tion and avoid dangerous situations. These considerations apply both to living
organisms and to artificial organisms, such as robots where the physiological
demands might correspond to the ability to maintain an appropriate reserve of
electrical power or to minimise mechanical wear.

2.2 Autonomy

However, embodiment alone is not sufficient to make us believe that some type
of computation, be it biological or artificial, might exhibit consciousness. After
all, there are several examples of robots that are precisely pre-programmed to
respond in precise ways to incoming information; e.g., the already mentioned
robots working on industrial assembly lines. In that case, a human analyst de-
signs the control system of the robot so that it performs exactly and precisely
certain actions in response to a restricted class of environmental conditions in
order to carry out a pre-defined task. Here, the robot does not have freedom of
exploration, it cannot establish its own goals and sub-goals, or change the way in
which it acts; in other words, such a robot would not display any awareness be-
cause the flow of information from sensors to actuators has been rigidly specified
in detail by an external designer for the purpose of achieving an externally de-
fined goal. In fact, another important pre-requisite of conscious activity—both
in living and artificial organisms—is autonomy. Autonomy implies freedom
from external control [31]. An autonomous agent is a system that is capable
of defining its own goals and regulating its own behaviour accordingly; in other
words, it must be capable of self-control [44]. Autonomy is often associated with
self-sufficiency, but the two notions are in fact quite different. For example, a
bird raised in a cage is not self-sufficient, and if put in the wild it will probably
die because it has not developed efficient foraging strategies; nevertheless, it is



an autonomous agents. Similarly, a robot might be autonomous even though it
depends on external provision of electrical power. The definition of autonomy
is concerned with the locus of control, i.e. with who decides the goals of the
agent, not with the capacity for self-sufficiency.

2.3 Adaptation

The notion of autonomy clashes with the traditional method of engineering be-
haviours for robots, which could be summarised in the following logical and
temporal steps: I. Create a formal model of the robot and of the environment;
II. Analyse the task requirements and decompose it in appropriate subtasks;
III. Design an algorithm which steers the robot in accordance with the formal
understanding gained in the previous steps. Such an agent could hardly be de-
scribed as autonomous. As McFarland has put it [32, introduction], creation of
autonomous agents requires a shift in behaviour engineering from a goal-directed
to a goal-seeking and self-steering control system (see also [40]). An autonomous
agent cannot be programmed in the traditional way described above. Rather,
its control system should be equipped with learning mechanisms that give the
agent the ability to adapt to the environment and to develop its own strategies
in order to maintain itself in a viable state. A very popular choice consists
in using neurocontrollers—artificial neural networks where the input units are
clamped to the robot sensors and the output units control the effectors, such
as wheels, grippers, etc.—which are well suited structures for learning mech-
anisms (for examples, see some recent special journal issues on robot learning
[20, 11]). Learning consists in a gradual modification of the internal parameters
(synaptic connection strengths, neuron thresholds, and architecture) while the
robot interacts with the environment. However, one might envision a variety of
different processing metaphors (such as classifier systems) that are capable of
autonomous self-configuration. What really matters in these adaptation tech-
niques is to what extent learning proceeds according to an externally defined goal
and schedule rather than resulting from a process of self-organisation. These
two learning modalities are often referred to as supervised and unsupervised,
respectively (e.g., see [24]). Probably, it is impossible to draw a sharp line be-
tween them because in both cases adaptation takes place in order to optimise
an objective function (e.g., a cost function or an energy function), which seems
to hold for learning and behaviour regulation in living systems too [32]. The
difference between learning automata and learning autonomous agents, then,
lies in the type of information which is made available to the agent for learning
and in the way it is used. For example, modifying the synaptic strength by
backpropagation of error [43] between the agent’s actions and the actions de-
fined by a human observer, is an efficient—when feasible—way of programming
automata (e.g., see [41]); there, learning is aimed at achieving a specific goal by
implementing a detailed behavioural schedule predefined by an external user.
Instead, a more suitable technique for creating autonomous agents might be
provided by reinforcement learning (for a clear review, see [3]), where learning
takes place only when the agent receives a reward signal from the environment.
Reinforcement learning algorithms try to maximise the probability of repeat-
ing behaviours which lead to positive reinforcement signals. Despite being a
promising approach, these algorithms require an extensive initial exploration of
the possible behavioural outcomes in order to develop stable controllers, which



does not seem always to be the case in living organisms.

In this paper, I will consider a different adaptation mechanism, artificial
evolution of neurocontrollers, as a viable methodology to develop autonomous
agents that could exhibit conscious abilities. Artificial evolution differs from
other learning schemes because it works on a population of different individuals
and is based on a selectionist, rather than goal-directed, approach [44].

3 Artificial Evolution of Autonomous Robots

Application of evolutionary techniques for automating the development of robotic
control systems has been tried with success by several researchers (see [30] for
an extensive review). Also referred to as “Evolutionary Robotics” [9], this ap-
proach relies on at least two interesting issues: a) the possibility of replicating
and understanding basic principles of adaptation in artificial forms of life [28],
and b) the generality and the power of evolutionary techniques to develop con-
trol systems exhibiting complex behaviours which would otherwise be difficult
to design by hand. In several cases, the basic building blocks specified in the
artificial genomes are networks of real-time recurrent neurons, which are paral-
lel processing systems well-suited for operating in real-world conditions [23] and
for potentially exhibiting complex and minimally cognitive behaviours [45, 4].
Although the specific algorithmic instantiation of the control system is not cru-
cial for creating autonomous agents, the definition of consciousness given above
requires some type of feedback and lateral flow of information among the par-
allel processes that compose the control system. These information channels,
which are easily implemented as recurrent connections in artificial neural net-
works, might serve the purpose (often rethorically attributed to an internal ho-
munculus) of establishing appropriate multi-modal correlations, of coordinating
internal states, of monitoring and changing the course of actions on the basis of
previous experience, and of anticipating future internal and sensory states (see
also [14] for an extensive review of the relevance of “re-entrant connections” in
living and artificial conscious systems).

Recently, the well-known issue of agent simulation versus physical imple-
mentation has been re-examined with respect to evolutionary robotics. All
evolutionary techniques operate and rely on populations of different individu-
als, several of which display maladaptive behaviours, especially in the initial
generations. This represents a heavy burden for physical implementations on
real robots in terms of time and resources. Therefore, most of the experiments
of evolutionary robotics are carried out in simulations, and only in few cases
is the evolved controller transferred on the real robot (e.g., see [37, 33]). This
procedure has been criticised because it might not scale well as soon as the robot
geometry and dynamics become more complex [30]. Although for the purpose of
the arguments offered in this paper it does not really matter whether the agent
is simulated or physically implemented, all the experiments that I will report
below have been entirely carried out on a real mobile robot.

3.1 Artificial Evolution vs. Evolutionary Optimisation

Computationally speaking, evolutionary methods represent a very general tech-
nique because they can be applied to any aspect of the agent (synaptic connec-



tions and number of neurons [46], growing factors [6], body specifications [29],
etc.) and to any type of algorithm instantiation (neural networks [42], classifier
systems [12], graph systems [26], programming language functions [27], etc.) as
long as they can be mapped into a genetic description. It has been empiri-
cally shown that genetic algorithms outperform other search methods when the
space of the possible solutions is high-dimensional and non-differentiable (see
[21, chapter 1] for a simple description of where and why evolutionary search
outperforms other search methods). These two properties, generality and effi-
ciency, are often exploited to optimise unknown parameters of a complex system
so that it will exhibit a well-defined behaviour (e.g., see [2]). To the extent that
behaviour generation is externally defined and driven to a specific goal, evolu-
tionary optimisation is not very different from the supervised learning approach
described in section 2.3. However, natural evolution does not have the notion
of teleology which is so familiar to biologists [1] and engineers, but is rather an
open-ended process (see also [22]) where the concept of optimum cannot be uni-
versally defined. It would be wrong to assume that a specific organ, such as the
retina, has evolved in order to maximise a specific function, such as transmission
of reflected light. Similarly, there are no goals driving evolutionary development
of cognitive systems; where goals exist, they are autonomously created by the
agent itself as a more efficient way of organising its own survival strategies. If
taken to its extreme consequences, this reasoning would imply that artificial
evolution should not make use of any externally defined fitness function and
perhaps it should substitute selective reproduction with elimination of individ-
uals which cannot keep themselves viable. However, also in this case, it would
be inevitable to introduce some external bias by deciding what viability is in the
specific artificial implementation of the ecosystem. Indeed, it is very difficult
to draw a line between evolutionary optimisation and artificial evolution. With
respect to the issue of evolvability of conscious control systems, we can re-state
these differences by saying that the more consistent is the shift from evolution-
ary optimisation to artificial evolution, the bigger is the probability that the
evolved controllers exhibit consciousness.

In the next sections, I will try to support this statement by describing two ex-
periments of evolutionary robotics where more complex neurocontrollers can be
evolved by simply lifting some constraints on the fitness function and considering
the robot as an organism with its own physiological requirements. Although still
simple, these controllers exhibit several of the computational and behavioural
characteristics listed above as indicators and prerequisites of conscious activity.

3.2 Some Experiments in Evolutionary Robotics

The experiments described here have been carried out on a real mobile robot
without human intervention. In all cases we employed a single physical robot
which served as body for several populations of individuals which were tested
one by one. Although this procedure is biologically implausible because in
biological life control systems and bodies co-evolve, hardware evolution is still a
challenging technical issue (see [29] for some initial attempts in this direction).
Each individual control system was a neural network where the input units were
clamped to the robot sensors and the output unit activations were used to set
the rotation speed of the wheels. Different neural architectures were used in the
various experiments, but they all had sigmoid activation function and recurrent



Figure 1: Khepera, the miniature mobile robot used for the experiments of
artificial evolution.
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Figure 2: Operating methodology.

connections.

The robot employed in the experiments is Khepera, a miniature mobile robot
[35]. It has a circular shape (Figure 1), with a diameter of 55 mm, height of
30 mm, and weight of 70 g, and is supported by two wheels and two small
Teflon balls. The wheels are controlled by two DC motors with incremental
encoder (10 pulses per mm of advancement of the robot), and can rotate in
both directions. In the basic configuration, the robot is provided with eight
infrared sensors, six positioned on one side of the robot (front), the remaining
two on the other side (back). Each sensor can function in two modalities: it
can emit and measure reflected infrared light and it can measure the infrared
light component of the ambient light. When functioning in the first modality,
it is called a proximity sensor because it is more active when it is closer to an
object; when functioning in the second modality, it is called a light intensity
sensor because it gives a rough indication of the ambient light intensity at its
location. A Motorola 68331 controller with 256 Kbytes of RAM and 512 Kbytes
ROM manages all the input-output routines and can communicate via a serial
port with a host computer.

Khepera was attached via a serial port to a Sun SparcStation 2 by means
of a lightweight aerial cable and specially designed rotating contacts (see [34]



for more detailed descriptions of technical issues related to the experiments
described in this paper). In this way we could exploit the power and disk
size available in a workstation by letting high-level control processes (genetic
operators, neural network activation, variables recordings) run on the main
station while low-level processes (sensor-reading, motor control, and other real
time tasks) run on the on-board processor (Figure 2). Thus, while the robot
was operating, we could keep track of all the populations of organisms that were
born, tested, and passed to the genetic operators, together with their “personal
life files”. At the same time, we could also take advantage of specific software
designed for graphic visualization of trajectories and sensory-motor status while
the robot was evolving [7]. As already stated in section 2.2 the fact that the
robot depended on an external source of energy does not affect its autonomy.
Also, for what concerns Khepera, the robot is not aware of where its own “brain”
is located as long as it is connected to its own sensors and motors.!

The evolutionary procedure was a standard genetic algorithm as described by
Goldberg [21] with fitness scaling and roulette wheel selection, biased mutations
[36], and one-point crossover. Each individual of a population was in turn
decoded into the corresponding neural networks, the input nodes connected
to the robot sensors, the output nodes to the motors, and the robot was left
free to move for a given number of steps (motor actions) while its fitness ®
was automatically recorded. Each motor action lasted 300 ms. Between one
individual and the next, a pair of random velocities was applied to the wheels
for 5 seconds.

3.3 Automatic Evolution of Behavior

The first experiment was chiefly aimed at testing the evolutionary approach
on a real mobile robot and assessing advantages and difficulties (see [17] for
more details). We decided to evolve a neural network with a single layer of
weights to perform straight navigation and obstacle avoidance. The robot was
put in an environment consisting of a sort of circular corridor whose external
size was approx. 80x50 cm large (Figure 3). The walls were made of light-blue
polystyrene and the floor was a thick gray paper. The robot could sense the
walls with the IR proximity sensors. Since the corridors were rather narrow
(8-12 cm), some sensors were slightly active most of the time. The environment
was within a portable box positioned in a room always illuminated from above
by a 60-watt bulb light. A serial cable connected the robot to the workstation
in our office a few rooms away.

The fitness function ¢ was explicitly designed for straight navigation and
obstacle avoidance

® = V(l—\/Av)(l—i) )
0 <V <1
0 < Av < 1
0 < i <1

IThe software implementing the genetic operators and the neurocontroller [15] could be
easily slimmed down and downloaded into the robot processor.



Figure 3: Environment of the experiment.

where V' is a measure of the average rotation speed of the two wheels, Av is
the absolute value of the algebraic difference between the signed speed values
of the wheels (positive is one direction, negative the other), and i is the ac-
tivation value of the proximity sensor with the highest activity. The function
® has three components: the first one is maximized by wheel speed (but not
direction of wheel rotation), the second by straight direction, and the third by
obstacle avoidance. The second component was very important. Without it, a
robot could maximise its own fitness by simply spinning on itself at very high
speed on a location far from obstacles, a trivial solution which can be found by
simply setting a very high threshold value for one of the motor neurons and a
strong synaptic value from any of the sensors to the other motor neuron. The
square root was introduced after a series of trials and errors and was aimed at
emphasising penalisation of small differences between the two wheel rotations
for that specific training environment. Without it, the controller would set in
sub-optimal solutions consisting in large circular trajectories.

In less than 50 generations, corresponding to approximately 24 hours of un-
interrupted evolutionary adaptation, the best neurocontrollers of the population
displayed smooth trajectories around the arena without hitting the walls (Fig-
ure 4). Thanks to the generalisation properties of artificial neural networks,
these neurocontrollers could navigate in any type of environment (in differ-
ent light conditions and with obstacles of different reflectance). These results
were replicated several times by restarting the experiment from new randomly
initialised populations. The resulting controllers cannot be properly called au-
tonomous, but evolution did autonomously find a number of interesting solutions
to the problem of navigation. For example, although the robot had a perfectly
circular shape and the wheels could rotate in both directions, all the best neu-
rocontrollers developed a frontal direction of motion corresponding to the side
with more sensors, which gave a better resolution of the sensory information
permitting better obstacle detection.
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Figure 4: The trajectory performed by one of the evolved robots. Segments
represent successive displacements of the axis connecting the two wheels. The
direction of motion is anti-clockwise.

3.4 Evolution of an Autonomous System

Having ascertained that evolutionary techniques can be successfully applied to a
real mobile robot, we decided to give the system more autonomy of development
by applying the following changes:

e simplify the fitness function by eliminating the middle component;

e provide the robot with its own physiology, that is a limited life duration
controlled by a rechargeable battery;

e make the environment more “interesting” by introducing a battery charger
and a landmark.

The environment, employed for evolutionary training consisted of a 40x45 cm
arena delimited by walls of light-blue polystyrene and the floor was made of
thick gray paper (Figure 5) as in the previous experiment. A 25 cm high tower
equipped with 15 small DC lamps oriented toward the arena was placed in one
corner. The room did not have other light sources. Under the light tower, a
circular portion of the floor at the corner was painted black. The painted sector,
which represented the recharging area, had a radius of approximately 8 cm and
was intended to simulate the platform of a prototype battery charger. When
the robot happened to be over the black area, its simulated battery became
instantaneously recharged. The simulated battery was characterised by a fast
linear discharge rate (max duration: approx. 20 seconds). In order to truncate
the lives of individuals who would just sit on the battery charger or manage to
recharge themselves, we set an upper life limit of 60 seconds for each robot, after
which the next individual in the population was tested. By simulating the bat-
tery instead of using the onboard available batteries (which lasted much longer
and also required much longer recharging time), artificial evolution produced
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Figure 5: The environment of the experiment on battery recharge. The light
tower is positioned in the far corner over the recharging area which is painted
black. There are no other light sources in the room.

interesting results in approximately 240 hours instead of 6 years! The neuro-
controller received input from the eight proximity sensors, from two ambient
light sensors (each positioned on one side of the robot), from a detector of floor
brightness placed underneath the robot platform, and from a sensor of battery
level; these inputs projected to five internal units interconnected by lateral and
recurrent connections, which then projected to two motor neurons controlling
the wheels. The simplicity of the fitness function employed in this experiment
may be exploited by a robot quickly spinning on the same spot far from the
walls. The fitness function returned almost null values when the robot was on
the battery charger (because it was positioned on a corner near the walls).
After ten days of continuous evolution (approx. 240 generations), the best
neurocontroller of the population displayed interesting homing behaviour. By
providing Khepera with a small “helmet” which gives us precise indication of
where it is in the environment, we can correlate internal neural activity with
its behaviour while it is autonomously moving in the environment. Figure 6
plots a typical trajectory of the robot (bottom-right) along with the activation
of the five internal hidden units. Starting with a fully charged battery, the robot
moves around the arena covering the whole area without hitting the walls and
accurately avoiding the recharging zone. However, as soon as the battery level
reaches a certain minimum value, the robot orients itself toward the recharging
area and proceeds towards it on a straight line. Once recharged, it quickly exits
the recharging area and resumes its large trajectories across the arena. Arrival to
the recharging area is always extremely precise, approximately 1 second before
total discharge. Since the trajectories around the environment are never the
same, the robot autonomously decides what is the residual battery level when
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neuron 1

neuron 4

7 neuron trajectory

Figure 6: Visualisation of the activity of hidden units while the robot moves
in the environment. Darker squares mean higher node activation. The robot
starts in the lower portion of the arena. The bottom-right window shows the
trajectory only. The recharging area is in the top left corner (Adapted from

[18]).
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Figure 7: Contour map of the activation of neuron 5 for 2 different battery levels.
The measurements were taken by positioning the robot at several evenly-spaced
locations in the environment (depicted at the bottom). When the robot is facing
the recharging area, the activity map does reflect the paths taken by the robot
(Adapted from [18]).

it must move toward the recharging area, depending on where the robot is in
the environment. When it is far away from the recharging area, Khepera will
begin to turn and move toward it at a much higher residual level than when it is
closer to the area. From these and other tests reported in [18], it becomes clear
that the robot accurately avoids the recharging area if the battery level has not
yet reached a certain minimum level, but it goes toward it if that level has been
surpassed. By looking at the internal dynamics of the neurocontroller while
the robot freely moves in the environment (Figure 6), we notice that neuron 5
becomes active shortly before the robot starts orienting toward the recharging
area. Other neurons display significative changes of activity levels only when
the robot is close to the walls and are thus responsible for the quite automatic
behaviour of obstacle avoidance. By positioning the robot at various locations in
the environment and measuring the activity of neuron 5 for a single instant, we
can see that it has developed a map of the environment which varies depending
on the orientation of the robot, but not on the battery level (Figure 7). Thus,
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trajectory

Figure 8: Visualisation of the activity of hidden units while the robot moves
in the environment. Darker squares mean higher neuron activation. The robot
starts in the lower portion of the arena. The bottom-right window shows the
trajectory only. The recharging area is in the top left corner (Adapted from

[18]).

neuron 5 creates an internal representation of where the robot is and correlates it
with battery level information in order to switch the robot behaviour from simple
navigation and obstacle avoidance into a precise and timely homing trajectory.

The switch from a rather automatic behaviour into an active “home-seeking”
behaviour can be seen in a simple test where the robot is put in the environment
with the light off. Now, its infrared proximity sensors can still detect the walls,
but there is no more information for homing. Figure 8 shows the trajectory and
neuron activations for this test. Initially, the robot is not disturbed by the dark
environment and it performs the usual navigation and obstacle avoidance across
the arena. As soon as the battery reaches a certain residual charge level (which
now is much higher than in normal light condition), neuron 5 becomes active
and the robot starts to perform a perfectly circular trajectory in the middle of
the environment until it eventually stops operating. This circular path is a very
smart exploratory strategy because, if there was some some weak light source
in the arena, the robot could detect it and follow its gradient.
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Figure 9: Trajectories of best individual of generation 240 in three environmental
conditions. Left: Test in training conditions, from Figure 6. The robot starts
with a full battery in the bottom right corner (only the first 50 actions are
displayed). Centre: The robot starts in the centre of the environemnt with an
almost discharged battery; the battery is not automatically recharged when the
robot arrives on the charging area. Right: The light source is positioned on the
top right corner, but the charging area remains at the original location.

We can do some further tests to check the reactions of the robot in unex-
pected situations (Figure 9). If the battery is not automatically recharged once
the robot has arrived to the black area, it will continue to stay on it waiting
for the recharge until it will eventually stop operating (Figure 9, centre). Sim-
ilarly, if the light tower is moved to a different corner of the environment, but
the recharging area remains in the same position, the robot will move toward
the light; as soon as it does not detect the black painted surface, it will start
searching in the surroundings until it will eventually stop operating (Figure 9,
right).

Although re-adaptation to changes of landmark position can be easily achieved
in a few generations of continued evolution [16], the system would greatly ben-
efit from a combination of phylogenetic evolution and ontogenetic learning.
The basic idea is that, instead of evolving neurocontrollers with fixed synap-
tic weights, it might be possible to evolve plastic networks that change their
synaptic strengths according to evolved plasticity rules while the agent inter-
acts with the environment. Preliminary successful results have already been
achieved using the environment and fitness function described in section 3.3
[19], but they are not reported here because they were mainly aimed at assessing
technical feasibility rather than at developing a fully autonomous agent.

None of the abilities and behaviours described above were explicitly de-
scribed in the fitness function. However, the fact that longer life duration could
correspond to the accumulation of more fitness points, evolutionary pressure
selected individuals that:

e autonomously discovered the presence of the recharging area;

e correlated internal physiological requirements with the robot location in
the environment to decide when to switch behaviour so as to avoid battery
discharge;

e created an internal representation of the environment to perform efficient
homing navigation;
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e could substantially change their behaviour depending on their physiolog-
ical state (battery level);

e autonomously decomposed the global behaviour in subgoals, i.e. auto-
matic navigation with obstacle avoidance and homing navigation, which
were managed by different internal processes;

e could actively search for missing information;

e displayed meaningful behaviours when “environmental reward” (battery
recharge) was not available, in one case waiting for the expected recharge,
and in the other case searching for the sensory cues associated with recharge.

These abilities reflect the type of activity and behavioural outcomes that were
listed as indicators of conscious awareness in section 1.1; also, the algorithm that
controls the robot was created in accordance with the prerequisites discussed in
section 2.

4 What is Wrong with Artificial Consciousness?

In this paper, I have emphasised a specific aspect of consciousness, i.e. aware-
ness of one’s own position with respect to the environment, using evolutionary
and behavioural arguments; I have then argued that some of today’s robots
might indeed exhibit such conscious ability even when their internal activity
can be described by an algorithm, provided that the prerequisites of embodi-
ment, autonomy, and adaptation are met. Finally, I have given some examples of
artificially evolved neurocontrollers whose internal dynamics and corresponding
behaviours match the requirements for conscious awareness. In my arguments,
purposeful interaction with an environment plays a fundamental role. Whereas
Penrose, who thinks that consciousness cannot be understood and replicated
by means of current algorithmic computation, considers the environment as
a potential source (quickly dismissed) of non-computability for an algorithmic
system which would then raise the possibility of conscious phenomena [39, pp.
152-154], the environment here is important because it gives meaning to an
otherwise abstract processing system and it drastically affects its processing
modalities. Behaviour, not thinking, is the basis of conscious activity.

My conclusions are intentionally provocative. The essence of my argument
is that if there is something wrong with the notion of consciousness in an
algorithm-driven machine, the problem is not to be found in the algorithm
or in the machine, but in the definition of consciousness. In all the definitions
of consciousness I come across, there is always some element of introspection
and subjectivism, if not poetry, which makes difficult any scientific conclusion
on this issue and complicates the debate. Although here I have tried to take a
definition of consciousness (or rather “proto-consciousness”) which could form
the basis for debate or at least scientifically-motivated criticism, it is not clear
whether one should introduce a new label like “consciousness” instead of simply
using well-understood concepts like attention, cross-modal fusion, coordination,
planning, etc.

What I have attempted to show is that current scientific and technological
methods are sufficient to recreate artificial forms of life that display characteris-
tics of biological intelligence. Therefore, it cannot be ruled out that these same
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artificial organisms could display forms of consciousness, whatever conscious-
ness might be. After all, my conclusion is not a big conceptual advancement
with respect to what Thomas Huxley said in 1874 during an invited address at
the meeting of the British Society in Belfast under the title “On the hypothesis
that animals are automata, and its history”

One does not battle with drummers; but I venture to offer a few
remarks for the calm consideration of thoughtful persons. It is quite
true that, to the best of my judgement, the argumentation which
applies to brutes [animals] holds equally good of men; and, therefore,
that all states of consciousness in us, as in them, are immediately
caused by molecular changes of the brain substance. [...] We are
conscious automata, endowed with free will in the only intelligible
sense of that much abused term—inasmuch as in many respects we
are able to do as we like—but nonetheless parts of the great series
of causes and effects which, in unbroken continuity composes that
which is, and has been, and shall be—the sum of existence [from
[25], partially reprinted in [5, p. 20]].
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