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We investigate the dynamics of competitive co-evolution in the framework of
two miniature mobile robots, a predator with a vision system and a faster prey
with proximity sensors. Both types of robots are controlled by evolutionary
neural networks. A variety of efficient chase-escape behaviors emerge in few
generations. These results are analyzed in terms of variable fitness landscapes
and selection criteria. A new vision of artificial evolution as generation and
maintainance of adaptivity is suggested and contrasted with the theory and
practice of mainstream evolutionary computation. In a second stage, different
types of ontogenetic changes applied to the robot controllers are compared
and the results are analyzed in the context of competitive co-evolution. It is
shown that predators benefit from forms of directional changes whereas prey
attempt to exploit unpredictable behaviors. These results and their effect on co-
evolutionary dynamics are then considered in relation to open-ended evolution
in unpredictably changing environments.

1.1 Introduction

In a competitive co-evolutionary system the survival probability of a species
is affected by the behavior of other species. In the simplest scenario of only
two competing species, such as a predator and a prey, or a parasite and a host,
the survival probability of an individual is tightly related to the behaviors of
the competitors both on the ontogenetic and on the evolutionary time scale.
Behavioral changes in one lineage might affect the selection pressure on the
other lineage and, if the other lineage responds with counter-adaptive features,
one might observe what some biologists call a “a co-evolutionary arms race”
[4]. Consider for example the well-studied case of two co-evolving populations
of predators and prey [25]: the success of predators imply the failure of prey
and viceversa. Evolution of a new behavior in one species represents a new
challenge for the other species which is required to evolve new strategies. The
continuation of this co-evolutionary process may produce increasingly higher
levels of complexity in the behavioral strategies of the two competing species
(although this is not guaranteed).

On the ontogenetic time-scale, it has been argued that pursuit-evasion con-
tests might favor the emergence of “protean behaviors”, that is behaviors which
are adaptively unpredictable [5]. For example, prey could take advantage of
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unpredictable escape behaviors based on short sequences of stochastic motor
actions. On the other hand, predators could take advantage of adaptation abili-
ties that occur on a faster time-scale than generations.

The purpose of this research is to investigate the dynamics of compet-
itive co-evolution and the effects of ontogenetic adaptive changes from the
perspective of artificial evolution. The testbed chosen for our experiments is a
predator-prey scenario where two mobile robots, each representing an evolv-
ing population, compete with each other to – respectively – chase or escape the
other robot. The fact of using physical robots constraints us to use only local
computation, simple assumptions on the rules of the game, and a very gen-
eral (simple) fitness function. It will be shown that these “physical constraints”
have significant effects on the outcome of the experiments. In order to ac-
celerate the exploration of different experimental conditions and run multiple
experiments for statistical analysis, we have resorted to realistic simulations of
the physical setup.1

We shall show that competitive co-evolution alone (without ontogenetic
adaptive changes) can quickly develop efficient chase and evasion strategies
in both robot species. A retrospective analysis of the fitness landscape after
a co-evolutionary run will give some hints on the incremental aspects of co-
evolutionary dynamics. We will also see that using a simple fitness function
allows predators to evolve non-trivial behaviors. However, after some time
(generations) co-evolutionary dynamics fall into a limit cycle where preda-
tors and prey rediscover over and over again the same class of strategies. After
explaining the adaptive power of this solution, we will investigate how the in-
troduction of ontogenetic adaptation will affect the co-evolutionary dynamics
and show that predators and prey exploit different types of ontogenetic adap-
tive changes. Finally, we will discuss the role of ontogenetic adaptation in the
perspective of co-evolving individuals.

The Red Queen

From the computational perspective of artificial evolution, the reciprocal ef-
fects of changes induced by one species on the selection pressure of the other
species introduce novel complexities with respect to the case of a single species
evolved in a static environment. In the latter case (figure 1.1, left), there is a sta-
ble relationship between the traits of an organism and its reproduction success.

�
The software allows us to switch between physical and simulated experiments by toggling the

value of a single variable.
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In this case evolution is often seen as a force driving the population towards
combinations of traits that maximize reproduction success [15].
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Figure 1.1
Left: Reproduction probability of a single species I under evolution in a static environment.
Evolution drives the organisms towards zones (combinations of traits) corresponding to higher
reproduction success. Right: Reproduction probability of species I under competitive
co-evolution. The reproductive value (fitness) of certain trait combinations can be affected by
adaptive changes in the competing species C, resulting in a continuous modification of the
evolutionary surface. This phenomenon is often called the Red Queen Effect [34].

Instead, in competitive co-evolution the relationship between traits and re-
productive success of the organism can change over time. Behavioral changes
in one species could make some traits of the competing species no longer
useful for reproductive success (figure 1.1, right). It might thus happen that
progress achieved by one lineage is reduced or eliminated by the competing
species. This phenomenon is sometimes referred to as the “Red Queen Effect”
[34] (from the imaginary chess figure, invented by novelist Lewis Carroll, who
was always running without making any advancement because the landscape
was moving with her).

From a computational perspective, it would be interesting to understand
whether the Red Queen Effect can seriously limit the incremental adaptive
characteristics of competitive co-evolution. Theoretical models of competitive
co-evolution (based on Lotka-Volterra equations [23, 35]) study how popula-
tion density (i.e., the number of individuals) varies as a function of pre-defined
abilities of the two competing species [26]. These models cannot help us to
predict whether artificial competitive co-evolution can be exploited for the pur-
pose of evolving increasingly more complex behaviors. Therefore, at the cur-
rent stage, experimental work still seems to be a powerful tool to investigate
these issues.
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Related Work

Prospects of continuous and incremental progress have triggered several at-
tempts to apply competitive co-evolution to difficult problems. Hillis [19] re-
ported a significant improvement in the evolution of sorting programs when
parasites (programs deciding the test conditions for the sorting programs) were
co-evolved, and similar results were found on co-evolution of players for the
Tic-Tac-Toe and Nim games [1, 31]. Recently, Funes et al. [14] have studied
co-evolution of machines and humans competing over the Internet and reported
strategy improvement in both populations over time.

In the context of adaptive autonomous agents, Koza [20, 21] applied Ge-
netic Programming to the co-evolution of pursuer-evader behaviors, Reynolds
[30] observed in a similar scenario that co-evolving populations of pursuers
and evaders display increasingly better strategies, and Sims used competitive
co-evolution to develop his celebrated artificial creatures [33]. Cliff and Miller
realised the potentiality of co-evolution of pursuit-evasion tactics in evolution-
ary robotics. In a series of papers, they described a 2D simulation of simple
robots with evolvable “vision morphology” [25] and proposed a new set of
performance and genetic measures in order to describe evolutionary progress
which could not be otherwise tracked down due to the Red Queen Effect [2].
Recently, they described some results where simulated agents with evolved
eye-morphologies could either evade or pursue their competitors from some
hundred generations earlier and proposed some applications of this method-
ology in the entertainment industry [3]. However, these experiments revealed
more difficulties than expected and not all experimental runs produced suc-
cessful pursuers and evaders. Also other authors have stressed that competitive
co-evolution strongly depends on the scoring criterion and can easily degener-
ate in mediocre solutions [6].

In this article we address the realization of physical mobile robots that
co-evolve in competition with each other (figure 1.2). Although the results
presented in the following pages are based on both real and simulated experi-
ments, the physical implementation constrains our design in ways that signifi-
cantly affect the outcome of the experiments and allow us to explore a variety
of issues related to the autonomy and adaptation of artificial organisms.
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Figure 1.2
Right: The Predator is equipped with the vision module (1D-array of photoreceptors, visual
angle of ����� ). Left: The Prey has a black protuberance which can be detected by the predator
everywhere in the environment, but its maximum speed is twice that of the predator. Both
Predator and Prey are equipped with 8 infrared proximity sensors.

1.2 Experimental set-up

We employed two Khepera robots, one of which (the Predator) was equipped
with a vision module while the other (the Prey) did not have the vision module,
but its maximum speed was set twice that of the predator (figure 1.2). Both
robots were also provided with eight active (emitting-measuring) infrared
proximity sensors (six on the front side and two on the back). These sensors
could detect a wall at a distance of approximately 3 cm and another robot
at a distance of approximately 1 cm because of its smaller reflection surface.
The two robots evolved within a square arena of size 47 x 47 cm with high
white walls so that the predator could always see the prey (if within the visual
angle) as a black spot on a white background (figure 1.3). The two robots were
connected to a desktop workstation equipped with two serial ports through a
double aerial cable. Aerial cables provided the robots with electric power and
data communication to/from the workstation. The two cables ended up in two
separate rotating contacts firmly attached to the far ends of a suspended thin
bar. Both wires then converged into a single and thicker rotating contact at the
center of the bar and ended up in the serial ports of the workstation and in
two voltage transformers (on the left of figure 1.3). The thick rotating contact
allowed the bar to freely rotate around its own center while the remaining two
contacts allowed free rotations of the two robots (figure 1.4). Attached under
the bar was also a halogen lamp (20 W output) providing illumination over the
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Figure 1.3
Setup to run co-evolutionary experiments on the physical robots. Top: the suspended bar with the
three rotating contacts and a white box casting light over the arena. Left: two voltage
transformers for powering the robots and the halogen lamp. Background: the workstation on
which the two genetic algorithms run. The robots in the arena are equipped with contact detectors
and wrapped in white paper to increase the reflection of infrared light.

arena.2 Both robots were also fitted with a conductive metallic ring around their
base to detect collisions. An additional general input/output module provided
a digital signal any time the two robots hit each other (but not when they
hit the walls). The motor bases of both robots were also wrapped by white
paper in order to improve reflection of infrared light emitted by the other robot
(figure 1.3).

The vision module K213 of Khepera is an additional turret which can be
plugged directly on top of the basic platform. It consists of a 1D-array of 64
photoreceptors providing a linear image composed of 64 pixels of 256 gray-
levels each, subtending a view-angle of �	��
 . The optics are designed to bring
into focus objects at distances between 5cm and 70cm while an additional
sensor of light intensity automatically adapts the scanning speed of the chip
to keep the image stable and exploit at best the sensitivity of receptors under�

No special care was taken to protect the system against external light variations between day
and night.
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Figure 1.4
The suspended bar with the three rotating contacts and a white box casting light over the arena.

a large variety of illumination intensities. However, a reliable image at lower
illumination comes at the cost of a slower scanning speed of the 64 receptor
values. This means that the image would be updated less frequently, thus
giving an advantage to the prey (which indeed exploited it during exploratory
experiments). This is the reason why we added the halogen lamp to the rotating
bar over the arena. In the simple environment employed for these experiments,
the projection of the prey onto the artificial retina of the predator looks like a
valley (top of figure 1.5) that indicates the relative position of the prey with
respect to the predator.

Controller architecture, evolutionary algorithm, and method

Both predator and the prey controllers were simple neural networks of sigmoid
neurons. The input signals coming from the eight infrared proximity sensors
(and from the vision module for the predator) were fed into two motor neurons
with lateral and self-connections. The activation of each output unit was used
to update the speed value of the corresponding wheel (forward from 0.5 to 1.0,
backward from 0.5 to 0.0). Only the connection strengths were evolved. The
maximum speed available for the prey was set to twice that of the predator.

The input layer of the predator was extended to include information com-
ing from the vision module. The activation values of the 64 photoreceptors
were fed into a layer of five center off/surround on neurons uniformely dis-
tributed over the retinal surface (bottom of figure 1.5). The spatial sensitivity
of each neuron was approximately 
���
 and the center/surround ratio filtered
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Figure 1.5
Top: A snapshot of the visual field of the predator looking at the prey. The heights of vertical bars
represent the activations of the 64 photoreceptors. The black protuberance of the prey looks like a
large valley. The small dip on the right of the valley corresponds to the cable. In the illumination
conditions of the experiment, the image is refreshed at a rate of approximately 15 Hz. Bottom:
Visual filtering with five center/off surround/on neurons. A neuron is maximally activated when
the projection of the prey falls within its receptive field. The most active neuron is set to 1, all the
remaining neurons are set to 0 in a Winner-take-All fashion.

out low contrast features, such as those generated by weak shadows, the ca-
ble of the prey, and other imperfections of the walls. Each neuron generated a
binary output of 1 when the prey was within its sensitivity field, and 0 other-
wise. These five outputs were fed into the motor neurons along with the signals
coming from the infrared sensors.

Given the small size of the neural controllers under co-evolution, we used
direct genetic encoding of connection strengths. Each connection (including
recurrent connections and threshold values of output units) was encoded on
five bits, the first bit determining the sign of the synapse and the remaining
four bits its strength. Therefore, the genotype of the predator was 5 times
[30 synapses + 2 thresholds] = 160 bits long while that of the prey was 5
times[20 synapses + 2 thresholds] = 110 bits long. Two separate populations
of � individuals each were co-evolved for � generations. Each individual
was tested against the best competitors from � previous generations (a similar
procedure was used in [33, 30, 2]) in order to improve co-evolutionary stability.
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At generation 0, competitors were randomly chosen from the initial population,
and later on they were randomly chosen from the pool of best individuals from
previous generations (2 at the 3rd generation, 3 at 4th generation, . . . , 49 at
50th generation, etc.).

In our previous work (e.g., [8]) both the genetic operators and the robot
controllers were run on the workstation and the serial cable was used to
exchange sensory and motor information with the robot every 100 ms or
longer. This method could not work in the current setup because transmission
times and serial processing of the controller states for both robots on the same
workstation CPU significantly delayed and disturbed the interaction dynamics
between the two robots.

downloading.eps
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prey predator

- genetic operators
- data storage

- onboard control
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twin serial linkfitness

decoded controllers

Figure 1.6
The genetic operators run on the main workstation, which also manages data storage and
analysis; the neural controllers are automatically downloaded on the microcontrollers of the
robots through the serial link. In the predator, an additional microprocessor on the vision module
performs visual pre-processing and sends data at 15 Hz frequency to the main microcontroller.

Therefore, we splitted the computational load by running the genetic op-
erators on the workstation CPU and the neural network on the microcontroller
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of each Khepera robot, a Motorola MC68331 equipped with 128K ROM and
128K RAM. The speed of the sensorimotor cycles was set to approximately
15 Hz for both prey and predator. For the predator, image acquisition and
low-level visual preprocessing were handled by a private 68HC11 processor
available on the K213 vision turret (see [11] for more details of this modular
architecture).

At the beginning of a co-evolutionary run, the two neurocontrollers, with
the connection strengths initialized to zero, were downloaded into the corre-
sponding robots. Two genetic algorithms (with the same parameters in these
experiments) were then started on the workstation CPU where each genetic
string was decoded into a set of connection strengths and sent through the se-
rial cable to the corresponding robot. Upon receipt of the connection strengths,
the internal clock (a cycle counter) of the prey robot was reset to zero and each
robot began to move. A tournament ended either when the predator hit the prey
or when 500 sensorimotor cycles (corresponding to approximately 35 seconds)
were performed by the prey without being hit by the predator. Upon termina-
tion, the prey sent back to the workstation CPU the value of the internal clock
(ranging between 0 and 499) which was used as fitness measure for both prey
and predator. Upon receipt of the prey message, the workstation decoded the
next pair of individuals and sent them back to both the predator and prey. In
order to reposition the two competitors at the beginning of each tournament,
a simple random motion with obstacle avoidance was implemented by both
robots for 5 seconds.

The fitness function ��� (where � indicates the species) was based only on
the average time to contact over � tournaments,

������� 
�
�� �!#"

$  %	&	&(' ����)*� 
�
�� �!#"
+ 
-, $  %.&/&102'

where $  is the number of sensorimotor cycles performed in tournament � .
This value is normalized by the maximum number of sensorimotor cycles
available (500) in the case of the prey 354 , and the complement in the case
of the predator 376 , and further averaged over the number of tournaments �
for both robots. This fitness function rewarded prey capable of resisting longer
before being hit by predators, and predators capable of quickly hitting prey.
This simple function differs from those used by Cliff and Miller who included
distance between the two individuals in order to evolve pursuit and escape
behaviors. In our physical setup it was impossible to know the exact distance
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between the two robots. It will be shown that this subtle difference significantly
affects the evolved behaviors.

The fitness values were always between 0 and 1, where 0 means worst.
Individuals were ranked after fitness performance in descending order and the
best 20% were allowed to reproduce by making an equal number of offspring
in order to keep the population size constant. One-point crossover was applied
on randomly paired strings with probability 398:� &7; � , and random mutation
(bit switching) was applied to each bit with constant probability 37<=� &>; &/% .
Software model

A software model of this physical setup was developed in order to test dif-
ferent experimental conditions and several replications with different random
initializations, and to carry out explorations of the fitness landscape. In order to
ensure a good match between simulations and physical experiments, we used
a sampling technique proposed by Miglino et al. [24].

Each robot was positioned close to a wall of the environment and per-
formed a full rotation by steps of 
 & 
 . At every step, all sensor values were
recorded and stored in a table. The robot was then positioned 2 mm from the
wall and the same procedure was applied again. This technique was repeated
every 2 mm up to a distance of 4 cm (more than the maximum sensitivity of the
infrared sensors). The final table stored all sensor values for 20 distances from
the wall and, at each distance, for 180 uniformly-spaced orientations. Another
table was built in the same way by positioning the robot in front of the other
robot. Notice that the combination of these two tables is sufficient to repre-
sent every possible situation that a robot might encounter in this environment
(flat wall, corner, other robot, and combinations of them). These tables were
used to retrieve appropriate sensor values from the robot current position in
the simulator. The activation of the five vision neurons was computed using
trigonometric functions. The main difference between the software model and
the physical implementation was that in the former case the initial position of
the two robot was always the same (in the center of the arena, 5 cm apart from
each other), but at different random orientations, whereas in the latter case the
two robots moved randomly for five seconds avoiding obstacles.

In a set of preliminary comparisons, it was found that results obtained with
the software model did not differ significantly from the results obtained with
physical robots both in terms of co-evolutionary dynamics and in terms of
behavioral strategies. More details will be given in the next section.
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1.3 Co-evolutionary results

An exploratory set of experiments were performed in simulation to under-
stand the influence of various parameters, such as the number of tournaments
with opponents from previous generations, crossover and mutation probabili-
ties, replicability of the experiments, etc. A detailed analysis of these data is
provided in [12]. Here we provide only a summary of the basic results and
compare them to the results obtained with the real robots. Two populations
of 100 individuals each were co-evolved for 100 generations. Each individual
was tested against the best opponents from the most recent 10 generations.
Figure 1.7 shows the average population fitness (left graph) and the fitness of
the best individual at each generation. For each generation, the fitness values
of the two species do not sum to one because each individual is tested against
the best opponents recorded from the previous 10 generations.
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Figure 1.7
Co-evolutionary fitness measured in simulation. Left: Average population fitness. Right: Fitness
of the best individuals at each generation. pr=predator; py=prey.

As expected, initially the prey score very high, whatever they might do,
because the predators are not good at catching them. For the same reason,
initially the predators score very low. In less than 20 generations a set of
counter-phase oscillations emerge in the two populations, as reported by other
authors [33, p. 36] too, but we never observed dominance of one population
on the other in any of our evolutionary runs (even when continued for 500
generations). However, the fitness of the prey always tended to generate higher
peaks than that of the predator due to the position advantage (even in the case of
the worst prey and best predator, the latter will always take some time to reach
the prey). A similar pattern is observed for the fitness of the best individuals
(right graph).
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These data are not sufficient to assess whether there is real progress.
The only information that they provide is the relative performance of the
two species within a (moving) window of ten generations. They indicate that
progress in one species is quickly counter-balanced by progress in the com-
peting species, but do not tell us whether evolutionary time generates true
progress, or how to choose the best prey and the best predator out of all evolved
individuals.
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Figure 1.8
Master Fitness for species evolved in simulation. Each data point is the average fitness of all
tournaments of the correponding individual against all the best 100 opponents recorded during
co-evolution.

A simple way to learn more about absolute performance of the two species
consists of organizing a Master Tournament where the best individuals for
each generation are tested against the best competitors from all generations.
For example, the best prey of generation 1 is tested against 100 best preda-
tors and the scores of these tournaments are averaged. If there is true progress,
i.e. if a species develops strategies capable of defeating an increasing number
of competitors, the Master Fitness should display an ascending trend. How-
ever, Master fitness values for these experiments (figure 1.8) indicate that –in
absolute terms– individuals of later generations are not necessarily better than
those from previous ones. In other words, individuals of early generations have
strategies that can defeat individuals of later generations.

Master Fitness can be used to tell a) at which generation we can find the
best prey and the best predator; b) at which generation we are guaranteed
to observe the most interesting tournaments. The first aspect is important for
optimization purposes, the latter for pure entertainment. The best individuals
are those reporting the highest fitness when also the competitor reports the
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highest fitness (here the best prey and predators are to be found at generation
20, 50, and 82). Instead, the most entertaining tournaments are those that take
place between individuals that report the same fitness level, because these are
the situations where both species have the same level of ability to win over
the competitor (here the most entertaining tournaments are guaranteed around
generation 20 and around generation 50).
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Figure 1.9
Co-evolutionary fitness measured on the real robots. Left: Average population fitness. Right:
Fitness of the best individuals at each generation. pr=predator; py=prey.

The results with the real robot displayed a trend similar to that observed
in simulations. Two populations (one for the prey, the other for the predator)
of 20 individuals each were co-evolved for 25 generations (P(crossover)=0.6;
P(mutation)=0.05 per bit) in approximately 40 hours of continuous operation
(time might vary in different replications, depending on the relative perfor-
mances of the two species). Each individual was tested against the best com-
petitors from the most recent 5 generations. Figure 1.9 shows the average fit-
ness of the population (left graph) and the fitness of the best individual (right
graph) along generations for both species. Very quickly the two scores become
closer and closer until after generation 15 they diverge again. A similar trend
is observed for the fitness of the best individuals at each generation.

25 generations are sufficient to display one oscillatory cycle. Once the
relative fitness values of the two species reach the same value, one party
improves over the other for some generations until the other counter-adapts
(the best predators of the last three generations already show a fitness gain).
Figure 1.10 shows the Master Fitness values for the two robot species. The
best prey and predators can be found at generation 20 which also hosts the
most entertaining tournaments. It can also be noticed that fitness oscillations
of the best individuals between generation 9 and 16 (figure 1.9, right) do not
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Figure 1.10
Master Fitness for species evolved on the real robots. Each data point is the average fitness of all
tournaments of the correponding individual against all the best 25 opponents recorded during
co-evolution.

show up in the Master Fitness, indicating that they are due to tight interactions
between the two competing species which can amplify the effects of small
behavioral differences.

The behaviors displayed by the two physical robots at significative points
of co-evolution (for example, those corresponding to the overall best indi-
viduals and to the most entertaining tournaments) are only a subset of those
recorded in simulation. The presence of much larger noise in the real envi-
ronment filters out brittle solutions that are instead stable in simulations. Nev-
ertheless, all strategies displayed by the real robots can be found also in the
experiments performed in simulation.3 Figure 1.11 shows some typical tour-
naments recorded from individuals at generation 13, 20, and 22. At generation
13 the prey moves quickly around the environment and the predator attacks
only when the prey is at a certain distance. Later on, at generation 20, the prey
spins in place and, when the predator gets closer, it rapidly avoids it. Prey that
move too fast around the environment sometimes cannot avoid an approaching
predator because they detect it too late (infrared sensors have lower sensitiv-
ity for a small cylindrical object than for a large white flat wall). Therefore,
it pays off for the prey to wait for the slower predator and accurately avoid it.
However, the predator is smart enough to perform a small circle after having
missed the target and re-attack until, by chance, the prey is caught on one of
the two sides (where wheels and motors do not leave space for sensors). The
drop in performance of the predator in the following generations is due to a

� Although individuals evolved in simulation do not behave in the same way when downloaded
into the real robots.
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Figure 1.11
Typical strategies of the best predator and prey in the experiments with real robots. Black disk is
the predator, white disk is the prey. Trajectories have been plotted running a tournament with
simulated individuals who display the same behavioral strategies observed with the real robots.

temporary loss of the ability to avoid walls (which was not needed in the few
previous generations because the predator soon localized and approached the
prey). At the same time the prey resumes a rapid wall following and obsta-
cle avoidance which forces the predator to get closer to walls and collide if
the prey is missed (right of figure 1.11). A description of additional behaviors
obtained in simulations is given in [12].

Machine Learning and natural adaptation

The results described above indicate that co-evolution between competing
species with a relatively short generational overlap does not necessarily display
the type of monotonic progress over time expected from the optimization-
oriented approach that characterizes traditional Machine Learning.

This does not mean that competitive co-evolution is not an viable approach
for the purpose of evolving efficient behavioral competencies. In fact, the
rapid discovery, variety, and complexity of behaviors observed, together with
appropriate methods to pick them out (such as the Master Tournament), hint
at the computational advantages of competitive co-evolution. For example,
in a companion paper we report results obtained in different environmental
conditions where predators evolved against a fixed co-evolved prey (from
another run) do not reach the same performance levels obtained when both prey
and predators are co-evolved [29]. In other words, under certain circumstances
competitive co-evolution can indeed produce more powerful solutions that
standard evolution. Furthermore, it has also been shown that, by including all
the best opponents evolved so far as test cases for each individual (Hall of
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Fame method), co-evolution displays monotonic progress and becomes very
similar to a very robust optimization technique [31, 29]. Finally, other results
obtained on variations of the basic physical setup described in this article
display ascending trends on the Master Tournaments [29].

However, the basic issue here is to what extent natural evolution should be
interpreted as an optimization process (see also [17, 16] for a critical review)
and to what extent should we use artificial evolution as an optimization tech-
nique in the spirit of traditional Machine Learning. Competitive co-evolution
is closer to biological evolution in that the challenges faced by evolving indi-
viduals continuosly and unpredictably change over time. Under these circum-
stances, the classic notion of optimal solutions seems inadequate because at
every point in time it is impossible to know what the next challenge will be.

With respect to mainstream “evolutionary computation” devoted to search-
ing for peaks on multidimensional and complex, but static, fitness landscapes
[15], in a competitive co-evolutionary scenario the landscape continuously
changes. Not only one cannot predict the way in which it changes, but very
often it will change towards the worst from the point of view of each species
(see the right portion of figure 1.1). As a matter of fact, for a co-evolving
species there is not a fitness landscape to climb. In other words, at every point
in time and space there is not a gradient that can be reliably followed. There-
fore, fitness landscapes are useful only for a posteriori observations, but are not
actually used by a system evolving in unpredictable dynamic environments.

Within this framework, artificial evolution should not be conceived as a
method for finding optimal solutions to predefined problems, but as a mecha-
nism for encouraging and developing adaptivity. For example, generation and
maintainance of diversity might be an adaptive solution. Another adaptive so-
lution could be that of selecting genotypes whose mutants correspond to differ-
ent but all equally viable phenotypes. In both cases, the species can quickly re-
spond to environmental changes. Yet another way of evolving adaptivity would
be that of encouraging ontogenetic adaptive changes. None of these notions of
evolution implies continuous progress as usually defined in the machine learn-
ing literature.

Revisiting the experiments described above in this new light, after an
initial period during which the two populations settle into a regime of tight
interactions (when the two fitness measures become equal), the best individuals
of the two populations are always optimal, or almost always, with respect to the
environment (competitors) that they are facing. In other words, the optimum is
always now.
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Exposing the Red Queen

The Red Queen effect illustrated in figure 1.1 is suspected to be the main actor
behind the dynamics, complexities, and computational advantages of compet-
itive co-evolution, but how exactly it operates is not known. Capitalizing on
the fact that our simple experiment with the robots displayed dynamics similar
to those measured in experiments carried out in simulation, we exploited the
workstation CPU to study how the fitness landscape of one species is affected
by the co-evolving competitor. Let us remember that here the notion of fitness
landscape is valid only as an observation metaphor using data collected during
a co-evolutionary run.

Given the shorter genotype length of the prey, we analyzed how the its
fitness surface changed when the prey was confronted with the best predators
saved from successive generations. Let us recall that the genotype of the prey
was composed of 5 bits x 22 synapses (see subsection 1.2). Assuming that the
most significative bits are those coding the sign of the synapses, we are left with
22 bits.4. The combination of these 22 genetic traits corresponds to 4,194,304
prey. Each prey was separately tested against the best predators of the first
eight generations and against the best predator of generation 20, yelding a
total of almost 40 million tournaments. In order to facilitate the comparison,
at the beginning of each tournament, both the prey and the predator were
positioned at the same location facing north. The best predators were selected
from the simulation run depicted in figure 1.7. Since there is not enough space
on this page to plot the fitness values of all the prey against each predator,
the 4,194,304 fitness values were grouped into 100 bins of 4,194 values each
(discarding remainders) and the average value of each bin was plotted on
figure 1.12.

Despite these approximations, one can see that co-evolution of predators
during initial generations cause a general decrement of the performance of the
prey. However, it should be noticed that these are average values and that for
every bin there are always several prey reporting maximum fitness 1.0. The
Red Queen effect is clearly visible in the temporary and periodic smoothing
of the fitness landscape, as highlighted in figure 1.12. For example, the best
predator of generation 3 causes a redistribution of the fitness values, stretching
out the relative gain of some combinations of traits with respect to others. This
smoothing effect is always temporary and roughly alternates with recovery of

?
The remaining 4 bits for each synapse were set at 0101, a pattern that represents the expected

number of on/off bits per synapse and also codes for the average synaptic strength.
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Figure 1.12
The Red Queen in action. Fitness landscape for the prey when tested against the best predators
saved from generation 1, 3, 4, and 20. Each data point is the average over the fitness values
reported by 4,194 prey close on the genotype space.

a rough landscape.
It should be noticed that some regions corresponding to better fitness re-

main relatively better also during periods of stretching, whereas others are
canceled out. That implies that individuals sitting on these latter regions would
disappear from the population. If we view these regions as minima or brittle so-
lutions, our data show the potentials of the Red Queen for selecting robust so-
lutions. Furthermore, it can be noticed that the steepness of the surface around
the maxima becomes more accentuated along generations. If we assume that
steeper regions are more difficult to reach, competitive co-evolution might fa-
cilitate progressive development of abilities that would be difficult to achieve
in the scenario of a single species evolved in a static environment. In other
words, at least during the initial generations, coevolution might spontaneously
generate a set of tasks of increasing difficulty, a sort of “pedagogical series of
challenges” [31] that might favor fast emergence of complex solutions.

Selection criteria

In artificial evolution the choice of the selection criterion (fitness function)
can make the difference between trivial parameter optimization and generation
of creative and “life-like” solutions [7]. From an engineering point of view,
it might seem reasonable to pursue an optimization approach by designing a
detailed fitness function that attempts to develop behaviors that are partially
pre-defined. However, by doing so one might also include wrong assumptions
that derive from an insufficient understanding of the environment and/or of the
interactions that might arise between the robot and its environment [28]. For
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example, one might think that a successful predator should aim at the prey
and approach it minimizing the distance, whereas the prey should attempt to
maximize this distance. Consequently, she would design a fitness function that
includes –respectively–distance minimization and maximization for predators
and prey, as in [3].

Although the fitness function employed in our experiments was simply
time to contact, it is worth asking whether our robots (simulated and real)
indirectly optimize this objective. A new set of simulations was run where each
individual was selected and reproduced according to the usual fitness function
described in section 1.2, but was also evaluated according to a fitness function
based on the distance between the two competitors (namely, the distance for
the prey, and 1 - distance for the predator).
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Figure 1.13
Comparisons between fitness of the best individuals measured as time to contact (t) and as
distance. (d). Both species have been evolved using fitness t. Left: Best evolved predators do not
attempt to minimize distance (predator fitness is 1 - d). Right: Best evolved prey attempt to
maximize distance (prey fitness is d).

The fitness values computed according to the two methods (figure 1.13) did
not overlap for the predators, but they did for the prey. In other words, predators
selected to hit prey in the shortest possible time did not attempt to minimize
the distance from the prey, as one might expect. On the other hand, in general
prey attempt to maximize the distance. The strategy employed by the predators
was more subtle. Rather than simply approaching the prey, they tended to “wait
for the right moment” and, only then, attack. The behaviors shown in the first
two insets of figure 1.11 are an example of this strategy. The best predator of
generation 13 attacks only when the prey is within a certain range, and rotates
in place in the other cases (neuroethological analyses showed that the predator
infers the distance from the prey by observing how fast the prey moves on its
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own visual field). Similarly, the best predator of generation 20 does not follow
the prey once the latter has moved away; rather, it performs one more turn on
itself and re-attacks. By doing so, it has higher probability of hitting the prey
on the side of the motors where there are no sensors.

These results indicate that competitive co-evolution can discover innova-
tive and unexpected –yet efficient– solutions provided that one does not at-
tempt to force it into pre-defined directions. If a co-evolutionary system in
externally channelled in certain directions, it might loose its ability to gener-
ate adaptivity and explore unpredictable solutions. We might speculate that to
the limit, a strongly constrained co-evolutionary system will converge to trivial
solutions, if such a solution exist for the specific architecture evolved, or will
degenerate in random search.

1.4 Ontogenetic adaptive change

In subsection 1.3 we have mentioned that competitive co-evolution might favor
the emergence of ontogenetic adaptive changes (i.e., changes during the “life”
of an individual robot) as a way to improve adaptivity. Although most of
the co-evolutionary systems described in the literature include some type of
ontogenetic changes in the form of small random changes to the parameters,
it is difficult to say whether this form of noise plays an important role on the
specific dynamics of co-evolving species. Moreover, all the results presented
so far are based on single-run studies and do not include statistical comparisons
between different adaptation techniques.

The aim of this section is that of presenting initial results on the effect of
ontogenetic adaptive changes in co-evolving competing species. In particular,
we want to address the following questions: Does protean behavior affect evo-
lutionary dynamics? Do competing species exploit different types of protean
strategies, and how does this affect the competitor’s behavior? In the attempt to
investigate these issues in very simple settings, we have compared co-evolution
of competing species equipped with different types of simple adaptive con-
trollers with results from the experiments described in section 1.3 above. In
order to obtained data from multiple runs of the same condition for statistical
analysis, all the experiments conducted in this section have been carried out
with the software technique described in subsection 1.2.

For sake of comparison, all the neural networks had the same architec-
ture, the same genotype length (5 bits per synapse), and used a comparable
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Table 1.1
Genetic encoding of synaptic parameters for each co-evolutionary condition. 1:
Genetically-determined controllers; 2: Adaptive-noise controllers; 3: Directional-change
controllers.

Bits for one synapse
Condition 1 2 3 4 5

1 sign strength
2 sign strength noise
3 sign Hebb rule rate

encoding technique. We distinguished three evolutionary conditions, each one
corresponding to a different type of controller (Table 1.1). In all conditions, the
first bit of each synapse coded its sign (whether excitatory or inhibitory).

In the first condition, which is that described in section 1.2 above, the
remaining four bits coded the synaptic strength as a value in the range @ & ' 
�A .
Since no changes take place during the life of the individuals, let us call this
condition genetically-determined controllers.

In the second condition, only two bits coded the synaptic strength (again,
in the range @ & ' 
�A ), and the remaining two bits coded the level of random noise
applied to the synaptic value at each time step. Each level corresponded to
the lower and upper bounds of a uniform noise distribution:

&7; &
(no noise),B &7; �/�DC , B &7; �/�DC , and

B 
 ; & . For every new sensor reading, each synapse had
its own newly-computed noise value added to its strength (with a final check to
level out sums below 0.0 or above 1.0). We shall call this condition adaptive-
noise controllers because each species can evolve the most appropriate noise
level for each synapse (including the possibility of not having noise, which
corresponds to condition one).

In the third condition, two bits coded four Hebbian rules and the remain-
ing two bits the learning rate (

&>; &
,
&7; �/�DC , &>; �	�DC , and 
 ; & ). Four variations of

the Hebb rule were used: “pure Hebb” whereby the synaptic strength can only
increase when both presynaptic and postsynaptic units are active, “presynap-
tic” whereby the synapse changes only when the presynaptic unit is active
(strengthened when the postsynaptic unit is active, and weakened when the
postsynaptic unit is inactive), “postsynaptic” whereby the synapse changes
only when the postsynaptic unit is active (strengthened when the presynap-
tic unit is active, and weakened when the presynaptic unit is inactive), and
“covariance” whereby the synapse is strengthened if the difference between
pre- and post-synaptic activations is smaller than a threshold (half the activa-
tion level, that is 0.5) and is weakened if the difference is larger than such
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threshold. After decoding a genotype into the corresponding controller, each
synapse was randomly initialised to a value in the range @ & ' 
�A and modified at
each time step according to the corresponding hebbian rule and learning rate.
In another article, we have shown that this evolutionary scheme in a single-
agent static environment can develop stable controllers which quickly develop
navigation strategies starting from small random synaptic strengths [10]; inter-
ested readers will find more details in that paper. Flotzinger replicated those
results (from a previous preliminary report [9]) and studied in more detail the
synaptic dynamics, showing that continuously changing synaptic values reflect
to a certain approximation input and output states of the controller [13]. There-
fore, let us call this condition directional-change controllers, simply indicating
that synaptic changes depend on sensory activation and motor actions.

Experimental results

For each condition, six different evolutionary runs were performed, each start-
ing with a different seed for initializing the computer random functions. A set
of pairwise two-tail t-tests of the average fitness and best fitness values along
generations among all the six runs, performed to check whether different seeds
significantly affected the experimental outcomes, gave negative results at sig-
nificance level 0.05. Therefore, for each condition below, we shall plot only
data referring to seed 1 (arbitrarily chosen), but the statistical tests reported
will be based on all the runs.

In order to compare the results between the three co-evolutionary condi-
tions, a relational measure of performance was developed. It consisted in com-
puting an index of relative performance 6	E� by counting how often one species
reports higher fitness than the competing species at each generation for each
separate run � (where � stands for a replication of the same experiment with
a different random seed) in a specific condition 8 . In our co-evolutionary runs
which lasted 100 generations, such index will be in the range @F,�
 &/& ' 
 &	& A ,
where ,�
 &	& means that prey always outperformed predators,

&
means that

both species were equally better or worse than the competitors, and 
 &	& means
that predators always outperformed the prey in 100 generations. As compared
to the Master Fitness, this value does not tell us whether there is progress in
the population, but it allows us to compare co-evolutionary coupled dynamics
between different conditions.

In the condition of genetically-determined controllers 8G�H
 (data given
in section 1.3), the average value over six repeated runs is I " �J
K� ; �DC with
standard deviation of the sample mean LM�N�	O , indicating that the two species
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species did not significantly differ in the number of wins and losses.
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Figure 1.14
Adaptive-noise controllers. Left: Average fitness across generations for predator (thick line) and
prey (thin line). Right: Examples of behaviors (black disk is predator, white disk is prey). Top:
generation 20. Center: generation 50. Bottom: generation 80.

The condition with evolutionary adaptive noise ( 8P�RQ ) displayed an av-
erage relative performance I�ST�U
	
 ; �/� with standard deviation of the sample
mean LM�V�/Q ;W% which was not statistically different from that of the condition
of genetically-determined controllers (probability value was 0.83 for t-test of
the difference of the means between the two conditions, i.e. much bigger than
significance level 0.05 typically used for rejecting the equality hypothesis). The
oscillatory patterns observed on the fitness values for condition 1 took place
in condition 2 too, but were much smoother (figure 1.14, left). Furthermore, in
all cases it took roughly twice as many generations –as compared to condition
1– to lock into oscillatory dynamics (marked by the generation when the two
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fitness lines cross). We then compared between the two species the average
noise level used by all individuals in the population and by the best individuals
at each generation. Two separate t-tests for measuring differences of average
noise level and of noise level of the best individuals both displayed a signif-
icant difference (3YX &7; 
 ). Prey clearly used much higher noise levels than
predators.

The hypothesis that the prey exploited noise to develop unpredictable
controllers (that is, not improving much on initial random controllers) while
the predator tried to develop more stable pursuit strategies was reflected by the
behaviors of the two species (figure 1.14, right). Prey displayed unpredictable
manoeuvres while the predators attempted to track them. The prey trajectory
was often changing while retaining sufficient obstacle-avoidance abilities (it
sometimes stopped near a wall for a few instants and later moved away). The
predator behaviors were more predictable. In general, they were sufficiently
good at keeping the prey within the visual field.

Relative performance of the two species in the third condition, (directional-
change controllers) significantly differed from condition 1 (and from condition
2). Relative performance was I�Z[�\C.Q with standard deviation of the sample
mean L]�^
 %>; �/_ , 3a` &7; & 
 for a two-tailed t-test of the difference of the
means. In all six repeated runs predators reported higher average and best
fitness values than prey, except for short temporary oscillations (figure 1.15).
In all runs, the average fitness of the predator population was more stable than
that of prey.

Predators always display very good chasing abilities across generations:
once the prey has been locked in its visual field, it quickly accelerates to maxi-
mum speed until contact. As a matter of fact, for the predator it is sufficient to
get the sign of the synapses right. Then, independently of their initial random
values, the synapses from active sensors will be increased causing an accelera-
tion in the right direction. As compared to condition 1, where predators tended
to efficiently track only in one direction, here they can turn in both directions
at equal speed depending where the prey is. In condition 1 proper tracking in
both directions would have required accurate settings of all synaptic strengths
from visual inputs. Here, instead, since synapses are temporarily increased de-
pending on active units [9, 13], individual adjustments of synapses take place
when and where required depending on current sensory input. The trajectory
displayed in the center image of figure 1.15 shows another example of synaptic
adjustment. While the prey rotates always around the same circle, the preda-
tor performs three turns during which synaptic values from the visual units
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Figure 1.15
Directional-change controllers. Left: Average fitness across generations for predator (thick line)
and prey (thin line). Right: Examples of behaviors (black disk is predator, white disk is prey).
Top: generation 20. Center: generation 70. Bottom: generation 95.

are gradually increased; at the fourth turn, the synaptic values are sufficiently
strong to initiate a straight pursuit (eventually, the prey will try to avoid the
predator without success). The temporary drop in performance of the preda-
tor after generation 90 is due a more precise tracking combined with a slower
motion (bottom image of figure 1.15). Such behavior was probably developed
because prey were also slower and more careful in avoiding obstacles (includ-
ing the predator). Although activity-dependent synaptic change are exploited
by the far-sighted predator, not the same happens for the prey. Prey move faster
than in conditions 1 and 2, especially when turning near walls (where IR sen-
sors become active and synapses temporarily strengthen), but they cannot in-
crease their behavioral repertoire with respect to condition 1. Not even can they
improve it because volatile changes of the synaptic values imply that most of
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the time they must re-develop on-the-fly appropriate strengths; although this
is alright for avoidance of static obstacles, it is a problem when facing a fast-
approaching predator.
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Figure 1.16
Left: Master Tournament between species co-evolved in condition 1 (genetically-determined
controllers). Right: Master Tournament between predators evolved in condition 3
(directional-change controllers) and prey evolved in condition 1 (right). In the latter case,
predators win more often. See text for further implications of these results.

In order to check whether predators’ superior performances in condition
3 were due to a real advantage of the predator rather than to some difficulties
of the prey to cope with directional-change controllers, we compared Mas-
ter Fitnesses for predators and prey co-evolved in condition 1 (figure 1.16,
left; replicated from figure 1.8 for sake of comparison) with Master Fit-
nesses for predators evolved in condition 3 againts prey evolved in condi-
tion 1 (figure 1.16, right). Directional-change predators win more often against
genetically-determined prey ( Ib�dc�Q ) than genetically-determined predators
do. If the advantage reported by predators co-evolved with directional-change
prey had been caused only by difficulties of prey to evolve suitable directional-
change controllers, the Master Tournament between species evolved in differ-
ent conditions (figure 1.16, right) should have not generated differential per-
formances.

Finally, we run a new set of experiments where each synapse could decide
whether to change according to condition 2 (adaptive noise) or to condition
3 (directional change). The genetic code of all synapses of both species was
augmented by one bit. If this bit was on, the previous four bits were interpreted
as described for condition 2, otherwise as described for condition 3 (notice
that the first bit always codes the sign of the synapses in all conditions). The
results clearly indicated that predators always won over the prey (figure 1.17,
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Figure 1.17
Co-evolution of controllers that can exploit either adaptive noise or directional change (thick line
= predator; thin line = prey). Left: Average population fitness recorded during co-evolution.
Center: Master Fitness. Right: Amount of directional-change synapses in the population.
Figures are obtained by counting the number of directional-change synapses per individual
(divided by total number of synapses) and further averaging over all individuals in the population.

left) and Master Fitness values even revealed a slightly ascending trend for
predators, but not for prey (figure 1.17, center). Analysis of the genotypes
showed that all predators consistently evolved directional-change synapses, but
prey oscillated between preference for adaptive noise and directional change
without any consequence on the outcome of the tournaments that were almost
always won by predators.

These results indicate that directional-change provides superior adaptivity
with respect to the other two conditions only if coupled with the sensory
abilities of the predator. The addition of visual information provides long-
range information that is suitable for fast adaptation of chasing strategies. On
the other hand, the limited sensory information of the prey cannot capitalize on
this form of ontogenetic adaptation. The best the prey can do is to maximize
behavioral unpredictability and diversity.

1.5 Conclusive discussion

The experiments described in this article indicate that competitive co-evolution
can generate very quickly efficient chasing and escaping strategies in the two
species. Consider for example that a simple chasing strategy (consisting in lo-
cating the prey, going towards it, while avoiding the walls) emerged in less
than half generations required for evolving a simple obstacle avoidance behav-
ior for the same robot and a similar control architecture in standard evolution
(single robot in static environment) [8]. This might be explained by the fact
that co-evolution, at least in the initial phases, is analogous to incremental evo-
lution. In other words, competitive co-evolution generates solutions to difficult
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problems by generating a series of challenges of increasing difficulty. This is
reflected by a posteriori analysis of the modification of the fitness landscape
described in subsection 1.3. However, after some generations the two popu-
lations re-discover old behaviors and endlessly alternate between them. In a
companion paper [29] we show that this apparent problem can be solved in
two ways: either by testing each individual against best competitors extracted
from all previous generations (Hall-of-Fame method), or by making the envi-
ronemnt and sensory system of the two species more complex.

The point is that alternating between behavioral strategies is not a problem,
but a smart solution for coping with competitors that rapidly change their
strategy. The alternative to this result would be to evolve behaviors that display
greater and greater generality, i.e. behaviors that can defeat a larger number of
opponents. This is possible only if such behaviors exist or are not too rare
on the space of all possible behaviors that can be generated with a given
control architecture. If such behaviors do not exist, the best that co-evolution
can do is to evolve individuals that can quickly re-adopt a previous strategy
as soon as the current strategy is no longer successful (because the opponent
has changed his behavior). This implies that co-evolution finds individuals that
sit on areas of the genotypes characterized by steep peaks, that is individuals
whose mutants are significantly different, but still viable and successful. This
observation bears analogies with the hypothesis of “life at the edge of chaos”
advanced by Langton [22].

We think that it is necessary to reconsider artificial evolution in a new
perspective, different from mainstream evolutionary computation oriented to-
wards function optimization (see also [18] for a similar view). In unpredictably
changing environments evolution of optimal solutions is not an appropri-
ate approach because optimality cannot be defined a priori. A more suitable
metaphor is evolution of adaptivity, that is evolution of solutions that can cope
with rapidly changing environments. We argue that artificial evolution should
strive for evolving adaptive solutions, rather than solution for a fixed set of
predefined problems, if we want to evolve and understand artifacts that dis-
play life-like properties. In section 1.3 above, we have outlined at least three
ways in which artificial evolution could achieve increased adaptivity: a) gener-
ation and maintainance of diversity (which gives higher probability that some
individuals will be able to reproduce in changed environments); b) selection
of genotypes whose mutant neighbors correspond to different but all equally
viable phenotypes (which allows rapid generational switch between different
strategies); c) exploitation of ontogenetic adaptation (which can quickly cope
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with environmental changes without requiring genetic changes).
In this research we have explored in more detail the third option (and only

given some hints about the second option which is further discussed in an-
other article [29]). Co-evolving predators consistently exploit the possibility
of ontogenetic synaptic change with Hebbian rules and report higher perfor-
mance over the prey in three different conditions: against prey co-evolving
under the same directional-change condition, against prey co-evolved under
genetically-determined condition, and against prey that are free to evolve under
adaptive-noise or directional-change conditions. In all cases ontogenetic adap-
tation affects co-evolutionary dynamics by reducing the amplitude and fre-
quency of oscillations in fitness values. This suggests that ontogenetic changes
can cope with modifications of prey strategies without requiring much philoge-
netic change. For example, it was shown that rapid synaptic adaptation allows
the network to ontogenetically switch between different strategies (chase to the
left or chase to the right, depending on the prey behavior) that would otherwise
require generational evolution given this specific control architecture.

The prey, given their limited sensory information, did not benefit from the
types of ontogenetic changes considered in this research. However, when co-
evolved in adaptive-noise conditions, they consistently increased the level of
synaptic noise significantly more than predators. This corresponded to unpre-
dictable, rapidly changing, manoeuvres. Also in this condition the amplitude
and frequency of oscillations of fitness values was decreased. In fact, by dis-
playing a continuously changing behavior, the prey offered the predators a
larger set of different behaviors forcing them to adopt more general behavioral
solutions. These latter results highlight the strong relationship between phys-
ical aspects of the machine and the type of learning system adopted. Ideally,
sensory motor morphologies and learning algorithms should be co-evolved.

The experiments described in this article have been carried out (partly) on
physical robots and (mostly) on a realistic software model in order to quickly
explore different hypotheses and obtain repeated measures for statistical anal-
ysis. The fact of having co-developed hardware and software has been a de-
termining factor for several decisions that had to be taken early on during the
preparation of the experimental set-up. The most important decision regarded
the formulation of the fitness function. Considering that our robots could not
reliably measure the distance between each other, we resorted to a simpler and
more general fitness function based on time to contact. By “simple function”
we mean a function that does not force evolution towards predefined behav-
iors based on human preconceptions derived from a distal description of the
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robot behavior.5 In this case, we did not ask predators to chase by minimiz-
ing distance and prey to escape by maximizing it, as other authors did (e.g.,
see [3]). This was only one of the possible options that the two co-evolving
species could adopt. The analsyis described in section 1.3 showed that preda-
tors indeed adopted different and more subtle strategies. Whether or not the
choice of a selection criterion is so crucial to significantly affect the global
co-evolutionary dynamics [6], constraining co-evolution reduces the amount
of emergent behaviors that both populations could potentially discover. Within
the context of artificial evolution, intended as an open-ended endeavour to de-
velop increased levels of adaptivity, simpler and more intrinsic fitness func-
tions leave more space to autonomous self-organization of intelligent forms of
artificial life.
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