
An Evolutionary Active-Vision System

Toshifumi Kato
Instituteof RoboticSystems

SwissFederalInstituteof Technology(EPFL)
CH-1015Lausanne,Switzerland

Toshifumi.Kato@epfl.ch

Dario Floreano
Instituteof RoboticSystems

SwissFederalInstituteof Technology(EPFL)
CH-1015Lausanne,Switzerland

Dario.Floreano@epfl.ch

Abstract- We describean evolutionary vision systemca-
pable of autonomouslyscanningthr ough an imagewhile
zoomingin and out and changingfiltering strategy in or-
der to perform shapediscrimination. The systemcon-
sistsof a small artificial retina controlled by an evolution-
ary recurrent neural network without hidden units. We
show that sucha simple active-visionsystemcan success-
fully recognizediffer ent shapesindependentlyof their po-
sition and sizeby dynamically exploring relevant parts of
the image. We also show that a standard feed-forward
neural network trained with the back-propagation algo-
rithm cannotperform the task,not evenwith hidden units
addedto the architecture. Given its compactness,compu-
tational requirements, and versatility, this evolutionary
active vision systemis a suitable solution for small-size
andembeddedvision systemswith stringent energeticand
computational requirements,such as micro-robotic sys-
tems.In addition, this approachprovidesa framework for
studying emergentactive-visionbehaviors in autonomous
systems.

Keywords: Activevision,evolutionandneuralnetworks,
imagediscrimination.

1 Intr oduction

The conventional approachto artificial vision consistsof
passingan image througha sequentialseriesof filters (an
operationtechnicallyknown asconvolution) in orderto pro-
gressively compresstheoriginaldataandextracthigherorder
features[18, 24]. This approachis basedon themoreor less
explicit assumptionthat the goal of vision is to createrep-
resentationsthatcanbemanipulated,memorized,andadded
to symbolic libraries. Similar mechanismsandassumptions
are also found in modelsof biological vision wherefilters
arerepresentedby serially stacked layersof neuronswhose
functionalitiesare given by the patternsof local connectiv-
ity [16, 17, 21]. The main differencebetweenartificial and
bio-inspiredsystemsis that the latter areoften parallel,dis-
tributed,andcapableof self-tuningthefilter propertiesto the
imagestatistics. In both cases,the vision systemsrequire
powerful computationandlargememoryresources.

The needfor representationsin vision hasbeenrecently
criticized[5] becauseit impliesthepresenceof anhomuncu-
lus (“a little manin thehead”)who understandsthelanguage
usedfor representationsandcanrelatethoserepresentations

to thingsin the image.Rootedin theecologicalapproachto
vision championedby J.J.Gibson[10], thesecritics empha-
sizeevidencethatbiologicalandmachinevisioncangoalong
way by relying only on simpleandspecializedmechanisms
thatexploit dynamicalinteractionsbetweenanorganismand
its environment[13, 23,7].

Along similar lines,an increasingnumberof researchers
emphasizethe importanceof active vision, a processby
which an organismexecutesmotor actionsin orderto select
sensoryinformationthatmakesadiscriminationeasier[1, 2].

The evolutionary system describedin this paper falls
within the representation-freeand active-vision philosophy
describedabove. It is an extremelycompactsystem(with-
out mechanismsthat could supportinternal representations)
that canperform complex visual discriminationby actively
scanningan imagewhile zoomingin andout andchanging
filtering strategy. The large banksof parallel filters usedin
conventionalvision systemsaresubstitutedhereby a single
small retina-like filter that is free to roamthroughthe image
anddynamicallychangeits propertiesto carryout an other-
wiseconventionaldiscriminationtask.Theway in which this
small retinamovesaroundthe imageandchangesits resolu-
tionandfilteringstrategy isnotpredefined,but emergesoutof
anevolutionaryprocessthatselectsindividualsonly for their
ability to correctlymakevisualdiscriminations.

1.1 Relatedwork

The literatureon parsimonious,representation-free,andac-
tive vision systemsis still relatively smallandis to befound
mainly in the domain of behavior-basedand bio-inspired
robotics(see,for example,theproceedingsof theconferences
Simulationof AdaptiveBehavior. From Animalsto Animats
publishedby MIT Press).

Pioneeringwork on evolution of an active vision system
on a mobile robot hasbeenperformedby the Sussex group
[12]. Theauthorshaveincrementallyevolvedvisuallyguided
behaviors andsensorymorphologiesfor a mobile robot ex-
pectedto navigatetowardsa rectanglewhile avoiding a tri-
angle.They startedwith a simpleversionof thetaskthatse-
lectedcontrollersfor their ability to navigatetowardsa wall
coveredby colorpaper. Subsequently, they narrowedthearea
of the color paperon the wall and resumedevolution from
the last evolved generation. Finally, the rectangularshape
wasdisplacedanda triangularshapewaspositionednearby.
The fitnessfunction was modified to encourageavoidance



Figure1: A snapshotof theactive vision systemover anim-
agecontaininga triangle.Theretinais composedof 9 cells.

of the rectangleandmovementtowardsthe triangle,andthe
previously evolvedpopulationwasincrementallyevolved in
the new environment. The sensorymorphologyof the fi-
nal evolvedindividual consistedof only two small receptive
fields positionedalonga diagonalline so that the combina-
tion of robot movementsandimageprojectionover the two
receptive fields would causenavigation towardsthe correct
shape.

Beer andcolleagues[3, 23] evolved andanalyzedsmall
continuousrecurrentneuralnetwork controlling a simulated
agentequippedwith simplevisionsystemswherethedynam-
icsof theinteractionsbetweentheagent’sactionsandandthe
visualsignalsallow theemergenceof acomplex setof vision-
basedabilities, suchasdiscriminationbetweenthe self and
otherbodies,passingthroughopeningssuitablefor thebody
size,andrememberingobjectlocations.

Nolfi and Marocco[20] evolved a neuralnetwork for a
mobile robot equippedwith a linear vision systemcapable
of visually discriminatingbetweenambiguouslandmarksby
exploiting thedynamicinteractionsbetweenmovementsand
photoreceptoractivations.

Theevolutionaryactivevisionsystemdescribedin thispa-
per differs from thosedescribedabove in that a) it doesnot
attemptto evolve a visual morphology, but it assumesa ge-
ometric retina-like arrayof photoreceptors;b) it allows the
neuralmechanismsto changenot only the position of the
retinain thevisualfield (similar to themovementof a robot
in threedimensions),but alsotheresolutionof theretinalpro-
jection(similar to azoomingeffect)andthecharacteristicsof
the receptive fields; c) it canbe usedboth for conventional
imagediscriminationtasksandfor vision-baserobotnaviga-
tion; d) it is basedonasimplebehavioral fitnessfunctionthat
selectsindividuals for their ability to correctly recognizea
shape.We will comebackto the rationaleandimplications
of thesechoicesin thediscussionsection.

Theexperimentsdescribedin this paperarebasedon dis-
criminationof shapesin static images. In order to compare
thebehavioral strategiesof our active vision systemwith the
above mentionedvision-basedrobot controller evolved by
Harvey et al., we testour systemon imagescontainingtrian-
glesandsquares.In addition,theshapescanappearanywhere
in theimageandvary in size.

Figure2: Neuralarchitectureof theactivevisionsystem.Six
outputunits receive signalsfrom the retinacells andfrom a
unit signalling whetherthe retina is againsta border. The
outputunits have recurrentconnections,hererepresentedas
memoryunits that hold the activation of the outputunits at
theprevioustimestep[8].

2 Systemarchitecture

Theactivevision systemconsistsof a smallretinacomposed
of a matrix of cells. In the experimentsdescribedhere,the
retinahasafixedsizeof 3 by 3 cells.Eachcell hasareceptive
field mappingthe valuesof underlyingpixels in the image
into a singlevalue. Eachpixel can take a valuebetween0
and255 indicatinga grey level. The retinacanmove across
the image,zoomin andout, andchangethe propertyof the
receptive fields (filtering strategy). Figure1shows theactive
vision systemoveranimagecontaininga blacktriangle.

Theoutputsof theretinalcellsarefedinto arecurrentneu-
ral network without hiddenunits(figure2).An additionalin-
put neuronbecomesactive whenever the retinahits a border
of the image(this neuronwould not be necessaryin a mo-
bile robot immersedin anenvironmentandfreeto rotate).If
theretinaattemptsto moveover theborder, thismovementis
suppressed.

The activationsof the outputunits are passedthrougha
sigmoidfunction.Two outputunitsof thenetwork encodethe
typeof shaperecognizedby thesystem(triangleandsquare),
themostactive unit betweenthetwo beingconsideredasthe
network response.A third unit encodesthe type of filtering
strategy usedby all cells in theretina. In theseexperiments,
we consideredonly two simplefiltering strategies: sampling
andaveraging(figure3).If theactivationof this unit is above
0.5, thecell returnsthevalueof the top leftmostpixel in the
receptive field (sampling). If the activation is below 0.5, it
returnstheaverageof all pixel values.Therefore,thevalues
returnedby theretinacandynamicallychangedependingon
thevalueof thisoutputunit.

A fourth unit encodestheresolutionof cells in theretina,
that is the receptive field area. The activation level of this
unit is usedto settheareaof eachcell to oneof threepossi-
ble resolutions(all cells in theretinahave thesamearea).In



Figure3: Two filtering strategiesareavailable.Eachcell can
eitherreturnthevalueof the top leftmostpixel (black=0)or
theaveragevalueof all pixels(gray=127).Thefirst strategy
is calledsampling,thesecondis calledaveraging.Thefilter-
ing strategy is setby oneof network outputunitsafterevery
activationof thenetwork. All cells in theretinausethesame
samplingstrategy, asshown by thetwo snapshotsontheright
sideof thefigure.

theexperimentsdescribedhere,thesideof eachcell canbe5,
10,or 20 pixelscorrespondingto a retinalsideof 15,30,and
60 pixelsrespectively, asshown in figure4. In addition,only
at thefirst time stepwhena new imageis presented,thecell
sideis setto 80(correspondingto a retinasideof 240pixels)
to allow a global view of the imageandthuspotentiallyre-
ducethetime neededto searchfor theshape.A largerretinal
sizeprovideslowerresolutionandcorrespondsto azoomout
effect.

The remainingtwo outputunits encodethemovementof
theretinaacrosstheimagein termsof distance(expressedin
pixels)andanglewith respectto its top leftmostcorner. Dis-
tanceandanglearea function of unit activations,the max-
imum distancebeing50 pixels andthe maximumanglebe-
ing 359degrees.Recurrentconnectionsareimplementedby
addingasetof memoryunitsthatencodeacopy of theoutput
unit activationsat theprevioustimestep[8].

Theconnectionstrengthsareevolvedusingthesimplege-
netic algorithm describedin [11]. Connectionweightscan
take valuesin the interval [-4.0, 3.0] andareencodedinto 5
bits. Thefixedarchitecturedescribedabove has102weights
(includingbiasconnections).An initial populationof 100in-
dividualsis evolvedusingtruncatedrank-basedselection(the
best20 individualsmake 5 copieseach)andelitism (a ran-
domly chosenindividual of the new populationis replaced
by thebestindividualof thepreviousgeneration).Crossover
probabilityperpair is 0.1 andmutationprobabilityperbit is
0.01.

3 ShapeDiscrimination

In the experimentsreportedherethe active vision systemis
evolvedto discriminatebetweentwo shapes,anisoscelestri-

Figure 4: The retina can take on the three different sizes
shown in thefigure.Thesizeis setby thecorrespondingout-
put unit of the network after eachactivation. Larger sizes
offer lower resolutionandcorrespondto a zoomout effect.

angleanda square.We have chosenthesetwo shapesin or-
der to allow a comparisonbetweenthe behavioral strategies
evolved by our systemand thoseevolved by the robot de-
scribedby Harvey et al.

Eachindividualof thepopulationis presentedwith 20 im-
ages,10containingatriangleand10containingasquare.The
entireimage,or frame,is 320pixelswideand240pixelshigh.
Eachimagecanhave only onetriangleor onesquare.Trian-
glesandsquaresalwaysappearat a randomposition in the
imageandtake a randomsizebetween20 and100pixels in
height. The geometricalshapesareblack (pixel value= 0)
againsta white background(pixel value = 255) (seefigure
1). Sincetrianglesareisosceles,thebaseis alwayssettwice
the heightso that the total areais equalto that of a square
of equalheight.By doingso,theevolutionaryvision system
cannotrecognizethemby simply relyingon thetotalarea.In
addition,somenoiseis addedto theentireimageby inverting
the valueof eachpixel (black to white or vice versa)with a
probabilityof 0.005.

Whenever a new imageis presentedto an individual, the
memoryunits are set to zero, the retinal size is set to 240
by 240pixelsandto averagingmode,andtheretinais posi-
tionedat thecenterof the image.This largesizeis available
only at thefirst instanta new imageis presentedto let thevi-
sionsystemknow moreor lesswheretheshapeis insteadof
engagingin a randomsearchwith a small retinal size. Fol-
lowing that, the active vision systemis let free to move 50
timesandchangeresolutionsizeandfiltering strategy every
time theoutputunitsdecideto doso.

At eachtime step, the discriminationresponse(triangle
or square)is recordedandusedby the fitnessfunction

�
to

selectindividualsthat respondcorrectlythe highestnumber
of timesoverall images,asfollows
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Figure5: Fitnessdatafor theevolutionaryactive vision sys-
tem. Fitnessvaluesarepercentagesof correctresponsecom-
putedalong the entireexplorationphase.Thick line = best
fitness.Thin line = averagefitness.Giventhe binary nature
of this discriminationtask,0.5 correspondsto chancelevel.
Eachdatapointis anaverageof fiveevolutionaryruns.Notice
that sincethe fitnessis computedalsobeforethat the vision
systemhaslocatedtheshape,100%correctresponsesarenot
possible.
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where
� 
� is 1 if thevisionsystemgivesacorrectresponse

at step � for image � and0 otherwise,
�

is the total number
of images(20 in theseexperiments),and

�
is thenumberof

stepsperimage(50 in theseexperiments).
Noticethatsincein theseexperimentsthevisionsystemis

asked to give a responseat every time step(the mostactive
unit is taken asthe responseafter every activation) andthat
theprobabilityof encounteringa triangle(or a square)is 0.5,
it can obtain fitnessvaluesof 0.5 by fixing its responseto
eithertriangleor squareirrespectively of whatappearsin the
image.

3.1 Results

Five evolutionaryrunswereperformed,eachstartingwith a
differentrandominitialization. In all runs,bothaverageand
bestfitnessvaluesgraduallyincreasedandreacheda plateau
after about150 generations(figure 5) at about80% correct
responsesfor thebestindividuals.Noticethatfitness1.0can-
not bereachedbecausethevision systemis askedto provide
a responsealsobeforehaving a chanceto exploretheshape.

Theevolvedbehavioral strategiesvary slightly acrossthe
five evolutionaryruns,but all sharesomebasicfeatures.The
vision systemalwaysstartswith a fixed response(squareor
triangle,dependingon theevolutionaryrun) andthenmoves

Figure6: Examplesof trajectoriesof an evolved individual.
The retinaalways zoomsandmoveswith respectto its top
leftmostcorner, heremarkedby a dot. Thedotsdrawn after
everyretinamovementareconnectedby a line. For graphical
clarity, thevaluesof thecellsarenot shown, only theretinal
perimeter. Left: The retinastartswith its initial sizeat the
centerof the imagesignalling“triangle”. It thenshrinksto
thetop left cornerandmovesdown towardsthesquarewhere
it slidesalongits left edgeandstartssignalling“square”.Fi-
nally, it exploresthe other threesidesof the squaremain-
tainingthecorrectresponse.Right: Thesameindividual be-
gins signalling triangle and then moves towardsthe square
whereit visits the top andright edgechangingthe response
into “square”.

Figure7: Examplesof trajectoriesof an evolved individual,
as in figure 6 above. Left: The recognitionof a triangle is
madeby exploring its right corner and then drifting away
while maintainingthe correctresponse.Right: The recog-
nition is performedby lookingat theleft edgeof thetriangle.

towards the shape. Onceover the shape,the retina slides
back and forth along oneof its vertical edges. If the edge
is straight,it setsits responseto square,otherwiseto trian-
gle. Figure6 shows the trajectoriesof the retinain the case
of two squaresandfigure7 shows thetrajectoriesin thecase
of two triangles. A variationon this basicstrategy consists
of scanningthe cornersof the shapesinsteadof the edges.
Oncethe shapehasbeenrecognized,sometimesthe vision
systemmovesaway from the shapetowardsa borderof the
imagemaintainingthecorrectresponse(thisbehavior is made
possibleby the recurrentconnections).The evolved vision
systemsare not always capableof moving towardsthe im-
ageareawheretheshapeis located.In thosecases,they use
stereotypicalmovementsacrossthe imagethat give a high
probabilityof encounteringa shape.

Evolvedvision systemsusethesamplingstrategy mostof



Figure8: Examplesof imagepreprocessingbeforepresenta-
tion to thestaticneuralnetwork shown in figure9 below. the
imageis dividedin 192cellsof 20by 20 pixelseach,andthe
averagevalueof the400pixels in eachcell is takenasinput
valueto thecorrespondinginputneuron.

the times (61% on average),insteadof the averagingstrat-
egy (seefigure3). Consideringthat the evolveddiscrimina-
tion strategy is basedon the perimeterof shapes(edgesand
corners),thesamplingmethodprovidesstrongercontrastbe-
tweentheshapeandtheimagebackground(theactivationof
input neuronsis eitherzeroor one)andconsequentlya more
markedoutput.

At the sametime, they resortalmostalways to the low-
estavailableresolution,i.e. the largestretinal size. On the
onehand,a largeretinalsizegivesthevision systema better
chanceto locatethe shapein the image. On the otherhand,
theshapesarebig enough(minimumheightis 20pixels,max-
imumis100,averagemeasuredsizefor theshapesseenby the
besttestedindividuals is 60.58)to be discrimatedcorrectly.
In order to check the latter hypothesis,we performedfive
new evolutionaryrunsusingshapesthatcanbemuchsmaller
(heightrangesfrom 5 pixels to 100pixels),sothat they can-
not be resolvedat the lowestresolution. In theseconditions
thebestevolvedindividualsalmost100timesmorefrequently
useahigherretinalresolution(andconsequentlysmallerreti-
nal size), while still retainingthe explorationstrategies de-
scribedabove (watchingedgesand corners). Interestingly,
theseevolutionaryrunsdisplaythetopperformanceshown in
figure5 muchearlier(afterabout100generationsratherthan
150). This result suggeststhat the ability to switch resolu-
tion morefrequentlyhelpsalsoin the caseof largershapes.
Indeed,the bestevolved individualschangeresolutionmore
oftenalsowhenpresentedwith largeshapes.

4 Stationary discrimination

In anothersetof experimentswe attemptedto train a “static”
neuralnetwork toperformthesamediscriminationtaskonthe
completeimageusingthebackpropagationalgorithm[22].

The imageis divided up into 192 cells, eachmeasuring
20 pixels by 20 pixels (just like the sizeof a retinal cell of
theactivevisionsystemat thelowestresolution),asshown in
figure8.

The averagevalueof the 400 pixels in a cell represents
theinput of a correspondingneuronof a feed-forwardneural

Figure9: Architectureof the “static” neuralnetwork trained
with the backpropagationalgorithm on entire images. Dif-
ferentarchitectureshavebeenstudied,includingonewithout
hiddenunits.

network with two outputunits, eachstandingfor oneof the
two shapes,triangleandsquare(figure9).

The network is trainedon a balancedsetof images(half
trianglesandhalf squares)by randomlypresentinga shape
drawn at a randomlocationwith a randomsize(heightrange
is between20and100pixelsasin thefirst setof evolutionary
experimentsdescribedabove).Thesamecomputercodeused
for generatingthe imagesin theevolutionaryexperimentsis
usedheretoo. Theconnectionstrengthsareinitialized to ran-
dom valuesin the range � ����� , where � is the numberof
connectionsin the network (including bias weights). The
error betweenthe network responseand the correct shape
type is computedandaccumulatedfor eachpresentationof
10 squaresand10 trianglesandis usedto updatetheconnec-
tion strengths.

Eachtrainingsessionconsistsof 15000batchesof 20 im-
ages(alwayscreatedanew), correspondingto thenumberof
individuals evaluatedduring an evolutionary run described
above(150generationswith apopulationsizeof 100individ-
uals).Wehavetrainednetworkswithouthiddenunits,with 5,
10, and15 hiddenunits. Eachnetwork architecturehasbeen
trained5 times,eachtimestartingwith new randomweights.
We havealsotriedseveralcombinationsof learningratesand
momentumconstants.

Noneof thenetworkarchitectureshaseverbeencapableof
learningto discriminatebetweensquaresandtriangles,their
performancesalwaysoscillatingaroundchancelevel.

5 Discussion

In this paperwe havedescribedanevolutionaryactivevision
systemthatis capableof performingcomplex discrimination
taskswith an extremely simple neuralarchitecturewithout
hiddenunits. We have also shown that sucha discrimina-
tion taskcannotbeeasilylearnedby aneuralnetwork trained
onthewholeimagewith thebackpropagationalgorithm.1 Al-
thoughsomebodymayclaimthatthis is notafair comparison

1Althoughnoneof ournetworkscouldmanageto learnthediscrimination
problem,we cannotrule out thatwith a differentinitialization, architecture,
andconnectivity a feed-forwardneuralnetwork will learnto do it.



becausethenetwork doesnothaverecurrentconnectionsasin
thecaseof theevolvednetwork, thetemporaldimensiondoes
not exist in this context. The presenceof recurrentconnec-
tions in theevolvedretinamayalsoinduceoneto arguethat
they representa form of internal representation,contraryto
whatstatedin theintroductionsectionabove. Evenso,since
the recurrentconnectionsexist only at the outputlevel, they
donot representacodingof thesensoryinformationasin the
conventionalrepresentationalsystemscited in the introduc-
tion.

Evolvedvision systemscaneasilysolve the problembe-
causethey actively selectvisual featuresthat make the dis-
criminationtaskeasy. They searchfor vertical andinclined
edges,or for rectangularandacuteangles.Whenthe image
is large,they slidebackandforth alonganedgeof theshape,
probablyto avoid makingawrongdiscriminationdueto sam-
pling of imagenoise. In othercases,they searchfor a shape
angleandmove over it for sometime beforedrifting away
while maintainingthecorrectanswer.

The edgefeatureexploited by our evolved retina resem-
bles in someway the strategy usedby the evolved robotic
vision systemdescribedby the Sussex group[12] andmen-
tioned in the introductionsectionabove. In that case,the
vision systemusedonly two receptive fields (similar to one
of our retinalcells in averagingmode)placedalonga diago-
nal line on thecamerasurface.Theauthorsreportedthat the
strategy usedby therobot to approachthecorrectfigureand
maintainapropertrajectoryconsistedof concentratingonthe
edgesof the shapesandexploiting thedifferentialactivation
of the two receptive fields to triggera rotationbehavior or a
straightmotion. This strategy wasmadepossibleby thefact
that the pixel activationswere continuouslyupdatedas the
camerasweptover theimage.Our systemis differentin that
the motion is moresimilar to saccadicmovementswhereby
no informationis processedduringeyemovements.

The angle featureinsteadhasbeenshown to be a very
powerful indicatorin computervision becauseit is invariant
to scalingand rotation. Angle detectorshave indeedbeen
built in control algorithmsfor mobile robotsthat must rec-
ognizeobjectsor locatelandmarksduring map-basednavi-
gation[15]. Themostimportantdifferencebetweenhuman-
designedandour evolved“angledetector”is that theformer
consistsof modified Differenceof Gaussianfilters (analo-
gousto so-called“complex” biological cells with off-center
andon-surroundreceptivefields)whereasthelatteraremuch
cruderversionsthatexploit movementover theanglefeature
to do the discriminationbetween90 degreeandsmalleran-
gles.

Besideactiveexplorationof theshapes,theevolvedvision
systemsmake alsothebestpossibleuseof thefiltering strat-
egy andresolutiontype.As we have pointedout in theresult
section,althoughvision systemsactively changeresolution
sizewhile they explore the image,the samplingstrategy is
preferredbecauseit providesa sharpercontrastthatdoesnot
requireafinetuningof thesynapticweights,asinsteadwould

anaveragingmethod.In otherwords,sincethediscrimination
taskdoesnot requireattentionto lightnessgradients(shapes
areblackagainsta white background),thesamplingstrategy
allows a correctdiscriminationfor a wider rangeof synap-
tic weights. Similarly, the fact that in the first setof experi-
mentsall vision systemsalmostalwaysusethe lowestreso-
lution (i.e., thelargestretinalsize)is dueonly to thefactthat
shapesweresufficiently big to beresolvedwithout zooming
in andout. However, assoonastheshapesbecamesmaller,
the vision systemswitchedmuch more frequentlybetween
low andhigh resolution.Low resolutionwasstill maintained
asa preferredmodethoughfor two reasons.Thefirst is that
it allows a more efficient location of the shape,which can
appearanywherein the image. The secondis that,although
in our secondsetof experiments,the shapescould be much
smaller, the averageshapesize(averageheight= 52 pixels)
wasstill largeenoughto beresolvedat thelowestresolution.

The retinal systemusedin theseexperimentsis a square
matrix. Although in principlewe couldhave usedany other
morphology, or even let the vision morphologyevolve asin
the experimentsperformedby the Sussex group, a regular
grid of photoreceptorsmayallow thevisionsystemto exploit
moreeasilycorrelationsbetweenneighbouringpatternsof ac-
tivationsthat may correspondto relevant (i.e., ecologically
important)featuresin theenvironment. This is certainlythe
casein theseexperimentsandit seemsto have beenthecase
in computerexperimentsperformedto studyco-evolution of
male featherpatternsand femalevisual preferenceswhere
symmetricpatternsshowedto bepowerful indicatorsandde-
tectorsin presenceof variousdistortions(perspectiveanddis-
tance)[9]. A simplefeed-forwardnetwork in principlecould
not exploit location-specificcorrelationsbecausethe nodes
canbepermutedin any way without affectingtheoutput[6].
However, thisisnotthecasein ouractivevisionsystemwhere
active motion on a geometricalplaneis determinedby sen-
soryinputandaffectsthenext sensoryinput. Thepresenceof
recurrentconnectionsmay exploit location-specificpatterns
of activation over time to supportefficient exploration and
featuredetection.

Thescanningpatternsdisplayedby theevolvedvisionsys-
tem resemblehumanpatternsof eye movementsof doctors
while they explore imagesto performbinary decisiontasks,
suchasthepresenceof breastcanceror of bonefracture(fig-
ure10) [14]. Althoughour active vision systemwould most
likely not besufficient to performthesediscriminationtasks
in its currentstate,we plan to extend its structureto allow
explorationof gradedimagesandrealpictures,suchasthose
depictedin figure 10. Although it will undoubtedlybehard
to matchhumanperformance,therewill beseveralotheras-
pectsthatcanbestudiedwith theevolutionarymethodology
describedhere,suchassequencesandfixationtimes,relevant
features,andevenvisualattention.



Figure 10: Patternsof eye movementsof doctorsscanning
X-ray imagesfor the presenceof breastcancer(left) andof
bone fracture (right). Dots representfixation points [14].
Theseand other imagesof humaneye scansare available
at http://www.radiology.arizona.edu/ eye-
mo/mainpage.htm

6 Conclusion

We have describedanevolutionaryactive vision systemthat
can perform complex imagediscriminationtaskswith very
limited resourcesby actively exploring theimageandselect-
ing featuresthat make the task easierto solve. Visual fea-
tures,explorationstrategies,filtering and resolutionareau-
tonomouslyevolved insteadof being preprogrammedas in
otheractive vision systems.This givestheactive vision sys-
temthe freedomto developthe strategiesthataremostsuit-
ablefor the taskandarchitectureavailable. It alsoallows a
new seriesof experimentsto study active biological vision
within a syntheticapproach[4, 19].

Currentwork aimsat extendingthe featuresof thevision
systemwhile preservingthe principle of simplicity in order
to presentit with morenaturalimages. Anothercurrentdi-
rectionaimsat portingthis systeminto a smallmobilerobot
equippedwith a mobilevision systemandexploreevolution
of active vision for complex navigation taskswith limited
computationalresources.
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